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ABSTRACT 

This paper develops analytical distributions of temperature indices on which temperature derivatives are written. If the 
deviations of daily temperatures from their expected values are modelled as an Ornstein-Uhlenbeck process with time- 
varying variance, then the distributions of the temperature index on which the derivative is written is the sum of trun-
cated, correlated Gaussian deviates. The key result of this paper is to provide an analytical approximation to the distri-
bution of this sum, thus allowing the accurate computation of payoffs without the need for any simulation. A data set 
comprising average daily temperature spanning over a hundred years for four Australian cities is used to demonstrate 
the efficacy of this approach for estimating the payoffs to temperature derivatives. It is demonstrated that expected pay-
offs computed directly from historical records are a particularly poor approach to the problem when there are trends in 
underlying average daily temperature. It is shown that the proposed analytical approach is superior to historical pricing. 
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1. Introduction 

A weather derivative takes its value from an underlying 
measure of weather, such as temperature, rainfall or 
snowfall over a particular period of time, and permits the 
financial risk associated with climatic conditions to be 
managed. Major participants in this market include utili-
ties and insurance companies along with other firms with 
costs or revenues that are dependent upon the weather. 
For example, an electricity supplier normally provides its 
customers with electricity at a fixed price irrespective of 
the wholesale price. On the other hand the wholesale 
price of electricity can fluctuate wildly with extreme 
temperatures, and so temperature-based derivatives can 
provide a hedging tool for fluctuations in wholesale elec-
tricity prices. The first weather derivative was transacted 
in the US in 1996 and the size of the market now exceeds 
US$ 8 billion. Almost all weather derivatives are based 
on temperature indices such as heating degree days and 
cooling degree days and consequently the focus of this 
paper will be exclusively on developing closed-form ap-
proximations to the distribution of the temperature indi-
ces on which temperature-based derivatives are written 

which in turn affects their valuation1. 
Traditionally, the valuation of options discounts the 

expected payoff at the risk-free force of interest based on 
a zero-arbitrage argument involving the formation of a 
portfolio consisting of a risk-free combination of an op-
tion and the underlying asset [3]. Because temperature 
cannot be traded, there is no arbitrage-free pricing 
framework available to price this kind of option. The 
generally accepted way to value temperature derivatives 
is the actuarial method in which the fair price is taken to 
be the expected value of the payoff ignoring discounting 
and any volatility premium. The crucial element of this 
valuation strategy is the accurate calculation of the dis-
tribution of the relevant temperature index on which the 
weather derivative is written. 

The most direct way to compute the distribution of 
temperature indices is from historical records [4,5]. A 
more elaborate method is to fit a model to the time-series 
1The first recorded activity was an over-the-counter heating degree day 
swap option between Entergy-Koch and Enron for the winter of 1997 in 
Milwaukee, Wisconsin [1]. Garmen et al. [2] posit that 98% - 99% of 
all weather derivatives currently traded are based on temperature. Cur-
rently temperature-based derivatives are traded in several US, European 
and Japanese cities. 
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of average daily temperature so as to capture seasonal 
variations in both temperature and its volatility [5,6]. The 
model is then used to simulate temperature outcomes 
over the period of the contract in order to construct the 
distribution of the temperature-based index on which the 
derivative is written. Note that widely-available mete-
orological forecasts are not suitable for this purpose be-
cause these forecasts are made over relatively short ho-
rizons, such as 7 days, whereas temperature derivatives 
are often traded well before the contracts generate any 
payoffs [6-8]. 

This paper makes two contributions to the existing lit-
erature on pricing temperature derivatives. First, it builds 
on the early work of Benth and Šaltynė-Benth [9] by 
developing closed-form approximations to the distribu-
tion of the indices on which temperature-based deriva-
tives are written with particular emphasis on obtaining 
good estimates of the variance of relevant index. Second, 
two methods are provided for estimating the parameters 
of the model underpinning the behaviour of temperature 
that are required to implement the pricing strategy. There 
are respectively a two-step least-squares based approach 
and a more comprehensive maximum-likelihood proce-
dure. 

