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ABSTRACT 

Closed x- and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the 
topological spaces Y, of which, there is a subset  of D  *C Y  containing a non-constant function, where  *C Y  

is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification  , Z h

 
 of a Tychonoff 

space X can be obtained by using basic closed C*D-filters from  C Z|D f h f D      in a similar way, 

where  is the set of real continuous functions on Z  C Z

 
Keywords: Closed x-Filter; Open and Closed C*D-Filter Bases; Basic Open and Closed C*D-Filters;  

Compactification; Stone-Čech and Wallman Compactifications 

1. Introduction 

Throughout this paper,  T


 will denote the collection 
of all finite subsets of the set . For the other notations 
and the terminologies in general topology which are not 
explicitly defined in this paper, the readers will be re- 
ferred to the reference [1]. 

T

Let  be the set of bounded real continuous 
functions on a topological space Y. For any subset  
of , we will show in Section 2 that there exists a 
unique rf in  for each f in  so that for any 
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K and V are called a closed C*D-filter base and an 
open C*D-filter base on Y, respectively. A closed filter 
(or an open filter) on Y generated by a K (or a V) is 
called a basic closed C*D-filter (or a basic open C*D- 
filter), denoted by ℰ (or Å). f x  for all f  
D  at some x in Y, then K, V, ℰ and Å are denoted by Kx, 
Vx, ℰx and Åx, respectively. Let Y be a topological space, 
of which, there is a subset  of containing a 
non-constant function. A compactification 

 r f

 *C Y  
Y

D
 ,w   of Y 

is obtained by using closed x- and basic closed 
C*D-filters in a process similar to the Wallman method, 
where w

E FY Y Y  , EY  is the set {Nx|Nx is a closed 

x -filter, x is in Y}, FY  is the set of all basic closed 
C*D-filter that does not converge in Y,  is the topol- 
ogy induced by the base τ = {F*|F is a nonempty closed 
set in Y} for the closed sets of  and F* is the set of 
all ℭ in  such that 



wY
wY F T    for all T  in ℭ. Si- 

milarly, an arbitrary Hausdorff compactification  



, hZ

|h f 

 of 
a Tychonoff space X can be obtained by using the basic 
closed C*D-filters on X from D f , 
where  is the set 

 D  
D  *C Z .

2. Open and Closed C*D-Filter Bases, Basic 
Open and Closed C*D-Filters 

For an arbitrary topological space Y, let  be a subset D
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of .  *C Y
Theorem 2.1 Let ℱ be a filter on Y. For each f in  

there exists a rf in  such that 
D

 Cl f Y 
  1 ,f ff r r F        

for any F  in ℱ and any 0   (See Thm. 2.1 in [2, 
p.1164]). 

Proof. If the conclusion is not true, then there is an f in 
 such that for each t  in  there exist an D

t

r  Cl f Y 
F  in ℱ and an 0t  such that 

  1 , .t t t t tF f r r       

Since  is compact and  is con- 
tained in 

 f Y  




Cl  Cl f Y

     , |  is in Cl ft t t t tr r r    Y , 

there exist r1,···,rn in  such that Y is contained 
in 

 Cl f Y

   1 , | 1, ,i i i i .f r r i n       

Let  | 1, ,i  ,F F i n     then F  is in ℱ and  

   1 , | 1, ,i i i i iF F f r r i n       

Cl f

, 

contradicting that  is not in ℱ. 
Corollary 2.2 Let ℱ (or Q) be a closed (or an open) 

ultrafilter on Y. For each f in , there exists a unique 
 in  such that (1) for any 

D

fr   Y    ,H D
  any 

0,   

 1 ,f H f ff r r 
      



ℱ 

   1or , Qf H f ff r r 
     

and (2) for any   ,H D
 any 0,    

 ,f H f ff r r1   
      

 

  

   1or ,f H f ff r r 
    . 

