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ABSTRACT 

Safety related accidents of buildings and civil engineering structures have been reported all over the world. With the 
increasing importance of securing the safety of social infrastructure and optimum performance levels to prevent these 
accidents, a lot of attention has been concentrated on monitoring performance degradation due to structural defects and 
deterioration. In this study, the algorithm was developed to evaluate the safety of structures by analyzing signals of time 
domain and frequency domain, and the developed algorithm was verified through a forced vibration test. From the re-
sults of time-domain and frequency-domain data analysis, the damage detection results by each sensor location with a 
high degree of accuracy were derived in both methods. 
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1. Introduction 

Safety related accidents of buildings and civil engineer- 
ing structures have been reported all over the world. In 
particular, safety issues of social infrastructure such as 
bridges, tunnels, plants and skyscrapers are even more 
important in that they are public facilities that hundreds 
of thousands of people use a day. In Korea, a vertical 
vibration accident caused by resonance of 39-storied 
steel building occurred in 2011 [1], and more than 50 
casualties occurred due to the collapse of the Seongsu 
Bridge in 1994. With the increasing importance of se- 
curing the safety of social infrastructure and optimum 
performance levels to prevent these accidents, a lot of 
attention has been concentrated about monitoring perfor- 
mance degradation due to structural defects and de- 
terioration.  

The Korea Institute of Construction Technology is 
developing an IT-based system that detects abnormal 
movement through diagnosis of endothelial and envelop 
and monitors surrounding environment at the same time 
for the safety management of buildings and large struc- 
tures. This project aims to develop technologies to mea- 
sure and evaluate the health and safety of structures, and 
its final goal is to secure the world-class performance of 
sensor system, promote safety management of high-tech 

buildings/large structures and achieve commercialization 
by developing technologies as follows: 1) various sensor 
technologies such as patch-type optical fiber sensor and 
capsule and implant-type wireless sensors with goal of 
improving measuring range; 2) stress detection and 
structure status evaluation technology; 3) high durability 
of sensors and low-power ultra compact smart structure 
sensor network hardware technology; 4) light-emitting 
sensor utilization technology and automatic crack extrac- 
tion technology; 5) integrated management/control tech- 
nology on the developed systems; and 6) technology for 
practical use that can effectively apply the developed 
systems to buildings/large structured. Figure 1 shows an 
overview of the project [2]. 

In relation to structure status evaluation technology of 
the project, a study for the development of structural 
health monitoring techniques using acceleration response 
data was carried out to monitor the health of large 
structures including buildings and implement early de- 
tection of risks. The acceleration response data was ob- 
tained through a shaking table test with a three-storied 
building model. Indicators for judgment of damages were 
defined using the obtained acceleration response data, 
and a technique to determine the presence of damages 
was developed by applying the indicators to the outlier 
analysis among unsupervised learning based pattern 
recognition methods. *Corresponding author. 
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Figure 1. Schematic study diagram [2]. 
 

When probability distribution was selected according 
to the distribution characteristics of indicators, threshold 
to determine the presence of damages was set based on 
the confidence interval of the probability distribution. 

2. Health Monitoring Methodology  
Algorithm Based on Pattern Recognition 

2.1. Overview of Health Monitoring  
Methodology Algorithm Based on  
Unsupervised Learning 

A health monitoring methodology technique based on 
unsupervised learning is designed to extract the damage 
characteristics from acceleration data acquired and to 
estimate the damage index accordingly. First, structural 
response signals such as acceleration and strain are 
measured in the time domain. In general, since the meas-
urement of the dynamic response of structures is made in 
the time domain, the signal in the time domain is meas-
ured. In addition, as the procedure to determine the 
structural status is done in the next stage for feature ex-
traction and calculation of damage index, application of 
this algorithm is available regardless of the form of 
structural response (acceleration, strain, displacement, 
etc.). 

Next, characteristics to determine the steady and 
damage state are extracted from the frequency domain 
and time domain of measured signals. Since the struc- 
tural status is evaluated in accordance with feature ex- 
traction technique, sensitivity of evaluation on the ab- 
normal behaviors is determined depending on which at- 
tributes to attract. Using extracted characteristics, dam-

age index can be calculated through probabilistic tech-
niques and energy-based techniques, which will be de-
scribed in the next section. 

