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ABSTRACT 

In this work, we analyzed the impact of interventions on populations which exhibit unimodal dynamics. The six land- 
marks that characterize the “shape” of the unimodal reproduction curve  f x  of the difference equation, 

 1n nX f X  , are defined and used in order to examine and determine the behavior of dynamics of populations. By 

using the Li-Yorke criterion for determination of chaos we propose a qualitative intervention rule that can be applied 
without any explicit population equation. This proposed strategy for intervention brings out many interesting behaviors in 
population dynamics. A qualitative decision rule can be applied with a straight edge without any population equation and 
therefore offers a robust strategy for the management of populations. 
 
Keywords: Qualitative Analysis; Difference Equations; Unimodal Dynamics; Intervention Strategies; Chaos; Li-Yorke 

Criterion; Pest Management; Species Enrichment; Pre-Image Sets 

1. Introduction 

When we intervene in ecosystems in order to reduce po- 
pulations of pests and parasites or enhance populations of 
fish or pollinators, we confront systems that have their 
own dynamics. Our interventions are usually aimed at 
changing the mean population size in a way guided by 
plausible common sense. If we want to reduce a popula- 
tion, kill them. If we want to increase a population, re- 
lease fry or fledglings. There are examples of trying to 
control populations such as dangue by spraying insect 
pesticide against the mosquito vectors [1,2]. The use of 
pesticides is a common practice in agriculture, and their 
roles have been descried in [3]. 

However, our interventions affect more than the mean 
values of target species. They percolate through a net- 
work of interacting species, are amplified along some 
pathways, buffered along others, and may even be re- 
versed. They also alter the dynamics of populations, their 
equilibrium values, their age distribution, their local and 
global stability, periodic oscillations and even may in- 
duce or eliminate chaotic dynamics. For example, chaotic 
dynamics can appear from a time-delayed inhibitory ef- 
fect of plant litter on subsequent growth when we in- 
crease the productivity of the plant [4]. Another example 
is the effect of global warming on the population dy- 
namics of the Lyme disease vector [5].  

It was also shown theoretically and experimentally that 
small perturbations can affect the dynamics of an insect 
population at its three developmental stages [6]. 

In this paper we examine the impact of interventions 
on populations which exhibit unimodal dynamics, using 
six landmarks. That is, we consider cases in which the 
dynamics of a population are described by an equation of 
the form, 

 1 ,n nX f X                (1) 

where Xn is the population size at time n, the func- 
tion  f x  is non-negative,  0 0f  ,  f x  increases 
with x up to some peak value and then declines. There 
are many possible mathematical forms for  f x . But 
here we do not specify the equation. The unimodal shape 
by itself provides guidelines for analysis, and the study 
fits into our strategy of qualitative mathematical biology 
that asks the question, “what can we get away without 
knowing and still understand the system enough to make 
reasonable decisions about interventions.” 

2. The Web Map and the Trajectory 

The unimodal shape is often a reasonable assumption for 
a reproduction curve  f x . For instance, for modeling 
the dynamics of the growth of grass in a savanna, the 
shape of  f x  reflects the fact that the quantity of 
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grass present affects growth in opposing ways: by way of 
reproduction, the more grass now the more grass later, 
but through litter accumulation on the ground, old grass 
inhibits new growth. Therefore, the curve  f x  would 
start at zero, rise to some peak level, and taper off asymp- 
totically toward zero when litter completely covers the 
ground and suppresses growth [7]. 

Successive values of x can be traced by the web map 
as shown in Figure 1(a). From any initial value x0 on the 
xn axis, we draw a vertical line to the curve  nf x , then 
a horizontal line to the bisector xn+1 = xn and repeat the 
process: vertical to the curve, horizontal to the bisector. 
As in Figure 1(b), we can connect the curve  f x  to 
the time course. You may start from any initial value x0. 
Where the bisector intersects with the curve we have the 
positive equilibrium of the Equation (1). This equation 
exhibits negative feedback: if xn is above equilibrium 
then xn+1 < xn while if xn is below equilibrium then xn+1 > xn. 
The trajectory of x (the solution to Equation (1)) may 
approach the equilibrium or oscillate permanently. It may 
be below equilibrium for several consecutive steps, but 
can only be above equilibrium for a single step. 

