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ABSTRACT 

A comparison of two methods of solution to classical flow problem in rarefied gas dynamics was presented. The two 
methods were chosen to examine the effect of the following transport phenomena (pressure gradient and temperature 
difference) viz Poiseuille and Thermal creep respectively on the flow of rarefied gas. The governing equations were 
approximated using BGK model. It was shown that while the Discrete Ordinate Method could consider more values of 
the accommodation coefficients, the Finite Difference Method can only take accommodation coefficient of one. It was 
also shown that the flow rate has its minimum in both solution methods at Kn = 0.1 in the transition regime and that as 
the channels get wider, the Thermal creep volume flow rates get smaller. 
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1. Introduction 

In the recent literature there is a growing interest to solve 
problems in rarefied gas dynamics. The reader is referred 
to [1-6], and other references therein for an overview of 
the recent work in this area. Earlier researches [7-12] 
solved rarefied gas dynamics problems using different 
methods. It has been shown that these methods yield 
good results. The main objective of this work is to do a 
comparison of two of the most widely used methods in the 
numerical study of rarefied gas flow problem: the Dis- 
crete Ordinate method (DOM) and the Finite Difference 
Method (FDM). Though the literature concerning our area 
of study is very intensive, we shall review a few of them. 

Barichello, et al. [13] studied a version of the dis- 
crete-ordinates method to solve in a unified manner some 
classical flow problems based on the Bhatnagar, Gross 
and Krook model in the theory of rarefied gas dynamics. 
In particular, the thermal-creep problem and the viscous- 
slip (Kramer’s) problem are solved for the case of a 
semi-infinite medium, and the Poiseuille-flow problem, 
the Couette-flow problem and the thermal-creep problem 
are all solved for a wide range of the Knudsen number. 
Also Scherer and Barichello [14] studied an analytical 
version of the discrete-ordinates method, the ADO 
method, to solve two problems in the rarefied gas dy-
namics field, which describe evaporation/condensation 

between two parallel interfaces and the case of a semi- 
infinite medium. The modeling of the problems is based 
on a general expression which may represent four dif- 
ferent kinetic models. 

In [15], the problem of heat transfer and temperature 
distribution in a binary mixture of rarefied gases between 
two parallel plates with different temperatures on the 
basis of kinetic theory was investigated. Under the as- 
sumptions that the gas molecules are hard spheres and 
undergo diffuse reflection on the plates, the Boltzmann 
equation was analyzed numerically by means of an ac- 
curate finite difference method, in which the complicated 
nonlinear collision integrals are computed efficiently by 
the deterministic numerical kernel method. As a result, 
the overall quantities are obtained accurately for a wide 
range of the Knudsen number. At the same time, the be- 
havior of the velocity distribution function is clarified 
with high accuracy. 

Muljadi and Yang [16] obtained a direct method for 
solving rarefied flow of gases of arbitrary particle statis- 
tics. The method is based on semi-classical Boltzmann 
equation with BGK relaxation time approximation. The 
discrete ordinate method is first applied to render the 
Boltzmann equation into hyperbolic conservation laws 
with source terms, and then classes of explicit and im- 
plicit time integration schemes are applied to evaluate the 
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discretized distribution function. The method is tested on 
both transient and steady flow problems of gases of arbi- 
trary statistics at varying relaxation times. 

Also worthy of note are the works of [17-22] and other 
references therein. 

2. The Linearized Boltzmann Equation 

The non-linearity form of the Boltzmann equation is es- 
sential in application if the gas is far from thermal equi- 
librium. However, if the state of the gas is near thermal 
equilibrium, a linearized form of the Boltzmann equation 
will provide a reasonably accurate description of the 
transport phenomena. This form assumed that the per- 
turbation of the velocity distribution from its equilibrium 
form is small. 

Following the work in [23] a linearized form of the 
Boltzmann equation was given as 
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where h is a disturbance caused to the local Maxwellian, 
Rx is the relative density in the x-direction, Kx is the  

temperature gradient in the x-direction, 
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3. Discrete Ordinate Method 

Consider the flow of rarefied gas in z-direction between 
two parallel plates separated by a distance d. the origin is 
chosen in the middle of the channel so that the coordinate  

y varies from 
2

d
 to 

2

d
. 

