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ABSTRACT 

The article presents an approach to the maximum flow problem in parametric networks with linear capacity functions of 
a single parameter, based on the concept of shortest conditional augmenting directed path. In order to avoid working 
with piecewise linear functions, our approach uses a series of parametric residual networks defined for successive sub- 
intervals of the parameter values where the parametric residual capacities of all arcs remain linear functions. Besides 
working with linear instead piecewise linear functions, another main advantage of our approach is that every directed 
path in such a parametric residual network is also a conditional augmenting directed path for the subinterval for which 

the parametric residual network was defined. The complexity of the partitioning algorithm is  where  2O Kn m K  is 

the number of partitioning points of the parameter values interval, n and m being the number of nodes, respectively the 
number of arcs in the network. 
 
Keywords: Network Flow; Parametric Flow; Conditional Augmenting Paths 

1. Introduction 

Efficient algorithms for computing maximum flows in 
networks are important not only because they are applied 
directly to the analysis of traffic or communication net- 
works, but also because they are often employed as sub- 
problems in other general network problems. Fundamen- 
tal algorithms for network flow were designed and effi- 
cient algorithms exist (Ahuja, Magnanti, & Orlin) [1] to 
solve different instances of this problem. A natural gene- 
ralization of the maximum flow problem can be obtained 
by making the capacities of some arcs functions of a sin- 
gle parameter. The parametric maximum flow problem is 
to compute all maximum flows for every possible value 
of the parameter. For the parametric maximum flow pro- 
blem with zero lower bounds and linear capacity func- 
tions of a single parameter, Hamacher and Foulds [2] in- 
vestigated an approach for determining in each iteration 
an improvement of the flow defined on the whole inter- 
val of the parameter while for the same problem, Ruhe 
[3], [4] proposed a “piece-by-piece” approach. The parti- 
tioning type approach, which is presented in this paper, 
proposes an original algorithm for computing the maxi- 
mum flow in networks with constant lower bounds and 
linear upper bound functions.  

Partitioning technique in network has been, in the lat- 
est years, a more and more active research topic in both 
engineering and theoretical research. The reason why the 
problem under consideration is of genuine practical and 
theoretical interest lies in that graph partitioning applica- 
tions are described on a wide variety of subjects as: data 
distribution in parallel-computing, VLSI circuit design, 
image processing, computer vision, route planning, air 
traffic control, mobile networks, social networks, etc. [5]. 
Unfortunately, graph partitioning is an NP-hard problem, 
and therefore all known algorithms for generating parti- 
tions merely return approximations to the optimal solu- 
tion. 

Further on, this paper is organized as follows; Section 
2 presents the basic network flow terminology and re- 
sults used in the rest of the paper. More specialized ter- 
minology is developed in later sections. In Section 3, we 
introduce the parametric maximum flow problem and 
Section 4 presents the partitioning algorithm for solving 
this problem. Finally, Section 5 gives an example of how 
the algorithm works on a network with linear upper bound 
functions of a single parameter. In the presentation to fol- 
low, some familiarities with flow algorithms are assumed 
and many details are omitted, since they are straight for- 
ward modifications of known results. Further details on 
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notions and results presented in Section 2 can be found in 
the papers of Ahuja et al. [1] and Ciurea et al. [6,7]. 

2. Terminology and Preliminaries 

Let  be a capacitated network with  , , , , ,G N A u s t  
n N  nodes and m A  arcs,  being 

the set of nodes i and  being the set of 

 , ,N i  

a 


 , ,A  
arcs a, so that for every arc in A ,  with 

. The upper bound function and the lower bound 
function are two nonnegative functions, 

 ,a i j
,i j N

 u a  and 
 associated with each arc . The network has 

two special nodes: a source node  and a sink node . 
A flow is a function  satisfying the next 
conditions: 

 a a
s


A
t

:f A

 
 

 
 , ,

,

, , 0,

,
j i j A j j i A

v i s

,f i j f j i i s t

v i t
 


   
 