A probability distribution pattern is obtained by or- 
ganizing the calculated damage index in descending or 
ascending order. After fitting it into appropriate proba- 
bility distribution, parameter values of the probability 
distribution such as expected value or variance according 
to the probability distribution of acquired damage index 
are estimated, and decision boundary is set using values 
that correspond to proper confidence levels. The damage 
index beyond the decision boundary is called outlier, and 
the case in which outlier is detected can be evaluated to 
have damage [3]. 

2.2. Calculation of Damage Index 

Damage characteristics are extracted from the obtained 
acceleration data and by using this data, damage index 
that represents damage characteristics quantitatively is 
calculated. In this study, the Root Mean Square (RMS) 
representing the amount of energy of the measured sig-
nals was used as shown in Equation (1). And the damage 
index was calculating by subtracting possible damage 
occurrence level, that is, RMS of signals obtained from 
the current state from RMS computed from the data ob-
tained from the steady-state structures. 

( ) ( )2 2
0

0 0

1 1N N

i i i
t t

DI x t x t
N N= =

= −      (1) 

Here, N represents the number of measures samples, ( )0ix t  is time-domain acceleration signal measured 
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from the i-th sensor in a steady state, xi(t) is time-domain 
acceleration signal which is currently measured in the 
i-th sensor. In case the structure is damaged, the energy 
amount of the measured acceleration response signifi-
cantly increases or decreases compared to that of accel-
eration response in steady state. Accordingly, the damage 
characteristics can be extracted from the difference be-
tween the energy amount of steady state and that of 
damage state [4]. 

2.3. Determination of Threshold Using  
Generalized Extreme Value Distribution 

It is necessary to set an appropriate threshold value for 
determining the steady and damage state of structures 
after quantifying the damage characteristics through 
damage index. In this study, since the probability distri-
bution of damage index derived from the obtained data is 
based on generalized extreme value distribution (GEV), 
the threshold is derived from confidence interval of the 
generalized extreme value distribution, which has the 
form of the cumulative distribution function and follows 
Equation (2). 

( )
1/

: ; , , exp 1
x

GEV x
γμφ μ σ γ γ

σ

−  −   = − +       
 (2) 

Here, ( )1 xγ μ σ+ − > 0 is represented, and Rμ ∈  
represents position variable,  scale variable, and 0σ >

Rγ ∈  type variable [5]. 

3. Verification of Health Evaluation  
Algorithm Based on Unsupervised  
Learning through Forced Vibration Tests 

3.1. Analysis of Time-Domain Data 

The target structure used in forced vibration tests for 
analysis of time-domain data is a three-storied building 
model as shown in Figure 2, and steel bracings of 1mm 
in thickness were fastened on four sides of each layer in 
the form of an X. As shown in Table 1, an experiment 
was conducted with a total of 9 cases, and data was 
measured 5 times per each case. Case 1 represents a state 
where all bracings are fastened, and this state is assumed 
to be a steady state. The damage was simulated by re-
moving bracings. Cases from 2 to 4 represent a state 
where bracing of each floor from first to third floor is 
removed, cases from 5 to 7 represent a state where brac-
ings of two floors are removed, and case 8 represents a 
case where all bracings of all floors are removed. The 
last case represents a case where all bracing are fastened, 
which is the same state with the first case, and it is the 
case for verification of reproducibility of the safety 
evaluation algorithm.  

A total of six accelerometers (sensors 1 and 2 on the 

 

Figure 2. 3-storied building model experiment. 
 

Table 1. Damage experiment scenarios. 

Case # Condition 

Case 1 Steady state—All bracings fastened 

Case 2 
Bracing on the 1st floor removed 

(2nd and 3rd floors fastened) 

Case 3 
Bracing on the 2nd floor removed 

(1st and 3rd floors fastened) 

Case 4 
Bracing on the 3rd floor removed 

(1st and 2nd floors fastened) 

Case 5 
Bracings on 1st and 2nd floors removed 

(3rd floor fastened) 

Case 6 
Bracings on 1st and 3rd floors removed 

(2nd floor fastened) 

Case 7 
Bracings on 2nd and 3rd floors removed 

(1st floor fastened) 

Case 8 Complete damage state—All bracings removed 

Case 9 Re-steady state—All bracings fastened 

 
first floor, 3 and 4 on the second floor, 5 and 6 on the 
third floor) were installed by attaching two sensors to 
different columns by each floor as shown in Figure 3. 
The input signal is a time-domain signal in a random 
form as shown in Figure 4, and ambient vibration was 
simulated by generating input signals in the similar form 
to seismic waves.  