3. The Six Landmarks to Understand the  
“Shape” of the Curve 

We take a simple qualitative approach for understanding 
the dynamics from the shape of the curve  f x  [8]. In  

Figure 2, the equilibrium value x* is one of six crucial 
landmarks that show the dynamics. The others are: the 
peak P, at which  f x  reaches its maximum value. The 
maximum value,  M f P , and the minimum value, 

 m f M , together bound the region of permanence. If 
xn is in the region of permanence then all subsequent 
values are in that region, while if xn is a positive number 
outside the region of permanence then the trajectory will 
return to this region. 

The other landmarks are pre-images. In a previous 
study the structure of pre-image sets were mathemati- 
cally analyzed in the context of a two species compete- 
tion model based on a system of two difference equations 
[9]. In our work the pre-images are used as indicators 
along with others for qualitative studies. 

The first negative pre-image y−1 is the value of xn from 
which xn+1 = x*. That is,   *

1f y x  . The second nega- 
tive pre-image 2y  is that value for x for which 
 2 1f y y   and so on:    1k kf y y   . In order to 

create graphically 1y  and 2y , you start from the 
equilibrium x*, then a horizontal line back to the curve, 
next a vertical line to the bisector xn = xn+1, then go hori- 
zontally back to the curve, and you can find 2y . If xn 
lies between  1ky   and ky , then xn+1 lies between 

ky  and  1ky  . That is, a trajectory crosses one 
pre-image in each iteration. From the figure we see that 
there are no positive pre-images. Therefore, if xn is above 

 

 

Figure 1. The webmap of logistic equation     ,1 0 < < 1f x rx x x   with 3.5r  . 
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Figure 2. The 6 Landmarks for logistic equation     ,1 0 < < 1f x rx x x   with 3.5r  . 

 
equilibrium, then xn+1 is below the equilibrium. The 6 
landmarks are shown in Figure 2, as highlighted in red. 

The local stability of the dynamics around the equilib- 
rium depends on the slope of the curve at equilibrium. If 

 d df x x  at x* lies between −1 and 1, then the equilib- 
rium is locally stable. If instead the equilibrium is unsta- 
ble and the trajectory is periodic, then the period is stable 
if the product of the slopes around the cycle is between 
−1 and 1. Notice that it is possible to have a curve  f x  
that gives a locally stable equilibrium and yet is chaotic 
because the chaotic properties depend on the relations 
among the landmarks. 

4. The Li-Yorke Criterion for Determination  
of Chaos 

Li and Yorke [10] showed that if we can find a sequence in 
the solution of Equation (1) such that 3 0 1 2x x x x   , 

then the following are true: 
1) The Equation (1) has solutions of every integral pe- 

riod; 
2) There are non-periodic solutions; 
3) There is extreme sensitivity to initial conditions. 
These three properties of a non-delay difference equa- 

tion together define chaos, an unfortunate term since it 
implies total disorder, whereas chaotic dynamics do in 
deed have regularities. 

Applying the Li and Yorke criterion, we find that if 

2y  lies in the permanent region, then Equation (1) is 
chaotic. This is equivalent to 2 m y . If ky  is in the 
region of permanence then there will be sequences below 
equilibrium from 0 kx y  of length at least k before 
crossing over x*. Note: the negative semi-cycle (the 

number of consecutive iterations below equilibrium) may 
be limited to less than some k whereas there are solutions 
of all periods. This means that periodic orbit may cross 
equilibrium several times before returning to a previous 
value. The semi-cycle is more readily determined than 
the period since we cannot tell when a value is exactly at 
some pervious value but we can see the inter-peak (the 
sum of the negative and positive semi-cycles). 

Note that whereas local stability around equilibrium 
depends on the slope at the equilibrium, the determina- 
tion of chaos depends on the “shape” of the function as 
determined by the 6 landmarks. 