(See Cor. 2.2 & 2.3 in [2, p.1164].) 
Therefore, for a given closed ultrafilter ℱ (or open ul- 

trafilter Q), there exists a unique rf in  Cl f Y
, 0,

  
  for 

each f in  such that for any  D  H D
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K and V are called a closed and an open C*D-filter 
bases, respectively. If for all f in , D  fr  f x  for 
some x in Y, then K and V are called the closed and open 
C*D-filter bases at x, denoted by Kx and Vx, respectively. 
Let ℰ and ℰx (or Å and Åx) be the closed (or open) filters 
generated by K and Kx (or V and Vx), respectively, then ℰ 
and ℰx (or Å and Åx) are called a basic closed C*D-filter 
and the basic closed C*D-filter at x (or a basic open 
C*D-filter and the basic open C*D-filter at x), respec- 
tively. 

Corollary 2.3 Let ℱ and Q be a closed and an open 
ultrafilters on a topological space Y, respectively. Then 
there exist a unique basic closed C*D-filter ℰ and a 
unique basic open C*D-filter Å on Y such that ℰ is con- 
tained in ℱ and Å is contained in Q. 

3. A Closed x-Filter and a Modified 
Wallman Method of Compactification 

Let Y be a topological space, of which, there is a subset 
 of D  *C Y  containing a non-constant function. For 

each x in Y, let Nx be the union of   x   and ℰx, if Vx is 
an open nhood filter base at x; let Nx be the union of 
  x  and  n |  is closed,   is iF F x F , if Vx is not an 

open nhood filter base at x. For each x in Y, Nx is a 
℘-filter with  being Nx. (See 12E. in [1, p.82] for defi- 
nition and convergence). Nx is called a closed ℘x-filter. It 
is clear that Kx is contained in ℰx and ℰx is contained in 
Nx, Nx converges to x for each x in Y. Let EY  be the set 
of all Nx, x in Y. Let FY  be the set of all basic closed 
C*D-filter ℰ that does not converge in Y and let 

w
E F

Definition 3.4 For each nonempty closed set F in Y, 
let F* be the set of ℭ in  such that the intersection of 
F and T is not an empty set for all T in ℭ. 

Y Y Y  . 

wY

From the Def. 3.4, the following Cor. 3.5 can be read-
ily proved. We omit its proofs. 

Corollary 3.5 For a closed set F in Y, (i) x is in F if 
Nx is in F*; (ii) F is equal to Y if F* is equal to wY ;

*F
 (iii) 

if F is in ℭ, then ℭ is in F*; (iv) ℭ is in  if 
there is a T in ℭ such that T is contained in Y – F. 

 wY

Lemma 3.6 For any two nonempty closed sets E and F 
in Y, 

(i) ,  * *E F E F  
(ii)    * *E F E F   * ,   

(iii)    * * *E F E F  
E

. 
Proof. (i) For []: If F , pick an x in E F , by 
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Cor. 3.5 (i), Nx is in  and Nx is not in *E *F ; i.e., 
. For () is obvious. (ii) is clear from (i). (iii) 

For []: If ℭ belongs to  and does not belong 
, then pick  in ℭ such that 

*E F

*E F

*


*
 *E F

1 2F T
1 2,T T

E T  

T



 1E T

 . 

Since  is in ℭ and  1T T 2

    E F T F T 21 2      



Y
wY F

 . 

Thus, ℭ does not belong to , contradicting 
the assumption. For [] is obvious from (i). 

*E F

Proposition 3.7 τ = {F*|F is a nonempty closed set in 
Y} is a base for the closed sets of . w

Proof. Let ℬ be the set  * | * .F    We show  

that ℬ is a base for . For (a) of Thm. 5.3 in [1, 
p.38], if ℭ , then there exist an f in , a 

wY
wY D 0   

such that 

 r   

f fr 

1S f  K,f f

 2 ,

r 

1

 Cℰ  

and 

 2E f r       Y , 

otherwise, if for all f in , all  > 0, D ,E   then for 
all f in , D  f  frY , contradicting that  con- 
tains a non-constant function. Thus 

D
E  ,  is closed, 

 is in ℭ and 
E

S S E    imply that ℭ is in *EwY  . 
So,  

 * |E *Ew wX Y    . 

For (b) of Thm. 5.3, if ℭ belongs to  

   * *Fw wY

*E F

Y E  , 

then  is closed, E  F 

* * 

 * *Y E

 R

  and  

   wY E Y E   w wY F

w w

wY

*

*

F

w F

*  

 

is in ℬ. Thus, ℭ is in 

  Y E Y   F . 