   (1) 

for some , where  is referred to as the value of 
the flow 

0v  v
f . Any flow on a directed network satisfying 

the flow bound constraints: 

       , , , , ,i j f i j u i j i j A       (2) 

is referred to as a feasible flow. A cut is a partition of the 
node set  into two subsets  and , deno- 
ted by 

N S T N S 
,S T . An arc  with  ,i j A i S  and 

 is referred to as a forward arc of the cut while an 
arc  with  and  as a backward 
arc of the cut. Let  denote the set of forward arcs 
in the cut and  denote the set of backward arcs. A 
cut 

j T
,



 i j A i T
 ,S T


j


S

 ,T S
,S T  is an s t  cut if s S  and t T . The 

maximum flow problem is to determine a flow f  for 
which  is maximized. The maximum flow problem in 
a network can be solved in two phases: (1) establishing a 
feasible flow; (2) from a given feasible flow, establishing 
the maximum flow. For the first phase, see the algori- 
thms presented in [1,7,8]. 

v

3. The Parametric Maximum Flow 

The parametric flow problem consists in generalising the 
classic problem of flows in networks by transforming the 
upper bounds of some arcs  ,i j A  of the network  

 , , , , ,G N A u s t   in linear functions of a real parame-  

ter λ . 
Definition 1. A directed network  

for which the upper bounds  of some arcs 

 , , , , ,G N A u s t 
u  ,i j A   

are functions of a real parameter λ  is referred to as a 
parametric network and is denoted by  

 , , , , ,G N A u s t  . 

For a parametric network G , the parametric upper 

bound (capacity) function  : 0,u A     associat- 
es to each arc  ,i j A  and for each of the parameter 
values λ  in an interval  0, , the real number 
  , referred to as the upper bound of arc  ,i j : , ;u i j λ

       0 ,u i j, ; , , 0, .u i j i jU  λ λ  λ   (3) 

where  is a real valued function associating 
to each arc 

:U A 
 i j A,   the real number , referred 

to as the parametric part of the upper bound of the arc 
 ,U i j

 ,i j . The nonnegative value 0  is the upper 
bound of the arc 

 ,u i j
 ,i j  for , i.e. λ 0

   ,i j0  with 0 . For the pro- 
blem to be correctly formulated, the upper bound func- 
tion of every arc 

, ;u i j 0 u  i j  ,i j, u

 ,i j A  must respect the condition 
   , ;j,i j u i λ  for the entire interval of the parame-

ter values, i.e.  ,i j A   and  0, λ  . It follows 
that the parametric part of the upper bounds  ,U i j  
must satisfy the constraint: 

      0j u i j , , ,U i j i   ,i j A , . The para-

metric flow value function  : 0,v N     associ-  

ates to each of the nodes  a real number i N  ;v i λ  
referred to as the value of node  for each of the pa-
rameter 

i
λ  values. 

Definition 2. A feasible flow in the parametric net-  
work  , , , , ,A u s tG N  is called a parametric flow 

and it is a function  : 0,f A     satisfying the  

following constraints: 

 
 

 
 

 

 
, ,

, ; , ; ; ,  

, 0, ,

j i j A j j i A

f i j f j i v i

i N

 

 

    

 λ λ λ

λ
  (4) 

     
   
, , ; , ;

, ,  0,

i j f i j u i j

i j A

 

    

 λ ,  λ

λ
            (5) 

   where  ; ,  0, .
i N

v i


   λ λ  

The parametric maximum flow (PMF) problem is to 
compute all maximum flows for every possible value of 

 0,  λ : 

   maximize for all 0,v  λ λ ,       (6) 

 
 

 
 

 

 , ,

,

, ; , ; 0, ,

,
j i j A j i j A

v i s

f i j f j i i s t

v i t
 




  
 

 
λ

λ λ

λ

  (7) 

       , , ; , ; , ,i j f i j u i j i j A   λ λ      (8) 