The ideas developed in this paper are applied to data 
comprising average daily temperatures for over a century 
in four Australian cities, namely, Brisbane (BNE), Mel-
bourne (MEL), Perth (PER) and Sydney (SYD), where 
accurate temperature records of long-duration are avail-
able at single weather stations. This is a quality data set 
which represents a substantial improvement on what ap-
pears to be the current standard used in the literature. The 
empirical results based on this data set, demonstrate that 
the closed-form pricing strategy performs substantially 
better that using historical pricing. 

2. A Model of Daily Temperature 

The first step in pricing any temperature-based option 
must be a model of the underlying index from which the 
option derives its value, which in the case of temperature 
derivatives is average daily temperature. Let average 
daily temperature be expressed as the sum of the seasonal 
mean temperature ( )T t  at time t and the deviation 

 of the average daily temperature from its seasonal 
mean. Suppose that  is modelled by the Ornstein- 
Uhlenbeck process2 

( )tθ
( )tθ

( )d d d ,  t t Wθ αθ σ α= − + > 0,

,W s

,

        (1.1) 

where dW is the increment in the Wiener process. The 
parameter  and the volatility  are to be deter-
mined from observations of average daily temperature. 
Equation (1.1) has solution 

α ( )tσ

( ) ( ) ( ) ( )e d
t t st sαθ σ− −

−∞
=          (1.2) 

with autocorrelation function at lag u given by 

( ) ( ) ( )
( ) ( ) ( )2 2

e ,

e d

u

t t s

E t t u S t

S t s s

α

α

θ θ

σ

−

− −

−∞

+ =  

= 
        (1.3) 

where  is the variance of daily average tempera-
ture. It is straightforward to show that  and  
satisfy 
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The joint distribution of the average daily temperatures 
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is the transitional probability density function from t  
to t . Consequently the joint probability density func-
tion, , in Equation (1.4) becomes 

T
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+ −
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and e sαβ −=
( ,t t sT T +

. Thus the joint probability density function 
of  is multivariate Gaussian with mean value  )

( , )t t s+μ T T=  and covariance matrix 

e
.

e

s
t t
s

t t s

S S

S S

α

α

−

−
+

 
Σ =  
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This model of average daily temperature is now used 
to develop a closed-form approximation to the distribu-
tions of the underlying temperature indices on which 2This specification is consistent with previous work [9-11]. 
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vanilla European options3 are written, namely cumulative 
heating degree days (HDDs) and cumulative cooling de-
gree days (CDDs). 

Let D be the strike of a call option defined as a particular 
value of the CDD index. The buyer of this option pays an 
up-front premium and receives a payout if the value of 
the CDD index exceeds D at the maturity of the option. 
The tick value of a cumulative CDD call option with 
strike D and duration N days is therefore 

3. Distribution of Temperature Indices 

Let ave denote the average temperatures in degrees Cel- 
sius measured on a particular day at a specific weather 
station. The HDD and CDD indices at that station on that 
day are defined respectively by 

T
(max ,0 .N NC D= −           (1.7) 

The per-unit monetary payoff from the contract is its 
expected tick value 

( )
( )

ave

ave

max ,0 ,

max ,0 ,

HDD T T

CDD T T

= −

= −
          (1.5) [ ] ( ) ( )d ,N ND

E x D f x
∞

= −        (1.8) 

where ( )Nf x  is the probability density function of CN 
and therefore the efficacy of this pricing strategy relies 
upon the accurate estimation of ( )Nf x . The idea pur-
sued here is that although the daily contributions to CN 
are truncated correlated random variables in which the 
degree of truncation is nontrivial, nevertheless CN will 
behave as a Gaussian random variable provided N is 
suitably large. The central theoretical result of the paper 
is summarized in Proposition 1. 

where T˚C is a threshold temperature. The choice of 
threshold, in this instance 18˚C, is set by market conven-
tion and is the standard used in the US. In the southern 
(northern) hemisphere the HDD (CDD) season would be 
from May to September, while the CDD (HDD) season 
would be from November to March. Without loss of 
generality, the analysis of this paper will be limited to 
considering European call options written on cumulative 
CDDs. Proposition 1 

The CDD index over a period of N consecutive days is 
defined by 

The tick value CN of a European option defined on 
cumulative cooling degree days is approximately Gaus-
sian distributed with mean value (

1

,  max ,0
N

N k k k
k

C
=

= = −         (1.6) 
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where k  is the average daily temperature on the  
day of the derivative. 