The wavelet transform was used to extract the charac-
teristics of measured time-domain signals. In this study, 
since geometric pattern of the original signal is similar to 
that of Morlet wavelet as shown in Figure 5, Morlet 
wavelet was set as mother wavelet. After performing the 
wavelet transform, signal-to-noise ratio of the response 
signal was improved by extracting the interval in which 
frequency components are concentrated, which indicates 
that the accuracy of damage detection was improved by 
extracting only characteristic time-domain signal of the 
section. 

In time-domain analysis techniques, extraction of 
characteristics to determine the steady or damage condi- 
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Figure 3. Sensor location in building model. 
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Figure 4. Artificial seismic wave input signal. 
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(c) 

Figure 5. Extraction of characteristic signals using wavelet 
transform: (a) Raw Signal; (b) Wavelet transform; (c) Ex- 
tracted characteristic signal. 

tions was made using a X-bar control chart technique. 
Control chart techniques are methods that determines 
upper control limit (UCL) and lower control limit (LCL) 
using probability parameters such as expected value, 
median and variance after selecting probability distribu-
tion which is most appropriate for the distribution of data. 
Among them, a X-bar control chart is a technique to set 
the upper control limit and lower control limit using the 
value obtained by fitting data in the steady distribution 
and estimating mean ( )μ  standard deviation  as 
shown in Figure 6.  

( )σ

In this study, confidence level of the steady distribu-
tion was determined to be the range of 99%. Lastly, 
damage characteristics extracted using an X-bar control 
chart was defined as outlier that exceeds the upper con-
trol unit or lower control unit which was set at a steady 
state, which is what uses physical properties where the 
acceleration amplitude increases as the value of dynamic 
response increases in the event of damage. 

Figure 7 shows the results of extracting X-bar control 
chart-based damage characteristics from data measured 
though experiments. The results of comparison between 
steady state (Case 1) and state with the largest damage 
(Case 8) of each acceleration data (sensor 1, sensor 3 and 
sensor 5) on the 1st, 2nd and 3rd floors using the upper 
control limit and lower control limit in a steady state 
showed that the number of outliers in damage state  
increased significantly compared to that in the steady 
state. 

Next, the number of outliers detected from a X-bar 
control chart was represented as damage index as in 
Figure 8, which shows that the number of outliers fur- 
ther increases by damage case compared to the case with 
steady state, and the pattern in the number of outliers by 
floor changes. In measurement of data on the first floor, 
the greatest number of outliers was derived in case of 
removing bracing on the first floor, and the outlier also 
increased in case of removing bracing on the second 
floor, which is due to the result that removal of bracing 
on the second floor have an effect on the response on the 
first floor. In measurement of data on the second floor, 
 

Confidence interval : 99%

 

Figure 6. Schematic diagram of a X-bar control chart tech- 
ique. n 
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(a)                                              (b) 

Figure 7. Outlier detection using a X-bar control chart: (a) Steady state; (b) Case 8 damage state. 
 
an increase in the number of outliers becomes greater 
than that of measured data on the first floor, which is 
attributed to the fact that the accumulated response on the 
bracing removal on the first floor has a effect on the re- 
sult on the second floor. Lastly, the case of removing 
bracing on the third floor also affects the response on the 
third floor due to the accumulated effects on the removal 
of bracings on the first and second floors. It is expected 
that the use of these patterns will make it possible to de- 
termine the damage location according to the sensor 
mounting position. In addition, the reproducibility of the 
algorithm can be identified since there is no difference 
between the number of outliers in case where all bracings 
are fastened again (Case 9) and that in Case 1. 

3.2. Analysis of Frequency-Domain Data 

Through the forced vibration test, an analysis of fre-
quency-domain data was conducted in a similar way to 
time-domain analysis. The target structures and experi- 
mental conditions were the same as those of the time- 
domain data analysis experiment, and as input signals, 
sine sweep signals were used instead of artificial seismic 
waves as shown in Figure 9. The input frequency range 
of sine sweep signals is 1 to 15 Hz. In low frequency, the 
acceleration amplitude value represented as gravity ac- 
celeration is small since speed is low even if the move- 
ment of shaking table is large. On the other hand, ampli- 

tude value becomes greater as the speed is high despite 
the small movement of shaking table in high frequency. 
Accordingly, the amplitude of the signal increases as 
shown in Figure 9. 