This problem looks like a classic maximum flow pro- 
blem with the decisive difference that the variables 
 , ;f i j λ  of this problem are piecewise linear functions 

instead of real numbers and that the upper bounds  
 , ;u i j λ  are linear functions instead of constants. 
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Definition 3. Let F be the set of piecewise linear func-  

tions if  with  : 0,if
  . On the set F, an order-  

ing relation is defined as follows: 

     ,  0,i j i jf f f f     λ λ λ .   (9) 

For any two piecewise linear functions 1f  and 2f , it 
is possible that neither the relation 1 2f f  nor 2 1f f  
hold for the entire interval  0,  and consequently, the 
two functions may not necessarily be comparable. But it 
is always possible that a partitioning B: 

1: 0 KB      0 1λ λ λ  of the interval  0,  

to be defined such as on every subinterval  ,k k1λ λ ,  

0, ,k   K  one of the two cases to hold: 1 2f f  or 

2 1f f , i.e. the two linear functions to become compa- 
rable. This means that the two functions have no crossing 
points within any subinterval  ,k k1λ λ

, 0,k k K 
, the only cros- 

sing points taking place for . ,λ
Proposition 1. For the parametric maximum flow pro-  

blem, the subintervals  ,k k kJ  1λ λ , , of  0, ,k K 
the parameter λ  values can be defined so that a mini-
mum s t  cut in the non-parametric network 

 , , , , ,k kG N A u s t  , with   , , ;ku i j u i j kλ , also  

to represent a minimum s t  cut for all the parameter 
λ  values within the subinterval kJ . 

Definition 4. A parametric s t  cut partitioning,  
denoted by  ;k kS J


, , is defined as a finite 

set of cuts 

0, ,k   K

,k kS T , , together with a parti- 

tioning of the interval 

0, ,k  


K

0,  of the parameter in dis-  

joints subintervals kJ , , so that 0, ,k   K

 0 0,KJ J   . 

Definition 5. For the parametric maximum flow prob-  
lem, the capacity  ;k kc S J  of a parametric s t  cut  

partitioning is a linear function on every subinterval kJ , 
, defined as: 0, ,k   K

   
   

 
   , , , ,

; , ;

 0, ,
k k k k

k k
i j S T j i T S

c S J u i j j i

k K

 

 



  



λ , ,
(10) 

Definition 6. A parametric s t  cut partitioning  
 ;k kS J  with the subintervals kJ  assuring that every 
cut is a minimum cut    within the subinterval ,k kS T   
 ,k k1λ λ  is referred to as a parametric minimum s t  
cut and is denoted by , . ;k kS J  

 0, ,k K
Theorem 1. (Parametric max-flow min-cut theorem 

[9]) If there is a feasible flow in the parametric network 
G , the value function v  of the parametric maximum 
flow f  from a source s to a sink t equals the capacity 
c  of the parametric minimum s t  cut ;k kS J  

 , 
. 0, ,k K 

Let    ,
, ,

i j A
f f i j


    be a vector of feasible  

flow functions. Assuming that an arc  carries 
a flow 

 ,i j A
 , ;f i j λ , the existing flow can be increased  

either by pushing the flow    , ; , ;j f i jλ λ  from  u i

node  to node  over the arc , or by pulling  i j  ,i j

the flow    , ; ,j i j iλf  from node i  to node   j

along the arc  ,j i . These flows are computed as dif- 
ferences between piecewise linear functions of λ . 

Definition 7. For the parametric maximum flow prob- 
lem, the parametric residual capacity  , ;r i j λ  of any 
of the arcs  ,i j A  with respect to a given parametric 
flow f  represents the maximum additional flow that 
can be sent from node i  to node  over the arcs j
 ,i j  and  ,j i  and is given by: 

         , ; , ; , ; , ; ,r i j u i j f i j f j i j i  λ λ - λ λ  .(11) 

Definition 8. The subintervals    , 0,I i j    where  

an augmentation of the flow  , ; f i j λ  is possible along 
the arc  ,i j  are defined as follows: 

      , , ; 0 for , .I i j r i j i j A           (12) 

Definition 9. Given a feasible flow f  in the para-
metric network G , the network denoted by 

    ,G f N A f  ,  with 

        , , , ,A f i j i j A I i j   Φ  being the set con-  

sisting only of arcs with positive parametric residual 
capacities, is referred to as the parametric residual net- 
work with respect to the given flow f  for the paramet- 
ric maximum flow problem.  