T thk
and variance [ ]Var NC  with expression 
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( )

, ez T T S= − , j k
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Proposition 1 establishes that accurate closed-form 

expressions for the mean and the variance of CN are 
available in terms of the density function and distribution 
function of the standard normal distribution alone. Given 

these results, the per-unit monetary payoff of a CDD call 
option is stated in Proposition 2. 

Proposition 2 
The per-unit monetary payoff of a European call op-

tion with strike D written on CN, where the distribution of 
CN is Gaussian with mean and variance established in 
Proposition 1, is given by 

3The choice of European option is not limiting in the sense that many 
more complex derivative strategies are in fact combinations of simple 
European options. 
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The focus of subsequent subsections is to develop and 
prove the results stated in Proposition 1. 

3.1. Mean of CN 

It follows directly from Equation (1.6) that 

[ ] [ ] [ ]1N NC = + +     

where 
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Let ( )k kz T T S= − k , then the change of variable 

k kT Sθ = − z  gives immediately 
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where  and  are respectively the probability 
density function and cumulative distribution function of 
the standard normal. The quoted expression for 

( )zφ ( )zΦ

[ ]NC  
 immediately from result (1.11). Moreover, it 

should b

follow

e noted in passing that the proof of Proposition 2 
is analogous to the derivation of Equation (1.11). 

ppendic

s

3.2. Variance of CN 

The computation of the variance of CN is less straight- 
forward. The key steps in this calculation are outlined 
here with the detail being relegated to A es 1 and 
2. The analysis begins by noting that [ ]Var NC  can be 
expressed as the sum of variances  in the 
usual form 

j   (1.12) 
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nder the change of variable k kT Sθ = − z  be-
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It is demonstrated in Appendix 1 that 

                  (1.15) 

thereby completing the computation of the first item on the right hand side of Equation (1.12
The second item on the right hand side of Equation (1.12) is a sum of covariances of generi
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The integral in Equation (1.17) is expressed as a re-
peated integral in which integration is first performed 
w

 

ith respect to w and then again with respect to z. The 
detailed calculations can be found in Appendix 2, but the 
outcome of these operations is that 
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ance of the cumulative temperature index which is then 
treated as a Gaussian random variable with the computed 
variance and mean value given by expression (1.11). 

4. Approximating the Variance 

A closed-form expression for the variance of the cumula-
tive temperature index was derived in the previous sub-
section. Curiously a heuristic argument based on inter-
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this variance, one that exhibits good accuracy despite the 
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temperature index from different days are not independ-

m m
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ent. The contribution made by the quantity [ ]Cov ,t t s+   
to the variance of the temperature index is argued in a 
similar way. In the absence of clipping, the variance of 
this product is equal to Cov ,k jθ θ   with value ( )e j k

kS α− −  
assuming that j k> . However, the product k j   is 
nonzero with probability k jp p  and therefore the same 
linear interpolation argument suggests that Cov ,k j     

( )is reasonably approximated by e j k− − . Based on k j kS α

e righ
p p

mmation on ththis idea, the seco
Equation (1.12) has approximate value 

nd su t hand side of 

( )
1 1

1 1 1 1

2 Cov , 2 e .
N N N N

j k
k j k k j

k j k k j k

p S p α
− −

− −

 formula 

= = + = = +
  ≈       (1.27) 

In conclusion, linear interpolation suggests that the 
variance of   is well approximated by the

