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ABSTRACT 

We presented a cardiac work rate for one cycle car- 
diac based on the area of a Pressure Phase Plane, the 
velocity of activation and relaxation of the pressure 
curve, the interval of time and the variation of the 
pressure measurement on that cycle. We established 
an algebraic model to the Pressure Phase Plane area 
with a complete correlation of that model and the 
laboratory data for normal hypertensive and hyper-
trophied rat hearts (r = 0.99). We have obtained dis-
joint intervals for the cardiac work rate of the control 
group and the hypertrophied rat hearts as a conse-
quence of the application of our algebraic model in 
those data acquisition. 
 
Keywords: Cardiac Work Rates; Mathematical  
Numerical Model; Control Index 

1. INTRODUCTION 

We collected parameters involved in the cardiac work by 
recovering some basic aspects of the physiology of the 
heart and the measurement of the cardiac work. The 
beating heart ejects blood to the circulation and the 
volume of blood ejected depends on the ventricular 
pressure development. The volume of blood in a normal 
ventricle of a human being before ejecting (end diastolic 
volume) is called stroke volume and it is about 130 mL 
and usually 65 through 75 percent of this volume called 
ejection fraction is ejected under normal conditions. The 
venous return is given by the volume of blood that 
returns to the heart and the pressure against that flow 
where the ventricle has to eject the blood is called the  

diastolic aortic pressure. The ending diastolic volume is 
described as a preload and the aortic pressure as after- 
load. 

A general assumption is that the product of volume by 
pressure is equal to the work produced by the heart. The 
stroke volume and the ventricular pressure can be regu- 
lated by the organism to fulfill the changing metabolic 
needs of the body. Physical exercises, for instance, in- 
creases venous return, consequently the preload, and also 
it increases ventricular pressure development, which in- 
creases the stroke volume and the cardiac stroke work. 

When hypertension develops, the afterload increases. 
The heart has to increase pressure development to main- 
tain the stroke volume necessary for body needs. This 
condition triggers adaptive mechanisms that result in 
cardiac hypertrophy to maintain the necessary cardiac 
output for body needs. However, when the cardiac mus-
cle has no conditions to develop the proper amount of 
pressure it can be dilated, in such condition a stroke 
volume, sufficient to maintain basal conditions, might be 
attained although presenting a reduced ejection fraction. 
The worsening of such conditions characterizes the se-
verity of heart failure. 

The ventricular heart function can be evaluated in two 
moments, during diastole when the heart is being filled 
with blood (the diastolic function), and during systole 
when the heart is pumping blood into the circulation 
(systolic function), that is, the cardiac work may be 
evaluated in those two conditions during systole and 
during diastole. 

Finally, we observe that current techniques to measure 
cardiac work rates are expensive and mostly having dif- 
ficult performance. Usually it can be done by simultane- 
ous measure of the intraventricular pressure and ven- 
tricular volume using echocardiography or catheters, for 
instance. 
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Our aim in this paper is to propose the development of 
a new approach of procedure to provide a cardiac work 
rate as an important and manageable tool for any physi- 
cian everywhere mostly from developing countries 
where those invasive and expensive protocols are im- 
possible tasks. We collected the most important parame- 
ters involved in the cardiac work to postulate an equa- 
tion that describes one cycle cardiac work, as follows, 

( ) e

T
W A K V

Pδ
= +  

where A  is the area of a Pressure Phase Plane, K  is a 
constant determined by the activation and relaxation 
velocity of the pressure curve on that cycle,  is the 
elapsed time of that cycle,  is the maximum 
variation of the pressure in that cycle and V  is the 
stroke volume. 

