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ABSTRACT

A comparison of two methods of solution to classical flow problem in rarefied gas dynamics was presented. The two
methods were chosen to examine the effect of the following transport phenomena (pressure gradient and temperature
difference) viz Poiseuille and Thermal creep respectively on the flow of rarefied gas. The governing equations were
approximated using BGK model. It was shown that while the Discrete Ordinate Method could consider more values of
the accommodation coefficients, the Finite Difference Method can only take accommodation coefficient of one. It was
also shown that the flow rate has its minimum in both solution methods at K, = 0.1 in the transition regime and that as

the channels get wider, the Thermal creep volume flow rates get smaller.

K eywords: Discrete Ordinate; Finite Difference; Pressure Gradient; Temperature Difference; Knudsen Number

1. Introduction

In the recent literature there is a growing interest to solve
problems in rarefied gas dynamics. The reader is referred
to [1-6], and other references therein for an overview of
the recent work in this area. Earlier researches [7-12]
solved rarefied gas dynamics problems using different
methods. It has been shown that these methods yield
good results. The main objective of this work isto do a
comparison of two of the most widely used methods in the
numerical study of rarefied gas flow problem: the Dis-
crete Ordinate method (DOM) and the Finite Difference
Method (FDM). Though the literature concerning our area
of study isvery intensive, we shall review afew of them.
Barichello, et al. [13] studied a version of the dis-
crete-ordinates method to solve in a unified manner some
classical flow problems based on the Bhatnagar, Gross
and Krook model in the theory of rarefied gas dynamics.
In particular, the thermal-creep problem and the viscous-
dip (Kramer's) problem are solved for the case of a
semi-infinite medium, and the Poiseuille-flow problem,
the Couette-flow problem and the thermal-creep problem
are all solved for a wide range of the Knudsen number.
Also Scherer and Barichello [14] studied an analytical
version of the discrete-ordinates method, the ADO
method, to solve two problems in the rarefied gas dy-
namics field, which describe evaporation/condensation

Copyright © 2013 SciRes.

between two parallel interfaces and the case of a semi-
infinite medium. The modeling of the problems is based
on a general expression which may represent four dif-
ferent kinetic models.

In [15], the problem of heat transfer and temperature
distribution in a binary mixture of rarefied gases between
two parale plates with different temperatures on the
basis of kinetic theory was investigated. Under the as-
sumptions that the gas molecules are hard spheres and
undergo diffuse reflection on the plates, the Boltzmann
equation was analyzed numerically by means of an ac-
curate finite difference method, in which the complicated
nonlinear collision integrals are computed efficiently by
the deterministic numerical kernel method. As a result,
the overall quantities are obtained accurately for a wide
range of the Knudsen number. At the same time, the be-
havior of the velocity distribution function is clarified
with high accuracy.

Muljadi and Yang [16] obtained a direct method for
solving rarefied flow of gases of arbitrary particle statis-
tics. The method is based on semi-classical Boltzmann
equation with BGK relaxation time approximation. The
discrete ordinate method is first applied to render the
Boltzmann equation into hyperbolic conservation laws
with source terms, and then classes of explicit and im-
plicit time integration schemes are applied to evaluate the
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discretized distribution function. The method is tested on
both transient and steady flow problems of gases of arbi-
trary statistics at varying relaxation times.

Also worthy of note are the works of [17-22] and other
references therein.

2. TheLinearized Boltzmann Equation

The non-linearity form of the Boltzmann equation is es-
sentia in application if the gas is far from thermal equi-
librium. However, if the state of the gas is near thermal
equilibrium, alinearized form of the Boltzmann equation
will provide a reasonably accurate description of the
transport phenomena. This form assumed that the per-
turbation of the velocity distribution from its equilibrium
formissmall.

Following the work in [23] a linearized form of the
Boltzmann equation was given as

c, |:(C2 —gjkx +R, + ZCXK0:|+CZ (cz —gj K.

cxdhd(xx,c) 4 I (x,c)

- %J'dc’exp[—c’z]h(x,c')

2

X[u e 222 en- gﬂ

where h is a disturbance caused to the local Maxwellian,
R, is the relative density in the x-direction, K, is the

+c, R+

@

temperature gradient in the x-direction, ¢=v m_\
2KT

1
and ﬂ’O = l(%jz .