[ ] ( )
1

1 1 1

Var 2 e .
N N N

j k
N k k k k j

k k k

C p S p S p α
−

− −

= = = +
= +     (1.28) 

In fact Equatio .28) is the first-order approx ion 
to the closed-from expressi f the variance in Proposi-
tion 1. Consequently, it is expected that this approx
tion will perform particularly e level of 
truncation is low and also when the persistence in tem-
perature is low which means that deviatio

j

n (1 imat
on o

ima-
well when th

ns in tempera-
ture, , are restored to their mean value relativ
quic

To test the accuracy of the approximate closed-form 
ex

( )tθ
kly. 

ely 

pression for [ ]Var NC  stated in Proposition 1, tranches 
of one millio realizations of Equation (1.1), each of dn u-
ration 90 days onstructed for fixed values of 
and . Specific realization 
obt d by d from the m

 
, were c

ally, each 
rawing 0θ

α  

f 
σ

aine
( )0 , ,θ θ

arginal density o
90  was 

 
θ  expressed in the form ( )20,N S , and subsequent 
values of θ  were determined exactly using the iteration 

( )2
1e e 2sinh ,   1, , ,k k kS k Nα αθ θ α ξ− −

−= + =   (1.29) 

where ( )0,1k Nξ  . Realizations of ( )tθ  generated in 
this way had mean value zero and stationary standard 
deviat  which was set at 4C˚ for all simulation ex-
periments. A t

i
old value of en, say , 

an
liza

      (

and a gi
he

generated one million in ndently and identical
tributed realizations of C Table 1 shows th

n experime

” and “Std Dev” give the 
andard de

illion simulations. Estimates of this standard devia-
tion based on Proposition 1 (Exact) and
ment of Section 1.4 (Approx) are shown.

on S
hresh

rea

θ  was chos  Θ
d a cumulative CDD for the 90 day period was con-

structed from a tion ( )0 90, ,θ θ  using the for-
mula 

( )
90

1

max ,0 .k
k

C θ
=

= − Θ     1.30) 

For a given value of α  ven value of Θ , 
each tranc  of one million realization of Equation (1.1) 

depe
DDs. 

ly dis-
e result 

of seve nts for the case α  and thresh-
olds ( )3 , 2 , ,0, , 2 ,3S S S S S SΘ∈ − − − . Table 2 shows the 
equivalent result when 0.5α =  and the thresholds are 
unchanged. 

Table 1. For α = 0.2 the column headed “Θ” gives threshold 
temperature relative to zero for contributions to cumulative 
CDD. Columns headed “Mean
mean cumulative CDD and its st viation based on 
one m

0.2=

 the heuristic argu-
 

Θ Mean Std Dev Exact Approx 

−12 1080.1 116.63 116.67 116.69 

−8 722.98 114.25 114.23 114.32 

−4 99.545 99.272 

0 143.57 63.269 61.422 

4 

389.92 99.608 

63.325 

29.975 24.680 24.465 23.148 

8 3.0560 5.7022 5.3141 6.2514 

12 0.1379 0.8556 0.5688 1.4022 

 
Table 2. For α = 0.5 the column headed “Θ” gives threshold 
temperature relative to zero for contributions to cumulative 
CDD. Columns headed “Mean” and “Std Dev” give the 
mean mulati  an dar ation n 
one on sim s. E s of anda ia-
tion based on P gu-
ment of Section ppro how

 cu ve CDD d its stan d devi  based o
milli ulation

roposition 1 (Exact) and the heuristic a
stimate  this st rd dev

r
 1.4 (A x) are s n. 

