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Abstract 
 
Quantum physics can be understood in terms of classical thermodynamics, which is already considered to be 
a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of 
solid-oxide fuel cells (SOFCs). The use of samarium-doped ceria (SDC) electrolytes in SOFCs lowers the 
open-circuit voltage (OCV) below the Nernst voltage (Vth). The low OCV is calculated with Wagner’s 
equation, included in the Nernst-Planck equation, which is based on the first and second thermodynamic 
laws. Experimental and theoretical limitations of Wagner’s equation have been discovered. Considering the 
separation of the Boltzmann distribution and Maxwell’s Demon, only carrier species having sufficient en-
ergy to overcome the activation energy can contribute to current conduction, as determined by incorporating 
different constants in the definitions of the chemical and electrical potentials. This means that an additional 
thermodynamic law is needed. Furthermore, quantum physics can be explained by the additional thermody-
namic law. 
 
Keywords: Boltzmann Distribution, Maxwell’s Demon, Wagner Equation, Nernst-Planck Equation,  

Additional Thermodynamic Law 

1. Introduction 
 
Solid-oxide fuel cells (SOFCs) directly convert the 
chemical energy of fuel gases, such as hydrogen or 
methane, into electrical energy. In SOFCs, a solid-oxide 
film is used as the electrolyte. Oxygen ions serve as the 
main charge carriers in the electrolyte. In these cells, 
YSZ (yttria-stabilized zirconia) is typically used as the 
electrolyte material, at operating temperatures of 873- 
1,273 K. Lower operating temperatures could extend the 
lifespan of the cells and enable the use of electrolyte ma-
terials with higher ionic conductivities, such as 
Sm-doped ceria electrolytes (SDC).  

However, the open-current voltage (OCV) of an SDC 
cell is about 0.8 V, which is lower than the Nernst volt-
age (Vth = 1.15 V) at 1,073 K. This low OCV value is 
considered to be due to the low value of the ionic trans-
ference number (tion), as can be explained by inspection 
of Wagner’s equation [1]: 
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where R, T and F are the gas constant, the absolute tem-
perature in Kelvin and the Faraday constant, respectively, 

2pO  and 2pO are the oxygen partial pressures at the 
cathode and anode, respectively, and Ri and Re are the 
ionic resistance and the electronic resistance of the elec-
trolyte, respectively. In general, tion is not constant in 
the electrolyte. Therefore, Wagner’s equation is ex-
pressed as [2]: 
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In the application of Equation (3), the experimental 
verification of leakage currents is necessary [3-5]. Fur-
thermore, a theoretical limitation of Equation (3) has 
been discovered [6]. The constant voltage loss without 
leakage currents observed in a mixed ionic-electronic 
conducting (MIEC) dense anode was already proposed 
by modifications of Wagner’s equation [7]. Wagner’s 
equation is included in the Nernst-Planck equation, 
which is based on the first and the second thermody-
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namic laws. This means that an additional thermody-
namic law is needed. Furthermore, the relationship be-
tween quantum physics and thermodynamics is ex-
plained. 
 
2. The Modification of Wagner’s Equation 
 
The modifications of Wagner’s equation are explained 
by considering the separation of the Boltzmann distribu-
tion [7]. The Boltzmann distribution of oxygen ions is 
shown in Figure 1. Ions with an energy greater than the 
ionic activation energy become carriers that can escape 
from the electrolyte. Because the Boltzmann distribution 
cannot be separated using passive filters, a problem 
known as “Maxwell’s Demon,” the distribution in Fig-
ure 2 is forbidden. 

The electrochemical potential should be identical be- 
 

 

Figure 1. Boltzmann distribution of the electrochemical 
potential of ions. 
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Figure 2. Incorrect distribution of hopping ions. 

tween carriers and non-carriers. 

_ _i hopping i vacancy    (4) 

Here, ηi_hopping and ηi_vacancy are the electrochemical po-
tentials of hopping ions and ions in vacancies, respec-
tively. The correct distribution of hopping ions is shown 
in Figure 3. From the conventional theory: 

_ _i hopping i vacancy aNE     (5) 

Here, N and Ea are Avogadro’s number and the activa-
tion energy of the oxygen ions, respectively. Equation 4 
differs from Equation (5); thus, some transformations are 
required. 