3. Discrete Ordinate M ethod

Consider the flow of rarefied gas in z-direction between
two parallel plates separated by a distance d. the origin is
chosen in the middle of the channel so that the coordinate
. —d d
yvariesfrom — to —.
2 2
Following the linearized Boltzmann Equation (1), we

seek the solution to the equation:
Oz I
§a(x,§)+Z(x,§):Tczj_wexp(—uz)Z(x,u)du 2

For xe(—%,%j and & e(—oo,0), subject to the

boundary conditions:
1) For Couette flow
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Z(-a,8)-(1-a)Z(-a,~&) = a 3
Z(a,-&)-(1-a)Z(a,&) = -« 4
2) Poiseuille flow
Z(-a,¢é)-(1-a)Z(-a,~&)=aé® +a(2-a)é  (5)
Z(a,~¢)-(1-a)Z(a,&)=as’+a(2-a)é  (6)
3) Thermal flow

Z(—a,g”)—(l—a)Z(—a,—cf)=%a[§2—%j @

z(a,_g)_(l_a)z(a,g):%a[;ﬂ _3 ®
Rewriting (2) we have
Oz
§aZ(x,§)+Z(x,§)

=[ v (E{z(x&)+z(x-¢)de)

where

1

w(£)=m 2exp[-¢°] (10

d d
for xe(—z,zj and ¢&e(—o0,®).

Define W, =weightand &, =nodesfor
k=12,---,N, then the integral term on the right hand
side of (9) can be approximated to obtain

0z
(faZ(x,f)-i-Z(x@)

=Y (S Z(x &)+ Z(x,-&) ]

11

for xe(—%,%j and ¢ e(—w,0).

To satisfy the requirements of the right hand side of
(12) the left hand side was evaluated at the points
& =+¢£ toobtain asystem of differential equations

oz
&E—Z(x,&)+Z(x,¢
(v E)+7(x8) .

= sz:ka‘//(égk)[Z(xvfk)+z(xv_§k ):I
and

6 Z2(x-£)+2(x-¢)

=Y (&) Z(x &)+ 2 (x-&)]

for i=12,---,N, where N isthequadrature points.
Seeking exponential solutions to Equations (12) and
(13), set

(13)

JAMP



30 I. N. NJOSEH, A. MUSA

Z(x£5) =<D(V,§)e><p[—§j (14)

Substituting Equation (14) into Equations (12) and
(13), we have

S
—2 D)+ (v ¢ as)
=X P (E)ems)+o(n-5)]
and
S (v,-8)+ D(v,-E)
v (16)
=Y (E)ems)ro(v-4)]
For convenience, let
D, =<I>(v,§,.), o} =<I>(v,—§,.),
W, =Wy(&), M =diagonds{&, &, &y}
Then (15) and (16) can be written as
%Mq =[1-w]o, -Wo_ (17)

_EMq)_ =[I-w]o_-wo, (18)
v

where [ isan N x N identity matrix

©, =[0(125),0(v,28,), @ (v, 24, )]

Now let
U=0,+D_ (19)
and
Y=0_ -, (20)
Adding (17) and (18) and substituting (19) gives
Lyy =@-2myu 21)
\%
Subtracting (18) from (17) and substituting (20) gives
Tuyoy (22)
\4
Eliminating Y from (21) and (22) we have
1

= MU =(D-2M WM ™) MU (23)
v

where D = diagonals{fl‘z,fz‘z,--‘,.f];z}
Multiplying (23) by a diagonal matrix 7 with diagonal
elements given by

T =[Wy (&) (24)

we have
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[D_zv]xzvizx (25)

where
V=MTWT'M' and X =TMU

With the elements ¢,t,,---,¢, €T, V is made sym-
metric and hence we can write the eigenvalue in the form

(D-222")x = ax (26)
where
A= iz =V = 1
v A
and

51 §2 §N 1

Considering that the required eigenvalues has been ob-
tained in (26), a normalization condition is therefore im-
posed, that is,

, :[JWlw(ea) (&) ,”,,JWNw(éN)]T

kﬁ;Wkt//(fk)+[<D(v,+§k)+<b(v,—§k )=1 @7

Hence the discrete ordinate solution is written as

N L, e L, e
Z(x,+&)=N|4 —L—e " +B—L e " |(28
( é:l) Z J Vj -¢ J vj + 5,‘ ( )

N _(a+x) _(a+x)
Z(x,=&)=2| 4, e v 4B e
' / v, +&, / v, =&

(29)
where {4,} and {B,} are arbitrary constants to be
determined from the boundary conditions. v; is separa-
tion constants and is equa to the reciprocal of the posi-
tive sguare root of the eigenvalues as defined by (26), the
separation constants (vj will not be alowed to be
equal to one of the quadrature points (51.) and a is
the arbitrary scaling constant which we are taking as 2a
for the full channel width.