Equip  with the topology  induced by . For 
each f  , define f*:  by 

wY
D   ff r



C , if 

      K

 , f

1f r ,f fr 

 x

  Cℰ  

for all  > 0. Since (i) if ℭ is equal to Nx for some Nx in 
, then  EY

1 xf f        

is in Nx for all 0  , (ii) if ℭ is ℰ which is in FY , then  

 1 ,f frf r  

0,

    

is in ℰ for all  
D

 (iii) by Cor. 2.2, the rf is unique 
for each f in  and (iv) the K that is contained in ℭ is 

unique. Thus, f* is well-defined for each f in . For all 
f in , all x in Y,  

D
D

    1 ,f f x f x       

is in Nx for all 0,  thus f*(Nx) is equal to f(x) for all f 
in  and all x in Y. D

Lemma 3.8 For each f in , let r be in D   f YCl , 
then 

(i)    1 1, * *f r r f r  , r         
and 

        1 1* , ,

y 0.

r r f r r   

 

     

 for an

ii f *
 

Proof. (i): If ℭ is in    1 , *f r r     and  *f C  

is ft , then 

  1 1, ,f ff r r f t t                

for all 0  , where  1 ,f ff t t      C  K  for  

all 0  . Thus, 

 , ,f fr r t t             

for all 0  ; i.e.,  f * C  is  

   , ,ft r r r r ,         

so ℭ is in   1* ,f r r    . For (ii): If ℭ is in  

  , r1*f r     and  is f * C ft , then 

 , .ft r r    

Pick a  > 0 such that 

 , ,f ft t r r ,           

then 

 1 1, ,f ff t t f r r  .           

Since 

 1 ,f ff t t        CK , 

thus   1 ,f r r    C

   , r 

. By Cor. 3.5 (iii), ℭ is in 

1f r 
  . 

Proposition 3.9 For each f in , f* is a bounded real 
continuous function on . 

D
wY

DProof. For each f in  and each ℭ in , wY  f * C  
is in   Cl f Y . Thus * w f Y  is contained in 

  
Y

0,

Cl f Y ; i.e., f* is bounded on . For the continuity 
of f*: If ℭ is in and  is tf. We show that for 
any

wY
 * Cw f

  there is a  in  such that ℭ is in  *E

 1* * ,w
f fU Y E f t t .       

Let 

Copyright © 2013 SciRes.                                                                                 APM 



H. J. WU, W.-H. WU 593

   1 1, 2 2,f fE f t f t           

and  Since  *.wU Y E 

 1 3, 3f fP f t t        CK   

and by Cor. 3.5 (iv), ℭ . Next, for any ℭs 
in , if 

,P Y E 
U

U
s x  for all x in Y, by Cor. 3.5 (iv), pick a 

 in ℭs such that  
C Ν

T

1 2, 2 ,f fT Y E f t t S         



 

then  is in ℭs. By Cor. 3.5 (iii) and Lemma 3.8 (i), ℭs  S

is in 1* * ,f fS f t t    . If ℭs is Nx for some x  

in Y, by Cor. 3.5 (i), Nx in  if U x E , thus  

    * 2x f ff f x t t    Ν , 2 ; 

i.e., ℭs is Nx which is in   1* ,f ff t t   
w

. 

Lemma 3.10 Let k:  be defined by YY
  xk x Ν . Then, (i) k is an embedding from Y into ; 

(ii) for all f in ,

wY
D * ;f k  f and (iii)  is dense 

in . 
  k Y

wY
Proof. (i) By the setting, Nx = Ny if x = y. Thus  is 

well-defined and one-one. Let  be a function from  
k

1k 

  k Y  into Y defined by   1 .k k x x   To show the  

continuity of  and , for any k 1k  *F  in , (a): x is in  

    1  *wk Y F k     Y  

iff (b):  x xk Ν  is in . By Cor. 3.5 (i), (b) 
iff (c): x is not in 

 *wY F 
F . So,  

   1 *wF k Y F k      Y Y ; 

i.e., 

     k wY F k Y F   Y * . 