_ _i hopping i vacancy aNE     (6) 

_ _hopping vacancy aZF ZF  NE    (7) 

where μi_hopping, μi_vacancy, φ_hopping and φ_vacancy are the 
chemical potential of the hopping ions, that of the ions in 
vacancies, the electrical potential of hopping ions and the 
electrical potential of ions in vacancies, respectively. 
Equation (6) and Equation (7) are modifications of Wag-
ner’s equation. 

From Equation (7), for 2Z   , 1N F e : 

_ _ 2hopping vacancy aE e     (8) 

In MIEC materials, φ_hopping is neutralized by free elec-
trons and there is a voltage loss; therefore: 

_– 2th hopping th aOCV V V E e     (9) 

Equation (9) has previously been discovered empiri-
cally [8]. For example, using SDC electrolytes at 1,073 
K, the Vth, Ea and OCV are 1.15 V, 0.7 eV and 0.80 V, 
respectively. Thus: 

0.80 1.15 0.7 2V V eV e    (10) 
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Figure 3. Correct distribution of hopping ions. 
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3. Relationship between the Additional  
Thermodynamic Law and Quantum  
Physics 

 
The Nernst-Planck equation is: 

i
i i

d
J
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i i ZF      (12) 

where Ji, i, i and i are the ionic current density, the 
ionic conductivity, the chemical potential of the ions and 
the electrochemical potential of the ions, respectively. 

Using S (the action function), the Nernst-Planck equa-
tion can be written as: 

 iS ZF   dt   (13) 

0S    (14) 

Considering the separation of the Boltzmann dis-
tribution and Maxwell’s Demon, the generalized ex-
pression from Equations (6) and Equation (7) is: 
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Equation (15) holds for one hop but not zero, when Ea 
is not zero. Equation (15) is the generalized expression 
of the additional thermodynamic law. Instead of μi, ZFφ 
and 2 NEa, K.E. (kinetic energy), P.E. (potential energy) 
and ω (where  is the Planck constant and ω is the 
frequency) are used [9]: 
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Equation (16) is a characteristic expression in quantum 
physics. It means that hopping ions correspond to parti-
cles in the “R-process” described by Roger Penrose for 
the collapse of the wave function, and ions in the vacan-
cies correspond to particles that are not measured. When 
the separation of the Boltzmann distribution by ω is 
needed in the R-process, Maxwell’s Demon should be 
considered. A different constant should then be incorpo-
rated in the definitions of K.E. and P.E.  



Here,  should be a boundary belonging to space 
and not to the particles. The situation is analogous to that 
in which Ea is a boundary for the lattice structure rather 
than for ions. When only hopping ions are considered to 
have a real existence, ions in vacancies should be de-
scribed by the function of a complex number. Conse-
quently, the additional thermodynamic law can be a gen-
eralization of quantum physics. 



 
4. Verifying the Role of the Planck Constant 
 
The value of Ea is different in the different lattices. If the 

value of  can change, its role can be verified. The pos-
sibility that  may not be a universal constant has been 
suggested, based on the fact that the Hubble constant has 
not been precisely determined. If the variation of  is 
confirmed,  should belong to the spatial factor. 







Furthermore, it is possible to verify the role of  
theoretically. Einstein discovered four-dimensional space- 
time, but many scientists have pointed out the fifth dimen-
sion in the space, which is an internal dimension and dif-
ferent from the other four dimensions. Thus,  should be 
assigned to the fifth spatial dimension to separate observed 
particles from unobserved particles. 





 
5. Summary 
 
In the area of SOFCs, consideration of the separation of 
the Boltzmann distribution and Maxwell’s Demon re-
quires the modification of Wagner’s equation (Equations 
6 and 7). This means that an additional thermodynamic 
law (Equation 16) is required, which can be a generaliza-
tion of quantum physics. Here,  should be interpreted 
as a boundary in the spatial factor separating observed 
particles from unobserved particles. The situation is 
analogous to Ea forming a boundary in the lattice struc-
ture separating hopping ions from ions in vacancies. 
Furthermore, verifying the role of  is discussed. 




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