The problem based on (2) is*“ conservative” since

[ w(&)de=1

For this reason we expect that one of the eigenvalues
defined by Equation (26) will tend to zero as N tends to
infinity. Taking this fact into account, v,, whichisthe
largest of the computed separation constants (v, will

have to be neglected, hence (28) and (29) are written as
Z(x,+&)=A+B(x-¢&)
(a+x) (a+x)
N V. — v, — 30
+y |4, ——e Y +B,— g =0
j=1 v, =& v, +¢
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Z(x,—é):A+B(x—§i)

(a+x) M

N1 — v, - (31)
+2.1 4, ! +B,——e
j=1 V +§ V -¢
The constants A,B,{Aj and {Bj will be deter-

mined from the boundary conditions. Equations (30) and
(31) represent the discrete ordinate solutions.

To solve the problem of Couette, Poiseuille and Ther-
mal creep, we consider the boundary conditions as de-
fined in (3) to (8) and write

Z(-a,&)-(1-a)Z(-a,~&) = F, () (32)
and
Z(a,~¢)-(1-a)Z(a, &) =F,(¢&) (33)
for £e(0,0). From (32) and (33), we can express the
boundary conditions as stated in (3) to (8) as
F(é)=a (34)
and
E(&)=-a (35)
for Couette flow,
F(&)=aé’+a(2-a)é (36)
and
Fy(&)=-aé?+a(2-a)é (37)
for Poiseuille flow and
17, 1
Fl(f)zia_f _E_ (38)
and
1 [, 1
F2(§)=—Ea_§ —E_ (39

for Thermal creep.

Substituting (30) and (31) into the boundary conditions
(32) and (33), and evauate at the quadrature points gives
the system of linear algebraic equations

N-1 _2a
M, A4, +N, Be'

LT

=t (40)
+aA—B[aa+§,(2—0!)]=Fl(§i)
and
N1 2a
M, A, +N, Be"
= (42)
+aA—B[aa+<§i(2—a)]:Fz(‘fi)
for i=1,2,---, N, and the matrix elements
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fav. +&(2-a) |
M;;=v, ,251—(2) (42)
, Vo
and
fav. +&(2-a) |
Nij=v; % (43)
’ | Vj+§i |

Adding (40) and (41) we have

204+ | (4 +B, M, -N, v

a +jz_;|:( J+ 1){ e J] (44)
=F(&)+F(8)

Subtracting (41) from (40) we have

N1 2a
Z[(A - B, )[M -N,e" ]]—23[aa+fi(2—a)]
j=1

=F($)-F(¢)

(45)
for i=12,---,N.

Solving (44) and (45) simultaneously to find the val-
ues of the constants 4, B, {Aj and {B,;. Hence we
can establish the solutions to the various problems as
follows

For Poisedille flow, we have

1) Velocity profile

q,(r)=

%(1—a2+r2)—Yo(r) (46)

where

J=1

o ) (a7
Y,(r)=A+Br+) |4e "V +Be 7 (47)

and
2) Poiseuille Volume Flow Rate

1 _2a
0,= o [2aA+/Z; (A +B, ){l e ’]]
' (48)
_i(l_gf)
2a 3

For Couette flow, we compute the stress given by

P_= L (49)
2
and for Thermal Creep, we compute the Velocity profile
qr (T)ZYO(TI) (50)
and the flow rate
JAMP
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2
QT(Z')I——|:206A+Z (4, +B, )(l—e g J] (51)
2a?

4. Finite Difference Method

Using the linearized two dimensiona approach in [7]
with the Bhatnagar-Gross-Krook Model (BGK) in [24,
25], the Boltzmann equation to be solved is reduced to

¢

6§2het —¢+v+2h§zqz+r(h:2—§ﬂ
v =[pFdé
@hj v+7)=[EPFdé
q=[&pFds
h g 2 2 2
Fy = (E] exp| -h (&7 +&+&7)]

="
2kT

(52)

where
¢ = relative changein velocity distribution function

g‘(@ 08, ) = the molecular volecity

q(4,.4,.9. ) = the gas velocity

v = relative change in the particle density
7 = relative change in temperature

A = the callision frequency

The perturbation terms v and 7 depend only on z (flow
direction) and are related to the pressure and temperature
gradient. They are