So,  and  are continuous. (ii) is obvious. (iii) 
For any 

k 1k 

*F  in  such that *wY F , 
T

 pick a ℭ in 
By Cor. 3.5 (iv), there is a  in ℭ such that 

Pick an x in , by Cor. 3.5 (i), 
*.F

 

wY 
T Y .F T   xk x Ν  
which is not in *F , so Ν  is in both  k xx  k Y


 

and ; i.e.,  *wY F    *wk Y F  

* *D  C



.wY

Y . Thus, 
 is dense in . k Y wY

| fLet . Then  Let  * *D f D 
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be a closed C*D*-filter base on  and let ℰ* be the 
basic closed C*D*-filter on  generated by K*. Since 

 and  are one-one, 

wY
wY

*k 1k  f k  f  for all f  in  
and  is dense in , so  

D
 Yk wY

    

   
1

* *

1

* ,

,

f H f f

f H f f

f r r k

k f r r

 

 







   

   

Y
 

for any  * *H D
 ,   | * *H f f H   (or any  

 H D
 ,  * * |H f f H   and all 0.   Thus, 

  * * * ,f H f ff r r1   
     

iff 

  1 ,f H f ff r r  
     

and 

 1
* * * ,f H f ff r r  
        

iff  

 1 ,f H f ff r r  
        

for any  * *H D
 ,  | * *H f f H   (or any  

 H D
 ,  * * |H f f H   and all  > 0. Therefore, 

if the K* or ℰ* defined as above is well-defined, so is K 
or ℰ defined as in Section 2 well-defined and vice versa. 
If K* or ℰ* is given, then K or ℰ is called the closed 
C*D-filter base or the basic closed C*D-filter on Y in- 
duced by K* or ℰ* and vice versa. 

Lemma 3.11 Let ℰ be a basic closed C*D-filter on Y 
defined as in Section 2. If ℰ converges to a point x in Y, 
then (i) rf = f(x) for all f in ; i.e. ℰ = ℰx, (ii) Vx is an 
open nhood base at x in Y and (iii)  

D

        
    

1
* *V* * , |

* * , | * * , 0

f Hk x f f x f x

H D H f f H


 








   

   
 

is an open nhood base at k(x) in . wY
Proof. If ℰ converges to x in Y, (i): for each f D ,  

 1 ,f fx f r r         CK  

for all 0,  thus   ff x r ; i.e., ℰ = ℰx. (ii): Since ℰ 
converges to x in Y, for any open nhood  of U x , there 
is  

    1 ,f H xE f f x f x 
       Κ  

which is contained in ℰx = ℰ for some  
such that 

  , 0H D
  

.E U   Since x is in 

     1 ,f H f f x f x E U 
    S   

and S is in Vx, thus Vx is an open nhood base at x; (iii): 
For any *F  in  such that Nx is not in *F , by Cor. 
3.5 (i), x  is not in F , and by (ii) of Lemma 3.11 
above, x  is in  

    1O ,f H f f x f x Y F 
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for some  Since   , 0H D
  .

     x2, 2 ,f Hx P f f x f x         Ν1  

Cor. 3.5 (i), Lemmas 3.6 (ii) and 3.8 (i) imply that  

     
 

1
x * *

k x

* * ,

* ,

f HP f f x f x

T

 
    

 

Ν
V

 

where * * | .H f f H 
T *

We claim that   * :wT Y F 
For any ℭs in , if  s ff sC  for all f in , then sf  D

is in    f ,f x f x    I  for all f in H . Pick a  

0   such that ,f f    I fs s     for all f in H ,  

then  

 1 , Of H f fL f s s Y 
          F

s

 

and ; i.e. So sL  CΚ s *.wY F C

  *.wk x T Y F    

Thus  is an open nhood base at .  
Lemma 3.12 Let ℰ be a basic C*D-filter on Y defined 

as in Section 2. If ℰ does not converge in Y,  

V*k x ( )k x

  
  

1
* ** * ,

* * , 0

f H f fV f r r

H D





| 








   

 
 

is an open nhood base at ℰ in . wY
Proof. If ℰ does not converge in Y, then ℰ is in . 