T
Pδ

e

Following our motivation on this paper, we will as- 
sume that  to obtain a numerical approximation 
of the one cycle cardiac work rate. This paper is organ- 
ized as follows. In Section 1, the mathematical and phy- 
sical concepts and models are presented. We notice that 
our algebraic model for the Pressure Phase Plane area 
leads us to an approximation function of the cardiac 
work. We present six control rates based on our mathe-
matical model. In Section 2, we present protocols and 
tables with the acquired data. In Section 3, we discuss 
our mathematical model applying on our laboratory data 
acquisition. We have obtained disjoint interval of rates 
for different groups of the laboratory samples. 

1eV =

2. PHYSICAL AND MATHEMATICAL 
CONCEPTS 

It is a well known principle from Bernoulli that as the 
speed of a moving fluid increases the pressure within the 
fluid decreases if the fluid have some characteristics as 
smooth flow with a laminar movement and it flows 
everywhere through the pipe with the same density. We 
observe that the laminar movement at slow velocities is 
smooth when fluid particles are moving in straight lines 
along the direction of flow. Although, it is not exactly the 
case of the arterial flow movement of blood it is a very 
reasonable approximation. This principle is applied to the 
case of static and dynamic pressures which includes the 
case of arterial blood pressure since static pressure 
decreases when the flow velocity increases and dynamic 
pressure corresponds to the movement of the fluid 
through the pipe.  

Using the Newton’s second law and assuming that the 
energy is conserved, that is, the energy for a mass of 
fluid at point  is equal to the energy for the same 
mass of fluid at point b  then we will obtain the 
Bernoulli’s equation 

a

( ) ( )2 21 2 1 2a a a b bP v gh P vρ ρ ρ ρ+ + = + + bgh  

where  for a  and b  are the pressure meas- 
urements at the points  and  of the pipe, 

a b< P P
a b ρ  is the 

density of the fluid and a  and b  are the velocity of 
the fluid on that points and where 

v v
g  is the gravi- 

tacional acceleration and  means the height at the 
fixed points  and  We observe from this equation 
that increasing the pressure difference increases the fluid 
velocity difference since the pressure difference between 
two points creates the force that accelerates the fluid. 

h
a .b

The arterial blood flow results from the pumping ac- 
tivity of the heart during systole and from the elastic re- 
coil of the arterial wall during diastole. Resistance to 
blood flow in the systemic circulation depends on several 
factors. Since blood flow offers resistance the energy 
given by ventricular pressure reduces along the systemic 
circulatory bed althought the volume that enters the sys- 
temic circulation is always equal to the volume that re- 
turns to the heart. Consequently, blood needs to be reen- 
ergized by the heart pump to circulate again, which 
transfers energy to the blood as pressure. We have at this 
point the main difference from the arterial flow of blood 
and the cardiac vascular flow of blood. Despite the fact 
that at any point of that arterial flow movement we have 
different amount of energy it occurs a significant contri- 
bution of energy from the moviment of the pipelines it- 
self. 

We will assume the following physical model through- 
out this paper. We consider that both arterial and vascular 
flow movements are described by a steady system 
meaning that the parameters of the flow at any point do 
not change with time. We are based on a model for the 
pressure curve for one cardiac cycle. We consider the 
function of pressure as  class function of time, that is, 
its first and second derivatives are continuous functions. 
We also consider the pressure function defined on a 
closed interval denoted by 

2C

[ ],a rt t−

( )a rP t =

, where  is the 
elapsed time from the minimal pressure value  to the 
maximal pressure value , called activation time, and 

r  is the elapsed time from the maximal pressure value 
to the minimal pressure value, called relaxation time. We 
will assume that . 

0at >
P−

P+

( )− =

t

P t P−

Our model of the pressure curve takes the shape 
described on the graph presented in Figure 1. We recall 
[1] for a complete description. We notice that  and 

 are the points of the maximum and the minimum 
values of the first derivative function of the pressure  

t+

t−

function, respectively. We recall that ( )d

d

P
t

t
+  is a 

positive value and ( )d

d

P
t

t
−  is a negative value. 