T:kz[éj, v+z':k1[§j

where k is proportional to pressure gradient and &,
is proportiona to temperature gradient, and both are
small compared to unity. The velocity of the reflecting
molecules from the wall is specified by the Maxwellian
distribution; then the boundary conditions are:

B Casd

(53)

4 [—%ngnéy,z.g’j(kl

where
if&, >0

L
S0 e <0

A solution in the form
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pera) =@ )ra0e) 6

was sought where

() =k ko R -3 (59)

Substituting Equation (54) into Equation (52) we have
&% a4 (5.¢)

T (56)

“h _kof 2 S
=§_,[7 d(hf 2}+2/1th}

Multiplying both sides of Equation (56) by

3 @exp[—h (&+&)]

and integrating over full ranges, we have

hb ek hj (57)

§,ﬁ+/1F=i 2hAq.
2h d

¥ dy
where the function F is defined by

Fn&) =2 [ & ep[n(e+&2)Ja(ns, )dzae
(58)

Integrating Equation (57) under the boundary condi-
tions

@(_%dsgnfy,Z,szo (59)
we have
F<y’§y)
(&) T, (Zh)‘l(thqz A% fh%] (60)
Gl

When the gas velocity ¢, is expressed by

1

song. () (jj Fexp(-h&?)dz,  (61)

Equation (61) now reducesto

1

h?q. (y)

1 d 1 L k k
:nzjszl(h2/1|y—t|j hzqz(t)— 11 - 21 dr
4 1

2dh2)  2dh2A
1 d
-m2f

1
Jl[h2/1|y—t|Jdt
22dh2 2

(62)
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where J, isdefined by
o, X
Jo=ly eXp[—yz—;]dy
Let
1
A=dh?A= ﬁ ,
2
1 1
yv=h?y, T =dh?it,
1 1\t 1
hqu:[Zdhz/lj {[1—\1117 (n)]kl{i—lyr(n)}kz}

(63)

then Equation (62) will be written as two integral e
quations, i.e.,

14 1
A AT | R
2
and

L4 1
vy (1)-mn ZJ._%IIPT(U)J—l[h2}“|y_t|]dt
2
1 i 1
=—-x 2j2dJl(h22|y—t|Jdt
2 =

where

6 = theinverse Knudsen number

From Equation (63), we have the velocity of the gas
induced by the pressure gradient as,

(65)

L

1 2

Py —Tt

h?q,=——I [1-Y¥ 66
q.p 25[ P] (66)

and that induced by temperature gradient as

1 :

5 -n2|1

h?q,=——1 =-¥ 6
q.r 28 |:2 T:l (67)

The volume flow rate is then given by

d
Gp = pJ'_zi 4q:p (y)dy
2

B (68)
12 oL % d % ,dp

. AL N n2a? 2L
25 207 L3 Vel dn iR

d
Gr = pJ._Zg 4r (y) dy
2

1 A (69)

n?2 | 2 : dr
4—5—FJ._A\PT (ﬂ)d?] hznokdza
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Expressing Equations (68) and (69) in non-dimen-
siona form gives;

m? T
== v (n)d 70
0= 452J§ »(1)dn (70)
I
and
5
S
TC T
0 =457 Ii‘I’T(n)dn (72)

The subscripts P and T imply Poiseuille flow and
Thermal creep respectively.

Next, is to solve numerically the unknown functions
¥, and ¥, inEquations (64) and (65) respectively.

In order to solve Equations (64) and (65), a finite dif-
ference method was utilized after discretization as

2 Tk+1
n T z PkJ. J

(7, +7,0)—7

}drzl 72)

Jos

2 Thi1 1
Y —T ZZ'//Tk . Jall5

Z(Tn +Tn+l)_z-

Jos

where y,, is the stepwise function of w, and y,,
the stepwise function of y,

The constant value of the functions ,, and y,, on
each interval is interpreted as the value at the midpoint.
The transcendental function T, has a singularity
when x — 0.