Since f*(ℰ) = rf for all f*  D*, 

wY

ℰ   1
* * * ,f H f ff r r 
    

for any  For any  * * ,H D
  0. *F   such that 

ℰ  by Cor. 3.5 (iv) there exists a *,FwY

 1 ,f H f ff r r 
        E Κ ℰ 

for some  such that E  Y – F. For   ,H D
 

 | ,
0

* *H f f H  let  

  1
* * * ,f H f fU f r r 
    , 

then ℰ V*. We claim that  For any 
ℰt in , let f*(ℰt) = tf for each f* in 

U  *.wU Y F 
*U H . Then for each 

f in H , ft  is in 

 ,f fr r    and  1 ,f ff t t      ℰt 

for all 0.   Pick a 0   such that  

, ,f f f ft t r r              

for each f in H , then 

 1 ,f H f fL f t t E Y 
          .F  

Since ℰt, so ℰt  Hence ℰ is in 

 Thus, V*ℰ is an open nhood base at ℰ. 

tL K *.wY F 

*.wU Y F 

wY
Proposition 3.13 For any basic closed C*D*-filter ℰ* 

on , ℰ* converges in . wY
Proof. For given ℰ*, let K and ℰ be the closed 

C*D-filter base and the basic closed C*D-filter on Y in- 
duced by ℰ*. Case 1: If ℰ converges to an x in Y, then 

fr  is  f x  for all f in . For any  D

  1
* * * ,f H f fU f r r 
     

in V*k(x), let 

 1
* * * 2,f I f fE f r r 
 2   ,   

where *I D *
 . Then K* ℰ* and   E   .E U

Thus, ℰ* converges to   xk x N  in . Case 2: If ℰ 
does not converge in Y, then ℰ is in . For any 

wY
wY

  1
* * * ,f I f fU f r r 
     

in V*ℰ, let  

 1
* * * 2,f I f fE f r r 
 2   ,   

then *E K
wY

ℰ* and  Thus, ℰ* converges to ℰ 
in . 

.E U

Theorem 3.14  k,wY  is a compactification of Y. 
Proof. First, we show that  is compact. LetG be a 

sub-collection of  with the finite intersection property. 
Let  

wY

  * * |E H E H G


  L

wY

wY

, 

then L is a filter base on . Let ℱ be a closed ultrafil-
ter on  such that L is contained in ℱ. By Cor. 2.3, 
there is a unique basic closed C*D*-filter ℰ* on  such 
that ℰ* is contained in ℱ. By Prop. 3.13, ℰ* converges 
to an ℰo in . This implies that ℱ converges to ℰo too. 
Hence, ℰo is in F for all F in ℱ; i.e.,  
ℰo

wY

wY

 .G* | *E E   Thm. 17.4 in [1, p.118],  is 
compact. Thus, by Lemma 3.10 (i) and (iii), 

wY
 k,wY  is 

a compactification of Y. 

4. The Hausdorff Compactification (Xw,k) of 
X Induced by a Subset D of C*(X) 

Let X be a Tychonoff space and let  be a subset of D
 *C X

D

 such that  separates points of X and the 
topology on X is the weak topology induced by . It is 
clear that  contains a non-constant function. For each 
x in X, since Vx is an open nhood base at x, it is clear that 
ℰx converges to x. Let 

D
D

,w
E FX X  X  where XE = {ℰx 

|xX} and XE = {ℰ|ℰ is a basic closed C*D-filter that 
does not converge in X}. Similar to what we have done 
in Section 3, we can get the similar definitions, lemmas, 
propositions and a theorem in the following: 

(4.15.4) (See Def. 3.4) For a nonempty closed set F in 
X, *F  {ℰ wX | F T    for all  in ℰ}. T
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(4.15.5) (See Cor. 3.5) For a nonempty closed set F in 
X, (i) x is in F if ℰx is in F*; (ii) F is X if * wXF ; (iii) 
for each ℰ in wX , F is in ℰ implying ℰ is in F*; (iv) ℰ 

 there is a  in ℰ such that .  *wX F   S S X  F
Proof. (i) () If ℰx is in *F , then  

     
  

1

1

,

2, ( ) 2

F f f x f x

F f f x f x

 

  





   

     
 

for all f in , D 0.   Since Vx is a nhood base at x , 
thus x  is a cluster point of F, so x  is in F. (i) implying 
(ii), (iii) and (iv) are obvious. 