If an arc  ,i j A  does not belong to  G f  then 

 , :I i j    is set. 

Definition 10. A conditional augmenting directed path 
is denoted by P  and is a directed path  from the 
source s to the sink t in the parametric residual network 

P

 G f  with the restriction that: 

   
 ,

,
i j P

I P I i j


. 


  Φ           (13) 

Definition 11. A partly conditional augmenting di-
rected path is denoted by  P i  and is a conditional au- 
gmenting directed path P  from the source s to node  
i t  in the parametric residual network  G f . 

Definition 12. The parametric residual capacity of a 
conditional augmenting directed path P  is the inner 
envelope of the parametric residual capacity functions 
 , ;r i j λ  for all arcs  ,i j  composing P  and for all  

parameter λ  values in the subinterval  I P :  

   
    ; , ; ,min

I P
r P r i j i j P


 



  
λ

λ λ  .    (14) 

Copyright © 2013 SciRes.                                                                                  AM 



M. PARPALEA, E. CIUREA 6 

Let  K P  be the number of subintervals within the 

piecewise linear function  ;r P λ  maintains a constant 

slope. Since any conditional augmenting directed path 

P  is an elementary path, results that   2K P n  . 

Theorem 2. (Conditional augmenting path theorem [9]) 
A flow f  is a parametric maximum flow if and only if  

the parametric residual network  G f  contains no  

conditional augmenting directed path. 

4. Partitioning Algorithm for the 
Parametric Maximum Flow Problem 

The partitioning algorithm (PA) for the parametric maxi- 
mum flow problem presented in this paper determines in 
each of its iterations an improvement of the flow over a 
subinterval of the parameter values generated by the par- 
tition induced by the first (in increasing order of their λ  
values) of the breakpoints of the piecewise linear para- 
metric residual capacity of the conditional augmenting 
directed paths P  in the parametric residual network. 
Since the parametric residual capacities for all the arcs in  

 G f  are linear functions of λ , the parametric resid- 

ual capacity  ;r P λ  of any conditional augmenting di- 

rected path P  in the parametric residual network is a  

piecewise linear function of λ  with  K P  break-  

points. 
In order to avoid working with piecewise linear func- 

tions, the algorithm works in several parametric residual 
networks defined for subintervals of the parameter values 
where the parametric residual capacities of all arcs re- 
main linear functions. The parametric residual network  

 G f  defined for the subinterval  1,k k kJ  λ λ  of 

the parameter values is denoted by  kG f . Besides  

working with linear instead piecewise linear functions, 
another main advantage of our approach is that every 
augmenting directed path  in a parametric residual  P

network  kG f  is also a conditional augmenting di- 

rected path P  in  G f  for the subinterval 

  kI P J  for which the residual network  kG f  is  

defined. 
The first phase of finding a parametric maximum flow 

consists in establishing a feasible flow, if one exists, in a  

non-parametric network  * *, , , , ,G N A u s t   obtained  

from the initial parametric network by only replacing the 

parametric upper bound functions with the non-para- 

metric upper bounds:   *
0,u i j u i j ,  for  

 ,U i j  0  and     *
0, ,u i j u i j U i j    ,  for 

 ,U i j 0 . After a feasible flow 0f  is established, the 
next step is to compute the parametric residual network 
 0G f  for this feasible flow. For the non-parametric 

flow 0f , the parametric residual capacities for every arc 
 ,i j  in  0G f  can be written as  

     , ,i j i j    λ λ, ;jr i , where    , ,i j U i j    

represents the slope of the parametric residual capacity 
function and 

        0 00
, , , , -i j u i j f i j f j i j i     ,  is the va-  

lue of the parametric residual capacity function computed 
for 00λ , i.e.   , ;0 ,r i j i j   . 