According to the obvious way of differences, Equa
tions (72) and (73) reduce to the matrix

n-1

(73)

T +T’7+1)—T

Y Ay =1 forn=012.,n-1 (74)
k=0
n-1
ZBhkl//Tk =8 forn=012---,n-1 (75)
k=0

where

2n
Ay = By, (77)

1.4 _
g, :%_RZ'[ZAjl(wA
2

n
Integrating Equations (76) and (78) using the proper-
tiesof J, wehave

1 (22
Ay =06y —m ZI (2tn2)a J—l(

2n

MA—TD(M’ (76)

—TJdT (78)
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—( Zn)_lJ_ (79)

1
| 72 ]
If h=k
80
Zy = il Jo iln i
72 72
1 —
- J{ﬁ(lzh_lﬂ
> n
T
(81)
J, il(l 2h+1—n)
5 n

5. Numerical Results

Using LAPAK and LINPAC solvers, we obtained the
following numerical results:

In Table 1, we compared the results of Poiseuille flow
rate between discrete ordinate and finite difference me-
thods. In the table, the result with accommodation coef-
ficient a = 1 was the only one presented. While discrete
ordinate method could consider more values of the ac-
commodation coefficients, the finite difference method
can only take accommodation coefficient of one. Thisis
due to the fact that the discrete ordinate solution adopted
the boundary conditions of diffuse and specular reflec-
tions while the finite difference solution adopted the dif-
fuse reflection boundary condition only. A range of in-
verse Knudsen number from 0.001 to 100 was considered
for both solutions, these values accommodated the dlip
flow, transition flow and the collisionless flow regime.

The results show an agreement of 96.6% within the
dip and collisionless regime and 99.9% in the transition
regime. The flow rate shows its minimum in both solu-
tion methods at K, = 1.0 in the transition regime. This
result also agreed with that of Cercignani and Daneri in
[9] where it was pointed out that the minimum occurs
between 1.0 and 1.2 and the analytical solution as pre-
sented in [26] and [27]. It was also observed that as the
inverse Knudsen number gets very large, the volume
flow rate shoots up drastically; reason was that the mean-
free-path becomes larger.

Table 2 was used to compare the Thermal Creep
Volume Flow Rate between the Discrete Ordinate and
the Finite Difference methods. The same parameters in
Table 1 were used as a basis for this comparison. That is,
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accommodation coefficient & = | and an inverse Knudsen
number in the range of 0.001 to 100. The result also
shows an agreement of 96.6% within the dlip and colli-
sionless regime and 99.9% in the transition regime. It
was noticed that as the channel gets wider the thermal
creep volume flow rates gets smaller.

6. Conclusion

Based on the discussions above, we therefore concluded
that: the comparison shows that both schemes give simi

Table 1. Comparison of Poiseuille Flow Rates between Dis-
crete Ordinate Method and Finite Difference Method. Pa-
rameter used: Accommodation coefficient a = 1.0000.

Channel width Discrete Finite Difference
(do) or inverse Analytica Ordinate Method (FDM)
OKnudsen Solutionasin  Method (DOM)  No of Elements =
number (k,) [26] and [27] No of Gaussian 100 No of Gaussian
" Points = 60 Points = 50
0.0010 4.274560 4.194779
0.0100 3.049685 3.049363
0.1000 1.9318 2.032716 2.032757
0.5000 1.5607 1.601874 1.601950
1.0000 1.5086 1.538678 1.538786
5.0000 1.9639 1.981093 1.981283
10.000 2.7350 2.768645 2.768504
50.000 9.369976 9.263045
100.00 17.69330 17.06334

Table 2. Comparison of Thermal Creep Volume Flow Rates
between Discrete Ordinate Method and Finite Difference
Method. Parameter used: Accommodation coefficient a =
1.0000.

Channel Discrete Ordinate Finite Difference
width (do) or  Analytica Method (FDM)
: . . Method (DOM) _
inverse  Solution asin No of Gaussian No of Elements =
Knudsen  [26] and [27] Points = 60 100 No of Gaussian
number (k) B Points = 50
0.0010 1.8541470 1.814151
0.0100 1.2358340 1.235673
0.1000 0.7966 0.6949272 0.694946
0.5000 0.5036 0.3984993 0.398527
1.0000 0.3890 0.2949000 0.294933
5.0000 0.1574 0.1107882 0.119890
10.000 0.0898 0.0660763 0.066139
50.000 0.0148994 0.015036
100.00 0.0075565 0.007810
JAMP
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lar results when computing with the ranges of the inverse
Knudsen number; the finite difference method was able
to give excellent results on Poiseuille and Thermal creep
flows at a relatively much shorter computation and was
comparable to the discrete ordinate solutions even up to
99% accuracy. However, the finite difference method
could not take accommodation coefficient of order greater
than one because of the consideration of only the diffuse
boundary condition.
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