(4.15.6) (See Lemma 3.6) For any two nonempty sets 
 and E F  in X, 
(i) ; * *E F E F  
(ii)    * * *E F E F   ;

(iii) .    * * *E F E F  
(4.15.7) (See Prop. 3.7)  = {F*|F is a nonempty 

closed set in X} is a base for the closed sets of wX . 
(4.15.7.1) (See the definitions for the topology  on 
 and f* for each f in  in Section 3.) wY D

Equip wX  with the topology  induced by . For 
each f in , define  by f*(ℰ) = rf if  D f* : wX  R

 1 ,f ff r r     ℰ for all 0  . Then f* is well-  

defined and f*(ℰx) is f(x) for all f in  and all x in X. D
(4.15.8) (See Lemma 3.8) For each f in , let r be in 

, then 
D

, r

 Cl f X 
(i)       1 1, * *f r r f r       

*

 

and 

(ii)        1 1* , ,f r r f r r        

for any 0.    
(4.15.9) (See Prop. 3.9) For each f in , f* is a 

bounded real continuous function on 
D

wX . 
(4.15.10) (See Lemma 3.10) Let  be de- 

fined by ℰx. Then, (i) is an embedding from X 
into 

:k X wX
 k x  k

wX ; (ii)  for all f in ; and (iii) 
 is dense in 

*f k f
w

D
k X X . 
(4.15.11) (See Lemmas 3.11 and 3.12) For each ℰ in 
wX , let 

 
 

  

1

1

, |

,  

for a ny , 0

f H f f

f H f f

f r r

f r r

H D


 

  











     

    

   

K

  

1) If ℰ converges to x, then ℰ is ℰx and V*k(x) is =  

V*ℰx = 

       


1
* * * , | *

0

f H f f x f x H D

is an open nhood base at ℰx. 2) If ℰ does not converge in 
X, then ℰ is in wX  and 

V*ℰ = 

  
  

  

1
* *

1
* *

* , |

* ,

 for any  * * , 0

f H f f

f H f f

f r r

f r r

H D


 

 

 









  

  

  

 

is an open nhood base at ℰ in wX . 
(4.15.13) (See Prop. 3.13) Each basic closed C*D*- 

filter ℰ* on wX  converges to ℰ in wX . 

* ,
 




   


 

(4.15.14) (See Theorem 3.14)  ,w X k  is a compac- 
tification of X. 

Lemma 4.16  separates points of *D wX . 
Proof. For ℰs, ℰt in wX , let 

 
 

  

1

1

, |

,

 for any , 0

s f H f f

f H f f

f s s

f s s

H D


 

 

 









     

    

  

K

 

and similarly for Kt. Since ℰs is not equal to ℰt, Ks is not 
equal to Kt and that  has a g such that D g gs t  are  

equivalent, where  ,1
g gg s s      K

s  which is  

contained in ℰs and  1 ,g gg s s       Ks  which is  

contained in ℰt for all 0,   thus by the definition of g*, 
g*(ℰs) g gs t   g*(ℰt). 

Theorem 4.17  ,wX k  is a Hausdorff compactifica-
tion of X. 

Proof. By 4.15.10 (i) and (iii), 4.15.14 and Lemma 
4.16,  ,wX k  is a Hausdorff compactification of X. 

5. The Homeomorphism between (Xw,k) and 
(Z,h) 

Let  , hZ  be an arbitrary Hausdorff compactification 
of X, then X is a Tychonoff space. Let  denote D
 C Z  which is the family of real continuous functions 

on Z, and let  | ,D f f f h f D     . Then  is 
a subset of 

D
 *C X D such that  separates points of X, 

the topology on X is the weak topology induced by  
and  contains a non-constant function. 

D
D

Let  ,wX k  be the Hausdorff compactification of X 
obtained by the process in Section 4 and  is defined 
as above. For each basic closed C*D-filter ℰ in

D
wX , let ℰ 

be generated by  

 
  

1 1, |

,   for any  [ ] , 0

f H f f f H

f f

f r r f

r r H D 

 

   

 
 



      

      

K
 

let °ℰ be the basic closed C*°D-filter on Z generated by 
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1º , |

,   for any  , 0

f H f f f H

f f

f r r f

r r H D


 

   


   



        

        