We observe that Pressure Phase Plane, denoted by PPP, 
is defined by a plane curve with coordinates  and  P

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 
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Figure 2. Pressure Phase Plane. Definition of abbreviations: 
: minimal pressure/diastolic pressure; : maximal pres- 

sure/systolic pressure; 

P− P+

( )dP dt t+

( )
: positive first derivative of 

intraventricular pressure; 
Figure 1. Pressure curve model. Definition of abbrevia- 
tions: : minimal pressure/diastolic pressure; : 
maximal pressure/systolic pressure; : inflection point of 
the pressure curve with positive first derivative of intra- 
ventricular pressure; : inflection point of the pressure 
curve with negative first derivative of intraventricular pre- 
ssure; : activation time; : relaxation time. 

P−

at−

P+

t+

t−

rt

dP dt t −

at− +

( )0P t−

( )0P rt 1

: negative first derivative 

of intraventricular pressure; : activation time; t : infle- 

xion point of time to achieve ; : inflexion point of 

time to leave ; : relaxation time.; R  = activation 

elements of area; 2R  = relaxation elements of area. 
  
dP , where  represents the pressure function 
on the variable of time  and  its differential, 
meaning its derivative function of order one. We denote 
by 

( )P P t=
t dP

dA  an element of area on the Figure 2. We observe 
that those elements of area of the region 1  and the 
region 2  on the Figure 2 are equivalents. One may 
apply elementary tecnics from Riemann Integral and the 
Mean Value Theorem to deduce the function of the area 
of that regions by the following integral 

R
R

we have the following general equation 

A
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where  is a function defined by  ( )k t
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the constant ( )d
.
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P
c P t

t
−= −  As a consequence of (*)  

dP P K= −  

hence we have the following algebraic expression for 
that area on the interval [ ], .a rt t−

[ ]
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where  r

We will denote by A+

( )
 the number value 

( ) ( )d d
,

d d

P P
A P P t t

t t
+ + − + − = − ⋅ − 

 
  

which is a maximum number value for the area of PPP 
on the interval [ ], .t t−

( )P P t P− +≤ ≤
a r  We observe that  

 for each [ ], .a rt∈ −t t  Hence we have 
the following inequalities. 

 

( ) ( )d d

d da r
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Following those inequalities we have an interval of 

values for that area of PPP in terms of  and the  ,P P+ − 1. ( ) ( ) ( )d d

d d

P P
A P P t t

t t
+ + − + − = − ⋅ − 
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function ( )d

d

P
t

t
 evaluated on  and its peak  ,at t t t= =

2. ( ) ( )1 d

d a

P
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t
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 r

derivatives. Since [ ],a rA t t−  is a positive value number 
one may consider three possibilities for an aproxima- 
tion value number of the PPP area as follow  

3. ( ) ( )2 d
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According our explanation of the cardiac work 
previously presented we have portions of blood moving 
in different distances inside the heart with a variable 
force. We have assumed a model for the cardiac work as 
a movement of a pump acting by pressure hence we 
assume that an element of work denoted by d  is 
given by the product of pressure and the variation of 
volume. Since the function of volume is also a function 
of the pressure we have . It follows  

W

( ) ( )(V t V P t= )
from the Chain Rule that ( ) ( ) ( )d dV V  d

= .
d d d

P
t t t

t P t
⋅   

   
 

Hence the function  is given by dW

( ) ( ) ( ) ( )

( ) ( )( ) ( )

d d
d d

d d

d
d

d

P V
W t P t t t t

t P

V
A t k t c t

P

  = ⋅ ⋅ ⋅  
  
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
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

 

We are able to evaluate the integral  

at−
 denoting the one cycle 

cardiac work during the interval 
[ ] ( ), drt

a rW W t t W t= − = 
[ ], .a rt t−  

We will consider the approximation of the function 
[ ]( ) ( )A t k t c+ +  given by A ,a rt t k c− + +  and we will 

evaluate the derivative of the volume function as a 
pressure function by the mean variation namely  