The second phase of the algorithm starts with the pa- 

rametric residual network  0G f , defined for the non- 

parametric feasible flow 0f , which is also  0 0G f , i.e. 

00λ  and  0,J  0 , since the residual capacities of  

all arcs are linear functions. The algorithm repeatedly 
finds shortest augmenting directed paths from the source 
node to the sink node in the parametric residual network 
and increases the flow in the original parametric network 
G  only in the subinterval  10,J 0 λ  which reflects in 
updating the parametric residual network  0G f . The 
parameter value 1λ  is updated on each flow augmenta- 
tion step so that the parametric residual capacities of all 
arcs not to have breakpoints within the interval  

 10,J 0 λ . During its successive iterations, the algori- 
thm maintains an ordered list  0 10, , , kB   λ λ λ  of 
parameter values for which the parametric network is 
partitioned. This list is initialised as  and is up- 
dated, each time the parametric residual network  

 : 0B 

 kG f  contains no conditional augmenting directed  

path, with a new 1kλ  value, representing the new lower 
limit of the subinterval of the parameter values for which  

a new parametric residual network  1kG f
  is defined. 

At this point, the parametric maximum flow kf
  is com- 

puted for the subinterval  1,k k kJ  λ λ  and the algo- 

rithm goes on iterating within the next subinterval 

 1,k λ  until the value  is reached. 1k  λ

PARTITIONING ALGORITHM (PA); 
1. BEGIN 
2.  compute a feasible flow 0f  in network ; *G
3.  compute the parametric residual network  0G f ; 

4.  : 0B  ; 0k : ; ; : 0k λ
5.    REPEAT 
6.      SSADP  ,, kk Bλ

1
; 

7.      k k : ; 
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8.    UNTIL ( ); k  λ
9. END. 
In the k-th step of the partitioning algorithm (PA), the 

Successive Shortest Augmenting Directed Paths (SSADP) 
procedure computes the parametric residual network 

 0kG f  for the subinterval  ,k kJ  λ , where the 
parametric residual capacities of all arcs can be written as  

       , ; , ,k k k kr i j i j i j     λ λ λ , with 

   ,k i j i j   ,  and      , ,k ki j i j i j      λ , . 

As can be easily seen, the restriction  , ;kr i j  λ 0 ,  

 ,k  λ λ   is equivalent with    , ,k ki j i j   0 .  

- The SSADP procedure maintains a partly conditional au
gmenting directed path  P i  which is memorised in the 
predecessor vector π  and executes ADVANCE and 
RETREAT operations from the current node i  until the 
sink node t  is reached, i.e. the partly conditional aug- 
menting directed path is transformed in a conditional 
augmenting directed path 

 

P . 
ADVANCE  ,i j ;     ETREAT R i ; 

 1. BEGIN       1. BEGIN     

2.   π :j i ;        2. 
   

   
: md i  in

1 , k

j

i j A f  
; 

3.             3. IF  THEN 

d

:i j ;  i s  : πi i ; 
4. EN            4. END

CE opera ll 
D;   

From a current node i , an ADVA
 

N tion wi
ad

trico res al network 

d the admissible arc ,i j  to the partly conditional 
augmenting directed path le a RETREAT operation 
will eliminate the arc   π ,i i  from it. 

PROCEDURE SSAD ,k B ; 

 

P

whi

 ,k λ
1. BEGIN 

te the parame idu2.  compu
 0k f ; 

3. pute the exact distance labels 
G

 com d   in 

 0k f ; G

4.  ;  π , , ,n n n :   : 0k P  ;   : 0k P  ;  

 DO 

s an adm arc ) THEN; 

i:
5. 
 s ; 1 :k  λ ; 

ILE  WH  d s n

6.    IF(exist issible   i, j
7.     BEGIN 

NCE  i, j ; 8.       ADVA
9.       IF  i t  T  

BEGI
HEN

10.          N

11.           RC    π, , 1 , ,k k kB P P 
 λ ; 

D; 