K 1

 

and let h−1 be the function from h(X) to X defined by 
h−1(h(x)) = x. Since h and h−1 are one-one, f = °f o h and 
h(X) is dense in Z, similar to the arguments in the para- 
graphs prior to Lemma 3.11, we have that  

 1 ,f H f ff r r  
        

iff  

 1 ,f H f ff r r  
          

for any  

 H D
    (or any  H D

 ), 

 |H f f H    (or  |H f f H    ) 

and all 0  . Thus, if K or ℰ is well-defined, so is °K or 

°ℰ and vice versa. If K or ℰ is given, °K or °ℰ is called the 

closed C*°D-filter base or the basic closed C*°D-filter on 

Z induced by K or ℰ and vice versa. For any z in Z, 

    
  

1º ,

| , 0

z f H f f z f z

H D


 




 



        

   

K
 

is the closed C*°D-filter base at z. The closed filter °ℰz 
generated by °Kz is the basic closed C*°D-filter at z. Since 
Z is compact Hausdorff, each °ℰ on Z converges to a 
unique point z in Z. So, we define  by 

(ℰ) = z, where ℰ is in 
: wX  Z

 wX  and z is the unique point in 
Z such that the basic closed C*°D-filter °ℰ on Z induced 
by ℰ converges to it. For ℰs, ℰt in wX , let  

 
    

1 1
s , |

,  for any , 0

f H f f f H

f f

f s s f

s s H D


 

   

 
 



      

      

K
 

and similarly for Kt such that ℰs and ℰt are generated by 
Ks and Kt, respectively. Assume that °ℰs and °ℰt converge 
to zs and zt in Z, respectively. Then ℰs is not equal to ℰt, 
°ℰs is not equal to °ℰt and zs is not equal to zt are equiva- 
lent. Hence is well-defined and one-one. For each z in 
Z, let °ℰz be the basic closed C*°D-filter at z, since Z is 
compact Hausdorff and  

   
  

1º

| , 0

z f H f f z f z

H D


, 




 



      

   

V 
 

is an open nhood base at z, thus °ℰz converges to z. Let ℰz 
be the element in wX  induced by °ℰz, then,  (ℰz) = z. 
Hence,  is one-one and onto. 

Theorem 5.18 (  ,wX k is homeomorphic to  , hZ  
under the mapping   such that     x  k x h  . 

Proof. We show that 1  is continuous. For each ℰ 
in F* which is in , let °ℰ be the basic closed C*°D-filter 
on Z induced by ℰ. If °ℰ converges to z in Z,   ff z r   
for each f in and D

 
    

1 1º , |

,   for any  , 0

f H f f f H

f f

f r r f

r r H D


 

   

 
   



        

           

K
 

Then (a): ℰ is in F* iff (b):  

  1 ,f H f fF f r r  
       

,

 

for any   , 0H D
   where  

 ,f H f ff r r 
1       ℰ. 

Since  is one-one, h f f h    for all f in , so (b) 
iff (c): 

D

   
  
1

1

,

,

f H f f

f H f f

h F f r r

h F f r r

 

  


 




        

         

 

for any 

 H D
  (or  H D

   ), 

 |H f f H     (or  |H f f H   ) 

and any  > 0. Since  

    1 1, 2f f f ff r r f r r             , 2  

for any °f in , D 0,   (c) iff (d):  

    1 ,f H f fh F f r r  
 

         

for any  Since    , 0H D
     .

  ,f H f ff r r1        

is an arbitrary basic open nhood of z in Z. So, (d) iff z is 
in   Cl hZ F ; i.e., ℰ is in F* if  (ℰ) is equal to z 
which belongs to   Cl hZ F . Hence, T(F*) = ClZ(h(F)) 
is closed in Z for all F* in . Thus,  is continuous. 
Since 

1
  is one-one, onto and both Z and wX  are 

compact Hausdorff, by Theorem 17.14 in [1, p.123],   
is a homeomorphism. Finally, from the definitions of  
and , it is clear that 

k
h    h  xk x

h
 for all x in X. 

Corollary 5.19 Let (X, ) be the Stone-Čech com- 
pactification of a Tychonoff space X,  

  | ,D f f f h f C X      

and  : wX X  is defined similarly to as above. 
Then (X, ) is homeomorphic to h  ,w X k  such that  

    x x .k h   
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