( ) ( )
d

d
eVV

t
P P P+ −

=
−

V

[ ] [ ]( ) ( )

  

where e  denotes the ejection fraction of the stroke 
volume. Hence we have the following approximation for 
the one cycle cardiac work 

( ), , e
a r a r r a

V
W t t A t t k c t t

P P+ −
− = − + + ⋅ ⋅ +

−

k c

 

We have three approximation number value for the 
area of PPP, two approximation number value for the 
constant  and the constant  presented above hence 
we are able to present six control rates for the one cycle 
cardiac work, denoted by CWR  and given by the 
following value numbers: 
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A P P t P t
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Remark: We notice that  and  are 

obtained by considering the area 

1CWR 2CWR
A+ . For  and 

 we consider 

3CWR
4CWR 1A  and finally for  and 
 we consider 

5CWR
6CWR 2A . 

3. DATA ACQUISITION 

We will present on this section methods and tables 
obtained on laboratory acquisition. 

3.1. Animals 

Male Wistar and spontaneously hypertensive rats (SHR) 
weighing between 200 and 250 g were divided into four 

groups: 1) Control group (C; n = 7) comprised of Wistar 
rats; 2) SHR group (SHR; n = 7) comprised of 
spontaneously hypertensive rats; 3) ISO group (ISO; n = 
9) comprised of Wistar rats that received isoproterenol 
(0.3 mg/kg/day, sc, Sigma) in soybean oil for 7 days; and 
4) Vehicle group (V; n = 6) comprised of Wistar rats that 
received a 7-day course of injections of vehicle in an 
identical volume (0.1 mL, sc) as that administered to the 
animals of the ISO group. All experiments were con- 
ducted in compliance with the guidelines for Biomedical 
Research as stated by the Brazilian Societies of 
Experimental Biology. All rats had free access to water 
and were fed rat chow ad libitum. 
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3.2. Isolated Heart Preparation 

Animals were anesthetized with sodium pentobarbital 
(60 mg/kg, intraperitoneally (ip)) and heparinized (40 U). 
After thoracotomy, the heart was removed, and the as- 
cending aorta was perfused with Krebs-Henseleit bicar- 
bonate buffer solution (in mM: 120 NaCl, 5.4 KCl, 1.25 
CaCl2, 2.5 MgSO4, 1.2 Na2SO4, 2.0 NaH2PO4, 20 NaHCO3, 
and 11 glucose [salts used were of analytical grade; 
Sigma, St. Louis, MO, USA and Merck, Darmstat, Ger-
many]) according to the Langendorff technique, under 
constant flow (10 L/min), at 37˚C. The perfusate was 
gassed with 95% O2 and 5% CO2. The right atrium was 
removed in hopes of eliminating the sinoatrial pacemaker. 
The heart was then stimulated at a fixed rate of 200 bpm 
with two platinum electrodes. The left atrium was 
opened to introduce a soft distensible balloon mounted at 
the tip of a rigid plastic tube into the left ventricular cav- 
ity through the atrioventricular valve. To avoid liquid 
accumulation in the ventricular cavity, the ventricle was 
perforated with a puncture needle. The balloon was con- 
nected via a Y piece to a pressure transducer (TSD 104A- 
Biopac) and to a syringe so that the diastolic pressure of 
the left ventricle could be adjusted to predetermined val- 
ues by injecting water into the balloon. The developed 
isovolumic systolic pressure (ISP) and its first derivative 
(dP/dt) were measured with a pressure amplifier (MP 100 
Biopac Systems: Inc.; CA) and recorded with a data ac- 
quisition system (BIOPAC MP100WSW, including the 
software Acqknowledge III, Goleta, CA). The first de- 
rivative of the isovolumic pressure was obtained offline 
using the same software (digital filter Blackman −61 dB, 
25 KHz of cut frequency and sample rate of 1000/s). 
Coronary perfusion pressure was also measured at the 
aortic cannula. Measurements were initiated after a 20 
min period of stabilization. The basic protocol was per- 
formed beginning with a constant diastolic pressure of 10 
mmHg that was achieved by adjusting the volume of the 
balloon. During the experiments, the volume of the bal- 
loon was kept constant, enabling measurement of the 
diastolic and systolic pressure changes produced by the 
nutrient solution. 