; 
e param aximum flow 

12.           :i  s ; 
13.         EN
14.    END; 

ETREA15.   ELSE R
16.  compute th

T  i
etric m kf



17.  add 1kλ  to the list ;  

C) procedure will com-  

pu

B
18. END; 
A call to Residual Capacity (R

; 

te the parametric residual capacity  ;kr P λ  of the  

conditional augmenting directed path and w date the 
values 

ill up
 ,i j  and k  ,i j  according he aug- to tk

mentation of the flow. After initializing 

      min , ,k kP i j i j P   :  and 

        min , ,  ,k k kP i j i j P i j P      :  ,  

in order to assure that the parametric residual capacit

and k

y  

       ;k k k kr P P P    λ λ λ  remains a linear    

function without breakpoints in the subinterval  

 1,k kλ λ , the slope  k P  of the parametric resid ual 

capacity  ;kr P λ  is c ed with the slopes  ompar

 ,k i j  arametric residual capacities of
arcs 

of the p  all the 
,i j P  .  

condIf the ition    ,k ki j P    holds for an arc 

 , j Pi   , it means functions that the linear  ;kr P λ   

 , ;jand kr i λ  have a crossing point for a p r 


aramete
value k

λ λ  and, consequently, the parametr -  ic resid

pacity ual ca  ;k Pr λ  would have a breakpoint for 

         π ,i i i . 

If 

π ,k k k k kP P i        λ λ

1k


λ λ , 

rval 

i.e. the breakpoint is placed within th

su

e 

binte  1,k k , the upper limit 1kλ λ λ  will be 

replaced with the new parameter value 

 

λ . Then, the  

parametric re acity sidual cap   ;kr P λ  will ubtracted  be s

capacitifrom the parametric residual es of all arcs 
 ,i j P   and added to those of s  ,j i , for all 
the parameter values in the new subinterval ,

 the arc  

k
  λ λ . 

As s as oon  k fG  contains no conditiona menting l aug

w directed paths, the parametric maximum flo kf
  is 

computed fo subinterval r the 1,k kλ λ  and the value 

1k

 

λ  is added to the list B . Then the current value k  
of the counter is incremented and, if the condition 

k  λ  is not reached yet, the m reiterates for   algorith
the next subinterval  1,k k kJ  λ λ . Otherwise, if kλ  

equals 

 

 , the whole interval of the parameter has been 
orithm stops. Fcompleted and the alg or each of the sub-  

intervals  1k k k

maximu  flow is computed as 

,J  λ λ , K  the parametric  , : 0,1,k  
m
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   
   , ;kr i j λ

PROCEDURE RC

 , ,

k

i j  0
. 

 max , ;u i j λ

, ; ,f i j i j λ :

    1, , , ,π k k kB P P 
 λ ; 

1. BEGIN 
2.  compute  P  based on predecessor vector π ; 

3.       : minP  , ,i j i j P  ; 
k k

4.   



          min , ,  and k k ki j i j P j P     ; 

.  WHILE  DO 
7.   BEGIN 

  IF

,k P i  :  

5.  
6

:i t ; 
i s

8.        π ,k ki i P    THEN 

IN 9.       BEG
10.        

           π , π ,k k k k ki i P i i  λ ; 

 THEN

P    λ

11.        IF  
1kλ λ  1 :k


 λ λ ; 

12.      END; 

13.           π , π ,k ki i i i  k P  : ;  

       π , πk ki i : , ki i P    ; 

14.           ,π ,πk ki i i i P    : ; k

       ,π ,πk ki i i i P    : k

16.  E
17. END; 

 3. The Successive Shortest Augmenting Di-
re ADP) procedure correctly computes a 
parametric maximum flow in the parametric network  

; 

15.     πi i: ; 
ND; 

Theorem
cted Paths (SS

 , , , , ,N A u s t   for the parameter G λ  values in the 

subinterval  1,k k kJ  λ λ . 