As for frequency domain signals, signal-to-noise ratio 
was made to be improved by applying a key element 
analysis technique as shown in Figure 10. The key ele- 
ment analysis technique is a method to remove noise by 
finding out the coordinate in which the most components 
are reflected and removing the component that is not 
reflected in the coordinate system under the assumption 
that measurement signals are reflected in general coordi- 
nate system. That is, it makes each signal independent by 
applying covariance of measurement signals to singular 
value decomposition (SVD) to remove the dependency 
between measurement signals.  

In this study, when six key element coordinate axes 
were selected, the accuracy of results was highest. If 
many key element coordinate axes are selected, it is dif- 
ficult to remove the noise of original signals since com- 
ponents on the noise are also reflected due to the pres- 
ence of numerous coordinate axes in which signal com- 
ponents are reflected. In case the number of key element 
coordinate axes is small, response required for the re- 
flected components can be lost. In this regard, the num- 
ber of coordinate axes is considered to be important fac-
tor. The accuracy of damage detection results was im-  
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Figure 8. Damage detection results by sensor location. 
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Figure 9. Sine sweep input signal (1 - 15 Hz). 
 
proved by removing the noise through key element 
analysis technique.  

Figure 11 shows the result of deriving the power 
spectral density (PSD) in which signal-to-noise ratio is 
improved through key element analysis technique in si-
nesweep signals. As dynamic characteristics of the struc-  
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Figure 10. Damage detection results by sensor location. 
 
ture are changed by removing bracings, the change in 
frequency response by damage case is observed. The 
change characteristics include the creation of new reso-
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nant frequency, movement of the resonant frequency and 
extinction of resonant frequency, etc.  

The damage index to determine the presence of dam- 
age was derived using frequency response signals that 
improve the signal-to-noise ratio through the key element 
analysis technique. Among various damage index tech- 
niques, the root mean squared deviation (RMSD) was 
used, and using data distribution characteristics, the 
threshold to determine the steady and damage conditions 
was set by calculating and listing RMSD values for each 
case. In this study, since the distribution of RMSD values 
follows generalized extreme value distribution, the value 
corresponding to 99% of confidence level was used as 
threshold by fitting RMSD values into the generalized 
extreme value distribution.  

Figure 12 shows RMSD values by each sensor data. 
In comparison with Figure 8 where damage detection 
results are represented as the number of outliers through 
time-domain analysis, damage detection results of the 
same pattern can be found. Based on the results, the va- 
lidity of data analysis techniques through the proposed 
damage detection algorithm in time-domain and fre- 
quency-domain can be verified, and it is suggested that 
the complement of the proposed algorithm is needed 
through the integration between time-domain data and 
frequency-domain data. 

4. Conclusions 

In this study, the algorithm to evaluate the safety of 
structures by analyzing signals of time domain and fre-
quency domain was developed, and the developed algo-
rithm was verified through a forced vibration test. 

In the verification test, a three-storied building model 
was used as target structure, and the presence of bracings 
by floor was assumed as damage to simulate the damage 
of the structure.  

In this study, the damage detection algorithm was 
verified only using structural response of time domain 
and frequency domain without considering input signals. 
In the time-domain data analysis, signal-to-noise ratio 
was improved by extracting frequency components in 
which the energy of response signals is concentrated 
through the wavelet transform, and the damage by da- 
mage case was detected by applying characteristic sig- 
nals with improved signal-to-noise ratio to the outlier 
detection technique to make the number of outliers dam- 
age index. In the frequency-domain data analysis, the 
signal with improved damage detection accuracy was 
extracted by removing noise through key element analy- 
sis technique and extracting only structural response. 
Using this signal, damage index was derived, and the 
damage was detected by fitting it into probability distri- 
bution.  
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Figure 11. Comparison between damage cases of frequency-domain signal. 
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Figure 12. Damage detection results by sensor location. 
   

From the results of time-domain and frequency-do- 
main data analysis, the damage detection results by each 
sensor location with a high degree of accuracy were de-
rived in both methods. Accordingly, it can be safely con-
cluded that highly reliable judgment on the presence of 
damage is possible using the proposed unsupervised 
learning technique. Through further studies, damage lo-
cation and damage level detection algorithm is to be de-
veloped based on the analysis on the damage index pat-
terns by sensor location, and the effects of this algorithm 
on the change in external environment such as tempera-
ture and working load condition will also be investigated. 
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