Θ Mean Std Dev Exact Approx 

−  12 1080.1 75.730 75.751 75.766 

−8 723.01 74.189 74.181 74.346 

−4 389.95 64.740 64.703 65.310 

0 143.60 41.281 41.246 42.409 

4 29.982 16.243 16.154 18.359 

8 3.0537 3.8667 3.7333 5.9155 

12 0.1379 0.6207 0.5527 1.3970 

 
It is clear from these results that the variance of cumu-

lative CDDs predicted by the closed-form approximation 
of Pr osition hi  pra Min -
ences between the n  Proposition 1 
and  achi y si n b id ly 
when e thre emp lies anda ia-
tions or more above the mean temperature largely due to 
the fact that these stances realizations of 
CDDs will be   val wev  is 
not a scenario t e  pr

The most in ob on i s 1 es 
in the cura he c es of 
varia . In th  of nter  is he 

resh d temp e lies on  below t erag ily 
m

ap

op  1 is ac
approxim

eved in
ate varia

ctice. 
ce in

or differ

that eved b mulatio ecome ev ent on
 th shold t erature  two st rd dev

under  circum
 dominated by zero ues. Ho er this

hat will b
teresting 

occur in
servati

actice. 
n Table and 2 li

 unexpected ac cy of t heuristi timate 
nce
ol

e region
eratur

 most i
or

est, that
he av

when t
e dath

te perature taken to be zero in this analysis, the heuristic 
proach delivers parsimonious estimates of variance 
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that, although marginally inferior to the estimates of true 
variance provided by Proposition 1, are negligibly dif-
ferent from it for all practical purposes. 

5. Parameter Estimation 

To use this model for predicting the payoffs from tem-
perature-based derivatives an estimate of the parameter 
α  in Equation (1.1) is required. This parameter meas-
ures the rate at which deviations of temperature from the 
seasonal are restored to this mean. In order to do so, it is 
first necessary to obtain estimates of ( )T t  and ( )tσ . 
Following Campbell and Diebold [6], ( )T t  and ( )tσ  
are approximated by the Fourier series 

( ) ( ) ( )

( ) ( ) (

0 0
1

2
0

cos sin ,

cos sin

n

k k k k
k

n

k k k

T s a b s a s b s

s c c s d

ω ω

σ ω

=
= + + +

= + +




 (1.31) 

)
1

,k
k

sω
=

where 2 π 365k kω =  and 0s =  is assumed to be the 
calender date of the first observation of average daily 
temperature. The contribution 0b s  in the expression for 

( )T s  is present to take account of any annual trend in 
daily average temperature. Otherwise expressions (1.31) 
assume that seasonal variations in daily average tem-
perature follow an annual cycle which is independent of 
calendar year. Consequently, the expr
corresponding to the expression (1.31) fo ( )2

ession for 
r 

( )S t  
sσ  is 

( ) ( ) ( )0
1

cos sin ,
n

k k k k
k

S s p p s q sω ω
=

= + +   (1.32) 

where the Fourier coefficients
related to the Fourier coefficien n

by the formulae 

Suppose that the data consists of observations
average temperatures

 0 1 1, , , , , ,n nc c c d 
ts 0 1 1, , , , ,np p p q 

d  are 
, q  

0 0

2 ,
2 ,

2 ,
k k k k

k k k

c p q
c p

d p q

α ω
α

ω α
= + 

= = − + 
      (1.33) 

where k takes all integer values from 1k =  to k n=  
inclusive. Two strategies to estimate the value of α  and 
the coefficients in the Fourier series (1.31) are now de-
scribed. 

5.1. Two-Step Estimator 

k

 of daily 
 1 2, , , NT T T  at times 1 2, , , Nt t t . 

The Fourier coefficients of (T in a 
straightforward way by minimizing t
tion 

)s  can be estim
he ob

ated 
jective func-

( ) ( ) .jT t  ( )2

0 0 1 1
1

, , , , , , ,
N

n n j
j

a b a a b b T
=

Ψ = − 

 the tions
n be puted

Once these coefficients are known, then devia  
from the seasonal means  ca  com  

directly from the formula 

1 2, , , nθ θ θ

( )j j jT T tθ = − . The pr blem 
is now to find the values of α  and the coefficients 

0 1, , ,c c 

o

 which  fit the residuals 

y bby and Sorensen [12], 

1, , ,n nc d d
, , ,θ θ θ . 

best

 Bi
1 2 n

Using a result established b
an unbiased estimate α̂  of α  is given by the expres-
sion 