5. Interventions 

A policy is some rule of intervention that changes  f x  
for some values of x. A common rule in economic ento- 
mology is the economic threshold: intervene when the 
pest population exceeds some threshold value determined 
by the amount of damage the pest causes, the cost of 
corresponding crop losses, and the cost of the interven- 
tion. Threshold concepts provide guidelines to reduce the 
total amount of pesticides applied, while maintaining or 
improving farm profitability. More details on economic 
threshold can be found in [11]. 

Suppose now that the threshold for intervention is lo- 
cated above the equilibrium value (Threshold 1 in Figure 
3(a)). It lowers the unimodal curve  f x  on the right 
of Threshold 1 as described in Figure 3(a). This has no 
effect on the equilibrium x*, the peak P, the maximum M 
or the pre-images, but  m f M  is lowered. If the 
equation was previously stable, m might now be below y−2 
and the dynamics may become chaotic as in Figure 3(c).    
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Figure 3. The original curve was logistic equation     ,1 0 < < 1f x rx x x   with 3.5r  . The intervention “threshold 

1” is at *0.7 >x x . 
 
If the previous dynamics was locally stable, the solution 
may behave chaotically until it falls within the interval 
around x* where the slope is flatter than −1, and then x 
oscillates into equilibrium. 

It is not obvious whether chaos is desirable or not. If 
damage to the crop is proportional to the pest population, 
since oscillation reduces the mean of x, chaos might be 
beneficial. But if the crop can tolerate a certain level of 
damage but suffers losses when the pest population peaks, 
then oscillations may be harmful. Therefore it is impor- 
tant to propose an intervention strategy that pertains to 
our goal. 

A lower threshold for intervention (for example, 
Threshold 2 in Figure 3(a)) can reduce the equilibrium 
value as well as provoke chaos. Then x* and the 
pre-images are reduced and it is not obvious whether the 
pre-image 2y  is now above or below m. 

If intervention occurs only when the population is ex- 
panding most rapidly, the peak P will be lowered as de- 
scribed in Figure 4(a). This reduced M, which in turn 
increases m. Therefore this intervention may eliminate 
chaos if m is now above the pre-image 2y . The trajec- 
tory became stable as the intervention changed the region 
of permanence. 

Now suppose that our interest is in preserving a spe- 
cies. Sometimes a small population is not able to grow 
because members of the population cannot find a mate. 
For instance, there are two trees in a neighborhood, but 
they are too far to exchange the pollens; a population is 

endangered if it gets too small. Therefore a rule for in- 
tervention would be that when x is below some threshold 
we add some number of the plants. Another example of 
this kind of intervention is the addition of salmon fish 
when the population is low in a salmon farm [12]. 

In our example described in Figure 5(a), there exist 
two equilibrium points on the original curve (the blue 
curve) before intervention; an unstable equilibrium to the 
left of the peak and the other equilibrium to the right of 
the peak. The variable either can go to the left or to the 
right, but can’t stay at the unstable equilibrium. By the 
Li-Yorke criterion, the second pre-image 2y  of the 
original curve placed above the minimum essentially im- 
plies chaos. Also notice that the unstable equilibrium 
(0.114) was placed slightly above the minimum (0.1085) 
on the original curve. Thus, as in Figure 5(b), the popu- 
lation behaves chaotically until it gets caught up below 
the unstable equilibrium, and then dies out to zero. 

However if our intervention bulges  f x  to the left 
for small values as described in Figure 5(a), then the 
only effect on the landmarks is to move the pre-images to 
the left if they are already below the threshold. Therefore 
it may place some of them outside the region of perma- 
nence. This reduces the number of steps in the semi-cy- 
cle and if 1y  is moved to the left of m then there will 
be no chaos.  