Following the linearized Boltzmann Equation (1), we 
seek the solution to the equation: 
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and  ,    , subject to the 

boundary conditions: 
1) For Couette flow 
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2) Poiseuille flow 
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3) Thermal flow 
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Rewriting (2) we have 
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Define  = weight and kkW   = nodes for  
1, 2,k , N  , then the integral term on the right hand 

side of (9) can be approximated to obtain 
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To satisfy the requirements of the right hand side of 
(11) the left hand side was evaluated at the points 

i    to obtain a system of differential equations 
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for 1,2, , ,i N   where  is the quadrature points. N
Seeking exponential solutions to Equations (12) and 

(13), set 
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Substituting Equation (14) into Equations (12) and 
(13), we have 
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and 
iseuille Volume Flow Rate 2) Po

 
2

1

2
1

2

1
2 1

2

1 2
1

e j

a
N

v
p j j j

j

Q A v A B
a






  


2 3
a

a

   
    

 


  (48) 

For Couette flow, we compute the stress given by 

  
 

1

2
1

2xzP B


               

and for Thermal Creep, we compute the Velocity profile 

  (49) 

   0 1Tq Y               (50) 

and the flow rate 
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   
2

1

2

1
2 1

2

a
N

T j jQ A v A
a

 
 

    
  

4. Finite Difference Method 

zed two dimensional approach in [7] 
with the Bhatnagar-Gross-Krook Model (BGK) in [24, 
25], the Boltzmann equation to be solved is reduce

1j   
e jv

jB
 

    (51) 

Using the lineari

d to 

 

 

2

0

3

2 2 2 2
0

3
2

2

d

exp

2

z z

x y z

h q hy z

q F

h
F h

m
h

kT

        

 

  

 
 
 



         

0

2
0

3
d

2
h v F   

d

z

F



  

 


 
   

 
     

  


 

            


 



 

(52)

where  





 

 
 

relative change in velocity distribution function

, , the molecular volecity

, , the gas velocity

relative change in the particle density

lative change in temperature

the collision f

x y z

x y zq q q q

re



   





  







 requency

 

 

The perturbation terms  and  depend only on z (flow 
direction) and are related to the pressure and temperature 
gradient. They are  

2 1,
z z

T k v k
d d

        
   

 

where is proportional to pressure gradient and 
is

boundary conditions are: 

1k  2k  
 proportional to temperature gradient, and both are 

small compared to unity. The velocity of the reflecting 
molecules from the wall is specified by the Maxwellian 
distribution; then the 

  2
1 2 2

1 3
Sgn , ,

2 2y

z z
d z k k k h

d d     
(53) 

where 

1, if 0
Sgn

1, if 0

y

y






  
 

                  


 

A solution in the form  



y

     0 1, , ,
z

y z y
d

       
 

        (54

was sought where 

) 

  2
0 1 2

5

2
k k h      

 
           (55) 

Substituting Equation (54) into Equation (52) we have 

 1

d
,

dy y
y

 

21 2 5
2

2

k k
h hqz



  


z d d

        

     (56) 



Multiplying both sides of Equation (56) by 

 2 2expz z x

h
h          

 

and integrating over full ranges, we have 

21 2 2d 1
2

d 2y z

k k kF
yF h q h

y h d d d
         

 
   (57) 

where the function F is defined by 

    2 2
1, exp , d dz z x

h
F y h y y x z    

         
 

 

(58) 

oundary condi- 
tions 

Integrating Equation (57) under the b

1

1
Sgn , , 0

2 yd z     
 

         (59) 

we have 

 

   1 1 1 2 2

sgn
2 2

ex

y d d d  



,

2
2 2

1
p d

y

y
dy z y

y

F y

k k k
h h q h

y
t



  




       

 
 
  

  

he gas velocity qz is expressed by 

(60) 

When t

   
1

2 2sgn exp dz y y

h
q y F h 





     
    (61) 

Equation (61) now reduces to 

 

 