Proof. Since procedure SSADP works in the paramet-  

ric residual network  k  G f  for which the parametric 

residual capacities  , ;kr i j λ  of all arcs    , kA fi j   

and the parametric residual capacity  ;k Pr  λ  of any of  

the augmenting dir hs ected pat P , are lin  
without crossing poi  the subinter



ear functions
nts within val  

1,k k kJ  λ λ , the correctness of th ure results  e proced

e

Theorem 4.

from the correctness of the short st augmenting directed 
path algorithm for the non-parametric case. 

 The Residual Capacity (RC) procedure 
correctly computes the parametric residual capacity 

 ;k Pr  λ  of a conditional augmenting directed path P  

in the parametric residual network  kG f  for the pa-

rameter λ  values in the subinterval  1,k k kJ  λ λ . 

Proof. As the parametric residual capacity  ;
k Pr λ   

r env ual capacity  is the inn elope of the parametric resid
functions

e
  , ;kr i j λ  of all arcs composing the condi-  

tio aramet

 

nal augmenting directed path and since these p -
ric residual capacities are linear functions for the entire  

asubinterv l  1,k kλ , the proof results from  kJ  λ

choosing the minimum possible values (lines 3 and 4 of 

procedure RC) for 

 

 k P   and for the corresponding 

 k P , as well as from continuously updating (line 11  

of procedure RC) the  limit 1kupper λ  of the subinterval  

for whic he parametric residual network h t  k


.  

G f  is  

defined
Theorem 5. (Theorem of correctness) If there is a fea-

sible flow in the parametric network  , ,G N A t , 
then the partitioning algorithm (PA) correctly tes 

, , ,u s
 compu

c maximum flow for a parametri  , λ 0 . 
  Proof. The partitioning algorithm iterates on succes-

sive subintervals  1,k k kJ  λ λ , starting with 0 0λ  

and ending with 1k  λ  and co ly, the correct- nsequent  

ne
thm ends with imum

e partitio

ss of the algorithm obviously follows from Theorem 3. 
Actually, the algori  a parametric max  
flow and with th ning of the interval of the pa-  
rameter values:  1,k k kJ  λ 

Theorem 6. (Theorem of complexity) The partitioning 
algorithm (PA) for the parametric maximum flow prob-

λ , : 0,1, ,k K . 

lem runs in  2KO ern m  time, wh e 1K   is the number 
of λ  values in the set B  at the end of the algorithm. 

Proof. For each of the K  subintervals 

 1,k k kJ  λ λ , : 0,1, ,k K   in which is partitioned  

the interval  0,Λ  of e parameter values, the algo-
rit nce the com

th
ce -

plex p SA
the non-param ic successive

 parametric network 
presente  Figure 1 where the source node is 

hm makes a call to pro dure SSADP. Si
ity of the cedure S DPro  equals the complexity of 

etr  shortest augmenting di-  

rected paths algorithm, being  2O n m , the total comple- 

xity of the partitioning algorithm is  2KO n m . 

5. Example 

The algorithm is illustrated on the
d in 0s  , 

, and for the parameter λ  taking the sink node 3t 
values in the interval  ,10 , i.e. 1  . 

The feasible flow 0f , computed in the non-parametric 
network  * *, , , , ,G N A u s t  , is presented in Figu , re 2  
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the parametric resi ual network d  0G f  is pre ented in 

Fi B B

s

 
teration, for 

gure 3 and the list is initialised as  : 0 . 
In the first i k  0  and 0 0λ , the algo-

cedur  rithm makes the first call to pro e SSADP which 
computes the parametric residual net rk  0 0G fwo  . The 
values computed for  0 ,i j  and  0 ,i j as well as , 
th ine exact distance labels d     0 0G f e indicated  
in Figure 4(a). The predecessor vector is initialized as  

  ar

 π: 4, 4,4,4 ,  0 P   and  0 P   a e t to 0 and  

1

r se

λ  is set to 1  . The rithm s two conse- algo  perform

pectivel ) an  the s
cedure RC led builds

cutive ADVANCE steps over the admissible arcs (0,1) 
and res
pro
gm

y d, since ink node is reached, 
is  which  the conditional au- 

(1,3
cal

rectedenting di  path  0,1,3P  , based on the  
 

 

Figure 1. The parametric network  G N, A, ,u,s,t  with 
linear capacity functions and constant lower bounds. 
 