Since we don’t specify the exact functional shape, we don’t 
know exactly whether this intervention will place both of the 
pre-images below the minimum. In this example of in- 
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Figure 4. The original curve was logistic equation     ,1 0 < < 1f x rx x x   with 3.5r   and intervention (see Figure 

3), and an additional intervention is to chop off the peak area, so now M = 0.79 (previously, M = 0.875). 
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Figure 5. The original curve was gamma equation    
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  with 0.1, 5r k  , and the unstable 

equilibrium was at 0.114. The intervention “Threshold” (red line) value = 0.2. 
 
tervention, the previously unstable equilibrium was re- 
moved, but the minimum is now placed in between y−2 
and 1y , so the determination of chaos is not obvious in 

this case. As in Figure 5(c), it turns out that the popula- 
tion still exhibits a chaotic behavior. However, our inter- 
vention strategies using the six land marks suggest some 
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directions for the management of population. 
If what we want is a stable trajectory, then we can in- 

tervene again when the population is expanding most 
rapidly by removing some animals when they are near 
the peak as in Figure 6(a). The peak area of the curve is 
again cut off. This decreases the maximum, which in turn 
increases the minimum, placing y−1 below the minimum, 
and it removes chaos as in Figure 6(c). 

Suppose now the curve represents the pests in agricul- 
ture, and we want to protect the harvest. We need to 
know what the nature of the harm the insect causes is. If 
an insect eats proportional to the population, then the 
amount of damage the insect causes is proportional to the 
mean population of insects. Suppose you have a chaotic 
population. The population oscillates in a chaotic way, 
but its average is going to be less than or equal to the 
equilibrium as oscillation reduces the mean of x. In this 
situation chaos can be beneficial to the harvest. 

It is also possible that the damage the insect causes 
mostly occurs at peaks. For example, plants can grow 
when they lose some leaves, but if they lose lots of 
leaves, then they may not be able to survive; sometimes 
the peak causes the plants the troubles and sometimes the 
average does. That is something we have to decide from 
the nature of the circumstances. If the peaks cause the 
plants troubles, and a chaotically behaving insect popula- 
tion gets really big, then you can intervene to add number 
of insects when the insect population is above a certain 

threshold. Although this intervention is different from 
what conventional wisdom would indicate, we raise the 
minimum by this intervention, so the minimum now be- 
comes greater than both y−1 and y−2. This change in its 
landmarks suppresses chaos, reducing the damages that 
occur at peaks, while it does not affect the equilibrium. 

Consider now that  f x  applies to the pest population 
in a crop of beans. Consider the intervention strategy of 
increasing a loan to encourage farmers to plant several crops 
of beans per year with less time between crops, as described 
in the equation,  1n nX r f X   , where r is greater than 1. 
This intervention steepens all slopes and makes periodic 
and chaotic solutions more likely. In this way, our interven- 
tions generally affect the stability of solutions [8]. 

6. Conclusions 

This kind of qualitative analysis and intervention strate- 
gies is more robust than the more precise models that 
give explicit equation for  f x  because it makes fewer 
restrictive and usually unrealistic assumptions about the 
shape of that function. Our intervention strategies depend 
on what the natural content of the population we are 
working with is, and the objects that we try to manage. 
Then we can think of how to intervene to get those re- 
sults by this kind of qualitative analysis. 

The dynamics of the difference equation without de- 
lays (1) can be grasped quickly and intuitively from ex-  
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Figure 6. The original curve was gamma equation    
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and the additional intervention is to intervene when the population increases most rapidly by chopping off the peak area (see 
the red arrow). The new M is at 0.78 (previously, M = 0.97). 
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amining the “shape” of the curve  f x . In order to do 
so, we have to look at  f x  in terms of its landmarks: 
the equilibrium value x*, the peak, the boundaries of the 
permanent region M and m, and the pre-image set 
 1 2 ,  y y  . As a consequence, a qualitative decision rule 
can be applied with a straight edge without any population 
equation and therefore offers a robust strategy for the 
management of populations. 

In the case of difference equations without delay, we 
have demonstrable results. For equations with delay, or 
for differential equations, there are fewer analytic results, 
but the qualitative conclusion above can be used as 
working hypotheses that can guide explorations by nu- 
merical methods and analysis for other cases [8]. 
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