3.3. Experimental Protocol 

The following interventions were carried out in all 
groups in the order presented after 20 minutes of stabili- 
zation. The possibility that the Frank-Starling mechanism 
of the heart might affect the behavior of θ and PPA was 
also investigated. Ventricular function curves were ob- 
tained by measuring the steady-state isovolumic systolic 
pressure that developed in the ventricular chamber as the 
diastolic pressure was increased from 0 to 30 mmHg in 
increments of 5 mmHg. The effect of an inotropic inter- 
vention on the behavior of θ and PPA was also inves- 

tigated using isoproterenol (0.1 mL; 10−5 M), a β-adren- 
ergic agonist given during Krebs perfusion with a re- 
duced calcium concentration (0.5 mM). 

3.4. Phase Plane Construction and Analysis 

The PP construction, a plot of dP/dt versus P, was 
performed using the Biopac Student Lab software, keep- 
ing a scale of 50 mmHg and 500 mmHg/s for P in the X 
axis and dP/dt in the Y axis, respectively, for all mea- 
surements. The values of the final slope (  and the 
PPP area were obtained with AutoCad 2004 software. 

)θ

3.5. Data Analysis and Statistics 

All values are expressed as mean ± standard error of the 
mean (SEM) of the number of animals used in each 
experiment. Results were analyzed using 1- or 2-way 
analysis of variance (ANOVA). When the ANOVA 
showed a significant treatment effect, Fisher’s post hoc 
test was used to compare individual means. Student’s t- 
test was used to analyse the effects of isoproterenol. 
Differences were considered significant at   0.05.P <

4. DISCUSSION: CARDIAC WORK RATE 

We have collected from laboratory experiments those 
data presented on the Table 1. We refer Tables 2 and 3 
for the measured and estimated PPP area and the 
calculation of the cardiac work rate, respectively, pre- 
sented in Section 2. The Phase Plane is a well known and 
useful tool to understand the behavior of arterial pressure 
and cardiac muscle mechanical properties, for instance. 

Previous reports showed that the phase plane area can 
be used to describe mechanical characteristics of con- 
traction and relaxation of papillary muscles of the heart, 
such as contraction kinetics and elastic characteristics 
(see [2], Vassallo et al., 1979). In the last decade, PPA 
has been used as a tool to access ventricular function and 
the functional coupling of the vasculature to diastolic 
function (we refer [1] Eucker et al., 2001 and [3] Chung 
et al., 2006). We recall from [4] (Castellano, 1977) that 
the force-velocity relation on the mechanical properties 
of cardiac muscle obeying the Hill’s equation given by 

2 2d d ( )y t f t y+ = 0  where ( )f t  is a periodic func-
tion, under certain given conditions. We know that 

( )2 2d du y t= y

)
 is a general solution of the Ricatti's 

equation  hence we have the algebraic 
expression 

( ) 2u f t u′ = − ,
(exp dy = u t  as a formal solution of that 

equation, that is, with no initial conditions. The authors 
in [4] tell us that the pre-ejection pressure time curve P(t) 
during an isovolumic contraction is also a solution of 
Hill’s equation under given conditions. 

We shall present a mathematical model for the 
calculation of the area of a Pressure Phase Plane (PPP) 
which does not depend on an algebraic description of the  

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 
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Table 1. Cardiac mechanics parameters. 