1

2

1 1 1
2
1

2 2 2

1 1
122 2

11

d

2 2

 d

z

d

d

d

h q y

122 2 2
1 1zd

k k

2 22

J h y t h q t


      
 t

dh dh

k
J h y t t

 






   


 
 

    

(62) 
dh   
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nJ  where is defined by 

2

0
exp dn

n

x
J y y

y

  
   

 
  y

Let  

1

2
1

2

2
,dh


 
   
 
 

 1 1

2 2,     ,y h y T dh t 

 



   
11 1

2 2
1 2

1
2 1

2z ph q dh k k  


        T           
 

(63) 

then Equation (62) will be written as two integral e
quations, i.e.,  



   
1 1

22 2
1

2

 d 1
d

p pd J h y t t   





 
      

 
    (64) 

and 

   
1 1

22 2
1

2

1 1

22 2
1

1
d

2

d

d

2

d
d

T Td J h y t t   







 
     

 

 


    

where 

J h y t t




 
     

(65) 

the inverse Knudsen number   
From

induc
 Equation (63), we have the velocity of the gas 

ed by the pressure gradient as, 

 
1

21

2 1
2zPh q



   P            (66) 

and that induced by temperature gradient as 
1

21

2
1

2 2zT Th q


     
           (67) 

The volume flow rate is then given by 

 

 

2

2

1
1

2

d

d

d

P zPdG q y y

p

z










 
 



 

2
22 2

2
d

2 4
h d 

  


     

d

     (68)

 

 

2

2

T zTd


1
12 2

22
02

2

d

d
d

4 d4

d

T

G p q y y

T
h n kd

z
 

 








 
     

 
 




    (69) 

Expressing Equations (68) and (69) in non-dimen- 
sional form gives; 

 
1

1 22

1

2

2
d

2 4

x

P P

x

Q





 
 



 
            (70) 

and 

 
1

1 22

1

2

2
d

4 4

x

T TQ







x


 



 
             (71) 

ectively. 
Next, is to solve numerically the unknown functions 

The subscripts P  and T  imply Poiseuille flow and 
Thermal creep resp

 and T  
r to s

P in Equations (64) and (65)
orde olve Equations (64) and (

ference method was utilized after discretization as  

 respectively. 
65), a finite dif- In 

 
1

12
1

1 1
0

1
d 1

2
k

k

n

Ph Pk n n
k

J



     

 


 


 
    

 
   (72) 

 

 

1
12

1 2
2

2
1 12 2 n n

1

1 1
0

1

2

1 1
d

k

k

n

Th Tk n n
k

J

J




d  

   

 







 


  
  


 

 
 

 
     



 


   (73) 



where Pk  is the stepwise function of P  and Tk  
e stepwise function of Tth   

he cons nt value of the functions T ta Pk  and Tk  on 
each interval is interpreted as the value at the midpoint. 
The transcendental function  xT  has a singularity 
when 

According to the obvious way of differences, 
tions (72) and (73) reduce to the matrix 

0.x   
Equa- 

1

0

1   for 0,1,2, , 1
n

hk pk
k

A n n




          (74) 

1

0

  for 0,1,2, , 1Tk

n

hk h
k

B g n n




         (75) 

where 

 

 2 21
22

2 2

2

1

2 1  
d

2

k n

n
k n

n

hk hk

h n
A J

n
  

  


  



   

    
 

 (76) 

 

    

hk hkA B               (77)    

1
22

2
1

1 2 1  
d

2 2h

h n
g J

n
 







   
    


      (78) 



Integrating Equations (76) and (78) using
ties of 

 the proper- 

nJ  we have; 
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 

 

1

2
1

2

1

2

1

0

1

0

If                               

2
2

2
2

hk

h k

k h
A J n

n

k h
J n

n





 





        
   

       
   









      (79) 



1 1

2 2

0hk

If  

2

h k

J n




   
   

         

         

     (80)
Z

1

2
1

2

2

2 1

2

2 1
1

2 1
1

h

h n
g J

n

h n
J

n






          

    
            

 


 

 

5. Numerical Results 

Using LAPAK and LINPAC solvers, we obtained the 
following numerical results: 