1 1
2 2 2 2

1n n n n
jk k k

θθ θ θ
σ σ σ σ

− −

1 1 1 1

2

2
1 1 1 1

.
1

k j jk j k j

n n n

k k j j

θ θ
σ σ σ

= = = −

= = = −

11 1

2
1 1

2 2
1 1

k

k k

k k

=− −

− −

− −

log

 
 −
 − 

   


  −    
  

   (1.34) 

no
Th  f

pute the Fourier coefficients 

The difficulty, however, in using this expression is that 
2
kσ  is unknown whereas what wn is the seasonal 

variance of the residuals. or finding the 
values of α  and the coefficients 0 1 1, , , , , ,n nc c c d d   

ng. 
om

is k
e strategy

is therefore the followi
Step 1: C

an
0 1 n

d 1, , nq q  of ( )S t  directly from the deviations  

1 2, , ,

, ,p p p  

Nθ θ θ . 
Step 2: C

compute the
from expr
rier co

hoose an arbitrary v lue for 
 Fourier coeffi

ession (1.33) with 
efficients of 

a
cients 
α α=

α
0 1, ,c c
Knowing

, say α , and 0

1, , ,d 
 the Fo

n nc d  
. u-0

( )2 sσ
ation (1

pdate the esti
 by reco

2 2

 en
.3

ma
m

ab
1)
te of 

puting i

les , ,σ σ
. Expr n 

0α  
n t  , nc c c , 

2 2  to 

. This procedure

0 1, ,

0

essio

urn

n be 
(1.34) is computed f

now used to
may then be
d
unt

rom Equ
 u
 iterated

1, nd  and 0 , , nσ σ . This procedure is repeated 
il consecutive estimates of α  are not deemed to be 

significantly different. 
The estimate of α  and the Fourier coefficients ,a b , 

1 1, , , , ,n na a b b   and 0 1, , ,c c c  
be

0 0

either1,n nd d  can 

 th
h

m

the
re from its 

isfies the 

show o the formal solu-

 used as they stand or can be used as an initial guess 
for the parameters of e maximum likelihood estimation 
proce tlined in t e next subsection. dure ou

mean va

tio

5.2. Maximum-Likelihood Estimation 

The feasibility of parameter ation by maximum 
likelihood (ML) in this instance relies on the fact that the 
transitional probability density function of average daily 
temperature can be computed under  assumption that 
the deviations of average daily temperatu

lue sat stochastic differential Equation 
(1.1). Ito’s lemma applied to t  stochastic differential 
Equation (1.1) may be 

 esti

he
n to lead t

n 

( ) ( ) ( ) ( )e e d ,  .j

j

t t t st

j s jt
t s W t t

α αθ θ σ− − − −= + >  (1.35) 

with ( )j jtθ θ= . The important observation from this 
solution is that ( )tθ  is a Gaussian random variable 
with mean value ( ) ( )e jt t

jθ θ=  E t
α− −

 and variance 
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( ) ( ) ( )2 2, e d
t t st t s sαχ σ− −= 

( ) ( ) ( )2
e ,

j

j

j t

t t

jS t S t
α− −= −

      (1.36) 

where the latter expression for ( ), jt tχ t is derived di-
rectly from the definition of ( )S t  given in Equation 
(1.3). Because ( ) ( )T T t tθ= + , then the average daily 
temperature T is itself Gaussian distributed with mean 
value ( ) ( ) ( )e jt t

j jT t T T
α− −+ −  and variance  

( , e) ( ) ( ) ( )2 jt t

j jt S t S t
α− −= −tχ  in which 

( ) ( ) ( )0 0
1k =

Thus the average aily temperature ( )T t  has transi-
tional probability 

cos sin .
n

k k k kT t a b t a t b tω ω= + + +   

 d
density function 

(1.37) 

( )
( )

( )
,e

, ,
2π ,

T t

j j

j

f T t T t
t t

ψ

χ

−

= ,        (1.38) 

where 

( )
( ) ( ) ( )( )

( )

2

e
, .