Pmin Pmax −dP/dt +dP/dt 
Animal 

(mmHg) (mmHg) 
ta (ms) tr (ms) 

dP (ta) 
(mmHg/s) 

dP (tr) 
(mmHg/s) 

(mmHg/s) (mmHg/s) 

C-1 10 67 115 185 401 49 585 1066 

C-2 10 65 100 180 349 84 571 889 

C-3 10 90 100 170 586 100 920 1333 

C-4 10 72 110 190 196 134 612 930 

C-5 10 83 100 170 497 20 800 1358 

C-6 10 89 110 190 240 145 712 1313 

C-7 10 76 100 180 338 136 749 1152 

C-8 10 76 100 190 627 103 685 1198 

C-9 10 105 106 183 146 131 1641 1903 

SHR-1 10 99 97 162 224 116 1575 2517 

SHR-2 10 111 93 140 113 238 1918 1749 

SHR-3 10 168 104 164 287 211 2739 2894 

SHR-4 10 102 113 168 108 266 1660 1213 

SHR-5 10 111 108 166 243 166 1789 1601 

SHR-6 10 71 105 184 128 165 1131 984 

SHR-7 10 120 102 194 160 237 2005 2212 

 
Table 2. Calculated and estimated Pressure Phase Plane area. pressure curve itself. However, we applied our data 

collected in the lab on the software Mathlab to obtain an 
algebraic description of the pressure curve and its phase 
plane and verified the degree of confidence of those 
estimated data. The graphic and algebraic expressions of 
those curves are presented in Figure 3, moreover, the 
curve of PPP obtained from our data is exactly on the 
class of solution of that in Hill’s equation since it is given 
by  Hence, 
we are completely confident in the accuracy of the rates 
we have obtained when we applied our algebraic model 
on the data acquisition. See also [5] (Fung, 1970). 

( ) ( ) ( ) ( )( ) ( )( )2.6 sin 2.6 sin10.4 e , 27.4 cos e .t tt tα =

Animal Measured PPP area A+ A2 A3 

C-1 98,010 94,107 71,250 91,314

C-2 84,800 80,300 61,105 75,680

C-3 185,070 180,240 133,360 172,240

C-4 95,750 95,604 83,452 87,296

C-5 168,200 157,534 121,253 156,074

C-6 167,090 159,975 141,015 148,520

C-7 127,370 125,466 103,158 116,490

C-8 132,380 124,278 82,896 117,480

C-9 276,750 336,680 322,810 324,235

SHR-1 359,550 364,188 344,252 353,864

SHR-2 388,860 370,367 358,954 346,329

SHR-3 838,510 890,014 844,668 856,676

SHR-4 264,610 264,316 254,380 239,844

SHR-5 308,370 342,390 317,847 325,624

SHR-6 108,850 129,015 121,207 118,950

SHR-7 422,910 463,870 446,270 437,800

We have in Table 2 the calculation of the PPP area 
given by the standard measure and our algebraic expres- 
sion as presented in Section 2. That table and the graphs 
in Figure 4 lead us to conclude that the data obtained 
from laboratory acquisition and our mathematical model 
to calculate the area of PPP fit each other. In particular, 
we have that our math model is perfectly adequate to the 
experiments. 

We have in Table 3 the six control rates for the one 
cycle cardiac work when we consider  1.eV =

We recall from data acquisition (see Table 1) that the 
item 9 has the major pressure variation and peak deriva- 
tives in the control group which lead us to conclude that 
the item 9 must have a greater cardiac work rate. In fact,  
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Table 3. Calcullus of cardiac work rate. 