 

Figure 2. The feasible flow  0f i, j  in the non-parametric 
network  G* N, A, ,u*,s,t  . 

 

 

Figure 3. The parametric residual network  0

G f . 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Exemplifying the first iteration performed by the 
partitioning algorithm (PA) for the parametric network G  
presented in Figure 1(a). 
 
predecessor vector  π: 4,0, 4,1 , and computes the 

values  0 1P   and  0 4P  , i.e. the parametric 

residual capacity  ; 1 4 λ0r P λ . The slope of the  

parametric residual capacity is compared with the sl pes  o

 0 ,i j  of the parametric residual capacities of the arcs 

(1,3) and (0,1). Since the condition  0 1,3 2 4     

holds for the arc (1,3), the value 1 2λ*  is comput  ed

Copyright © 2013 SciRes.                                                                                  AM 



M. PARPALEA, E. CIUREA 

Copyright © 2013 SciRes.                                                                                  AM 

10 

e upper limit of the subinterval 
updated to

and because  λ* , th : 1k 
of the parameter values is  : 1 21λ . Then the 
values 0  and updated for both arcs  

 
are 

d (0,1 ure RC end

i j

) and

,  ,i j  0

(1,3) an  proced s with the paramet-  

ric residual network  0G f  prese

r the
and proc  

nted in Figure 4(b).  

Then, procedure SSADP makes two ADVANCE steps 
ove  arcs (0,2) and (2,3) reaching again the sink node 

edure RC builds the new conditional augmenting 

directed path  0, 2,3P   with the para l metric residua

capacity  0r P , i.e. ; 4λ  0 4P   and  0 0P  .  

For the arc (0,2), the value 1 4λ* puted and  is com
since 1 4 1 2 λ  * 1λ  the upper limit of the subin-
terval 0J  is updated to : 1 41λ . 

Procedure SSADP selects again the admissible arc (0,2) 
and, since from node 2 there is no admissible arc, it is 
relabelled as    2 : 0 1 3d d     and a RETREAT step 
is performed to  : π 2 0i   . At this stage, there is no 
admissible arc in  0G f  from the current node 0i   
and therefore, after ng node 0 as 

 0 :d d this lab t meet -  

relabeli

 2 1 4   , el does no the restric

residual 

c), the par

tion  d s n . Based on the capacities presen- 

ted in F ametric flow 



igure 4( 0f
  (Figure 5(a))  

is com ed for the param luput eter va es in the subinterval 
   0 0 1, 0,1 4J  λ λ  and the value 1 1 4λ  is added 

to the list B which becomes  0,1 4 . After the pro- 

cedure SSADP e rrent value of the counter 
 

:B 
nds, the cu

 
(a)                          (b) 

 
(c)                          (d) 

Figure 5. The parametric maximum flow for each of the su- 
bintervals Jk, k = 0, 1, 2, 3 of the parameter values: (a) J0 = 
[0, 1/4]; (b) J1 = [1/4, 1/2]; (c) J  = [1/2, 3/4]; (d) J  = [3/4, 1]. 

is incremented to  and, since , a new ite- 
ration will be perfo

After performing three more iterations, the value 

1  λ
rmed. 

4 1λ  is added to the list B which becomes  
 1 4,1 2,3 4,1  and the current value of the 

counter is incremented to . Since 
: 0,B 

 : 4k  4  λ
maxi

, the 
partitioning mum 

i- 
mum flow value function 

algorithm ends. The parametric 
flows computed by the algorithm are presented in Figure 
5.  

As can be noticed in Figure 5, the parametric max
v  equals the capacity func-  

tion    ; ,k k k k k kc S J u S T T S    
     ,  , with  

 1,k k kJ  λ λ , : 0,1, ,k K  , of the parametric mini-  

mum cut in the parametric network. 
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