2 ,

jt t

j

j

T T t T
T t

t t

α

ψ
χ

− −− −
 

The  the sequence 

j T−
=

 likelihood of observing 1 2, , , NT T T  
es  of average daily temperatures at calendar tim

1 2, , , Nt t t  is therefore 

( )

( )1 1
1

, , .j j j j
j

f T t T t+ +
=

= ∏
0 1 1 0 1 1

1

; , , , , , ; , , , , , ,n n n n

N

a a a b b c c c d dα
−

   

 (1.39) 

In practice, the parameters are estimated by minimiz-
ing the negative log-likelihood function 

( )( )
( ) ( )(

( )
)

1

1

1

1
2

1
1

2

1 1 1

2
1

1

1 1
log log 2π log e
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e1
,

2 e

j j

j j

j j

N
t t

j j
j

t t
N j j j j

t t
j

j j

N
S

T T T T

S S

α

α

α

+

+

+

− − −
+

=

− −
− + +

− −
=

+

−− = + −

− − −
+

−





 S

  

(1.40) 

where the notation ( )j jS S t=  has been used. The op-
timal values for the param  of this model are taken to 
be those which m ession (1.39). Although 
model (1.1) is s of the intrinsic function 

, from a purely oint of view it is e
treat the Fourier coefficients  as the parameters 

The task is now to provide a means of gauging the effi-
cacy of the analytical expressions for the mean and vari-

ance of CN given derived previously in terms of the the 
expected payoffs to options contracts. Payoffs based on 
the analytical results of the paper are compared to h
torical pricing as outlined in [4,5]. The metric for co
parison is taken to be the mean “profit” of a 90-day call 
option contract. Profit is defined from the point of view 
of the buyer of the call option as the difference be

of the contract and the 

maximum and minimum 

s for cumulative CDDs are re-
ble 3. There are two observations of note 

 Table 3. First, the distribution of cumulative 

eters
inimize expr

specified in term
 technical p

of 
( )tσ

to be

asier to 
( )S t

 determined by the ML procedure. 

6. Empirical Illustration 

is-
m-

tween 
the actual tick value expected tick 
value or “price” of the option. Of course, this is not 
meant to represent a true price for the option, as this no-
tional pricing strategy takes no account of discounting or 
overhead expenses. But of course, any pricing scheme 
will stand or fall by its ability to estimate the expected 
tick value accurately. 

6.1. Data 

The data set comprises daily 
temperature records in degrees Celsius for Brisbane (1/1/ 
1887-31/8/2007), Melbourne (1/1/1856-31/8/2007), Perth 
(1/1/1897-31/8/2007) and Sydney (1/1/1859-31/8/2007). 
These locations were chosen primarily because they had 
accurate temperature records of over 100 years duration 
measured at comparable weather stations4. 

Figure 1 shows the long-term expected values (upper 
panel) and standard deviations (lower panel) of daily 
temperatures for each day of the year. The figure shows 
that the behaviour of the mean and standard deviation is 
amenable to modelling by a low-order Fourier series ap-
proximation. In this exercise the order of the series is 
taken to be 3. The Fourier approximation is applied only 
over the period over which the option is to be written, 
namely, 1 January to 31 March, inclusive. 

Descriptive statistic
ported in Ta
arising from
CDDs for Melbourne is skewed to the right as evidenced 
by a mean which is significantly larger than the median. 
Second, Perth is notable for the diffuse nature of the dis-
tribution of cumulative CDDs, recording a standard de-
viation significantly larger than those of the other cities. 

The distributions of cumulative CDDs for each city is 
illustrated in Figure 2 which plots both the distribution 
of historical cumulative CDDs (shaded region) and the 
predicted distributions for 1950 (dashed line) and 2007 
(solid line) generated by closed-form approximations to 
the distributions of CDDs derived in the paper. To the 
uniformed eye, the distribution of historical cumulative 
CDDs may appear well behaved and taken as reasonable 
evidence in favour of using historical records to price 
temperature-based derivatives. When compared to the  

4All the raw data were supplied by Climate Information Services, Na-
tional Climate Centre, Australian Bureau of Meteorology. The con-
struction of the temperature record for each city is discussed in Appen-
dix 3. 
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Figure 1. The expected value of the average daily tempera-
tures (upper panel) and the expected value of the volatility 
of average daily temperatures (lower panel) are shown for 
Brisbane, Melbourne, Perth and Sydney. 
 