In Table 1, we compared the results of Poiseuille flow 
rate between discrete ordinate and finite difference me
thods. In the table, the result with accommodation coef- 
ficient α = 1 was the only one presented. While discrete 
ordinate method could consider more values of the ac- 
commodation coefficients, the finite diffe
can only take accommodation coefficient of one. This is 
due to the fact that the discrete ordinate solution adopted
the boundary conditions of diffuse and specular reflec- 
tions while the finite difference solution adopted the dif- 

ndition only. A range of in- 

T

      (81)

- 

rence method 

 

fuse reflection boundary co
verse Knudsen number from 0.001 to 100 was considered 
for both solutions, these values accommodated the slip 
flow, transition flow and the collisionless flow regime. 

The results show an agreement of 96.6% within the 
slip and collisionless regime and 99.9% in the transition 
regime. The flow rate shows its minimum in both solu- 
tion methods at Kn = 1.0 in the transition regime. This 
result also agreed with that of Cercignani and Daneri in 
[9] where it was pointed out that the minimum occurs 
between 1.0 and 1.2 and the analytical solution as pre- 
sented in [26] and [27]. It was also observed that as the 
inverse Knudsen number gets very large, the volume 
flow rate shoots up drastically; reason was that the mean- 
free-path becomes larger.  

Table 2 was used to compare the Thermal Creep 
Volume Flow Rate between the Discrete Ordinate and 
the Finite Difference methods. The same parameters in 

able 1 were used as a basis for this comparison. That is, 

accommodation coefficient α = l and an inverse Knudsen 
number in the range of 0.001 to 100. The result also 
shows an agreement of 96.6% within the slip and colli- 
sionless regime and 99.9% in the transition regime. It 
was noticed that as the channel gets wider the thermal 
creep volume flow rates gets smaller. 

6. Conclusion 

Based on the discussions above, we therefore concluded 
that: the comparison shows that both schemes give simi  
 
Table 1. Comparison of Poiseuille Flow Rates between Dis- 
crete Ordinate Method and Finite Difference Method. Pa- 
rameter used: Accommodation coefficient α = 1.0000. 

Channel width 
(d0) or inverse 

Knudsen  
number (kn)

Analytical 
Solution as in 
[26] and [27]

Discrete  
Ordinate  

Method (DOM) 
No of Gaussian 

Points = 60 

Finite Difference 
Method (FDM) 

No of Elements = 
100 No of Gaussian 

Points = 50 

0.0010 - 4.274560 4.194779 

0.0100 - 3.049685 3.049363 

1.0000 1.5086 1.538678 1.538786 

4 

0.1000 1.9318 2.032716 2.032757 

0.5000 1.5607 1.601874 1.601950 

5.0000 1.9639 1.981093 1.981283 

10.000 2.7350 2.768645 2.76850

50.000 

100.00 

- 

- 

9.369976 

17.69330 

9.263045 

17.06334 

 
Table 2. Comparison of Thermal Creep Volume Flow Rates 
betw iscrete O inate M d Fini nce 
Me rameter sed: Acc  co α = 
1.0000. 

Channel 
wid

inver
K

num

Ana
Solution as in 
[26] a

Discre  
Method (
No of

Points = 60 

Finite Difference 
Me ) 

No o  
100 No of Gaussian 

P

een D rd ethod an te Differe
thod. Pa  u ommodation efficient 

th (d0) or 
se 

nudsen 
ber (kn)

lytical 

nd [27]

te Ordinate
DOM) 

 Gaussian 

thod (FDM
f Elements =

oints = 50 

0 1.8.0010 - 541470 1.814151 

0 - 1.2

0 0.7966 0.6

0.5000 0.5036 0.3984993 0.398527 

0898 0.0660763 0.066139 

50.000 - 0.0148994 0.015036 

100.00 - 0.0075565 0.007810 

.0100 358340 1.235673 

.1000 949272 0.694946 

1.0000 0.3890 0.2949000 0.294933 

5.0000 0.1574 0.1107882 0.119890 

10.000 0.
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la  when computing e
m m

to c  n
f ch m
comparable to the discrete ordinate solutions even up to 
99% accuracy. However,  differ
could not take accommodat ient of order greater
than one because  consi
bo  cond
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