Animal CWI1 CWI2 CWI3 CWI4 CWI5 CWI6 

C-1 1.11 1.01 0.75 0.88 0.89 1.02 

C-2 0.92 0.85 0.63 0.76 0.75 0.87 

C-3 1.38 1.25 0.90 1.10 1.09 1.27 

C-4 0.99 0.97 0.81 0.95 0.91 1.01 

C-5 1.30 1.17 0.90 1.03 1.04 1.18 

C-6 1.29 1.26 1.08 1.23 1.19 1.31 

C-7 1.16 1.11 0.88 1.04 1.01 1.15 

C-8 1.28 1.13 0.73 0.95 0.94 1.16 

C-9 2.09 2.09 1.97 2.09 2.05 2.13 

SHR-1 2.18 2.15 2.01 2.12 2.10 2.18 

SHR-2 1.74 1.77 1.66 1.80 1.74 1.83 

SHR-3 3.10 3.08 2.87 3.06 3.00 3.14 

SHR-4 1.65 1.70 1.56 1.75 1.67 1.77 

SHR-5 1.93 1.91 1.73 1.88 1.84 1.95 

SHR-6 1.27 1.28 1.16 1.29 1.24 1.33 

SHR-7 2.55 2.57 2.41 2.60 2.53 2.64 

Interval of rates of CWI 

Group CWI1 CWI2 CWI3 CWI4 CWI5 CWI6 

Control 0.92 - 1.38 0.85 - 1.26 0.63 - 1.08 0.76 - 1.23 0.75 - 1.19 0.87 - 1.31 

SHR 1.27 - 3.1 1.28 - 3.08 1.16 - 2.87 1.29 - 3.06 1.67 - 3.0 1.33 - 3.14 

 

 

Figure 3. MathLab simulation from data acquisition. Pressure curve (left). Pressure Phase Plane (right). One cardiac cycle, inscribed 
clockwise, is shown. See text for details. 
 
it has greater data than others in the control group or 
even some on the SHR, hence, it has a cardiac work rate 
on interval range of the hypertrophied heart group (see 
Figure 5 and Table 3). 

We have considered the CWR obtained in the control 
group. We have that the third rate presented has the 
smallest number value between all of them when we 
compare those items and the first one is the biggest 
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number value on that table by taking the same procedure. 
The minimum value of those rates in this group is 
achieved by the item C-2 and the maximum value by 
both item C-3 and item C-6. We recall that the item 9 on 
that control group has a bigger number value than the  

 

 

Figure 4. Linear correlation between measured and estimated 
phase plane area. Comparision between Pressure Phase Plane 
(PPP) area measure by the standard method and estimated by 
algebraic expressions in function of pressure as presented in 
Section 2. 

other items and also is bigger for each algebraic 
expression of the CWR by comparison with the other 
items from this group. We notice that the CWR in this 
group has a rate from 0.63 to 1.38 (in million) regardless 
of item 9. 

We now observe the hypertrophied heart group. We 
still have the third rate as the smallest and now we have 
the sixth rate as the biggest value number rate when we 
compare those items. The item SHR-6 presented the 
minimum value of those rates for this group and SHR-3 
the maximum value. We recall that the CWR on this 
group has a rate from 1.24 to 3.14 (in million). We notice 
that control rates of item C-9 of the control group fit in 
that group of SHR as one may expect. We also observe 
that the data time and pressure of item SHR-6 belong to 
the interval of the control group and the derivatives data. 

We refer the graphics on Figure 5 to illustrate the 
remarks presented above. 

We notice that the first control rate has an intersection 
interval on those value numbers of the different groups. 
All rates but the first one have no intersection interval on 

 

 

Figure 5. Comparison of cardiac work rates between control and SHR groups. Graphics of cardiac 
work rate (CWR). CI: Cardiac work rate; C: control group; SHR: spontaneous hypertensive rats 
group. Values were given by mean and SEM, *p < 0.05 vs C.  
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those number values. 

Finally, we observe that the cardiac work rates 
presented in this paper can be redefined by considering 
other intervals of time, namely, one minute. In this case, 
one may consider the sum of all control rates during one 
minute or also by considering a mean value of those rates, 
for instance, on this interval of time. We observe that the 
studies for a human heart cardiac work will follow the 
same steps since we have considered  and the 
only one cardiac cycle. 

1eV =
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