Table 3. Mean, median, standard deviation, minimum and 
maximum cumulative CDDs in four Australian cities. 

 Summary Statistics 

 N Mean (SD) Med. Min. Max. 

BNE 121 584.2 (54.5) 584.6 463.3 705.9 

MEL 152 207.9 (64.1) 195.6 93.5 391.4 

PER 111 489.6 (83.3) 492.2 298.3 688.3 

SYD 149 350.0 (60.1) 350.2 225.5 533.3 

 
distributions for 1950 and 2007 generated by the ana-
lytical approach, however, the potential for error inheren

 with 
different strike prices, written on the period 1 January to  

t 
in the historical approach becomes evident. Not only 
does the mean of the predicted distribution change no-
ticeably over time, but the distribution also has lower 
volatility. 

6.2. Payoffs 

The profits generated by two call-option contracts

 

 

 

 

Figure 2. Density of historical cumulative CDDs based on 
data up to and including 1949 (shaded area), predicted den-
sity of cumulative CDD for 1950 (dashed line) and predicted 
density of cumulative CDD for 2007 (solid line). 
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31 March are now reported in Tables 4 and 5 respec-
tively. The call options used in the experiment have re-
spective strike prices set to be approximately D μ= +  
0.5σ  and 0.75D μ σ= +  where μ  

e
tion of CDDs up to the current year under consideration. 

The experiments begin by pricing these options for the 
year 1950 using data up to and including 1949. The ac-
tual payoff for 1950 is recorded, the profit or loss stored  
 
Table 4. Means and standard deviations of profits to a 90- 
day call option defined on CDDs with strike price D ap
proximately equal to μ + 0.5σ, where μ and σ are the un
conditional mean and standard deviation of available his-
torical CDDs. The option is priced for each year from 1950 
to 2007 inclusive. 

 BNE MEL PER SYD 

is the uncondi-
devia-tional m an and σ  is the unconditional standard 

and t upda to include the latest observation 
on cum ese st  re ed up to and 
incl  givi total 8 se e pro or 
e he means and standard de ations he 
pro rded easu  th orma  of 
each ethods d to ine expected  
valu

The historical pricing reported in Tables 4 and 5 is 

 using data for the entire year and the 
best estimates of th e e us  co ng 
the cl -from appr ations of the stributio  of 
c e CDDs. B ntrast quar  vers fo-
c the period f  1 Jan ary to t  31 Ma h in 
eac its th n a son ianc v-
erage perature for this -day od alon In 
other words, the fitting procedure is imp nted on 
the period over which the contract is written. The main 
reason for adopting this approach is that the behaviour of 
tem parts e yea elated the pe  of 
the not b allow o infl pa ter 
estim he mean and variance processes. Another 
benefit of this approach is tha better resolution of the 
mea sses he  num  of 
par

The king c  be d  from  

icing of call options priced on  of -
m

-
-

Strike D 600 240 530 380 

Historical     

Mean Payoff −8.1 −14.3 −23.8 7.8 

SDev Payoff 33.1 45.8 43.2 48.9 

Quarterly Model     

Mean Payoff 7.2 13.2 2.2 11.7 

SDev Payoff 29.6 41.5 41.8 35.5 

Annual Model     

Mean Payoff 5.8 15.4 18.3 4.0 

SDev Payoff 29.1 41.4 40.0 34.6 

 
Table 5. Means and standard deviations of profits to a 90- 
day call option defined on CDDs with strike price D ap-
proximately equal to μ + 0.75σ, where μ and σ are the un-
conditional mean and standard deviation of available his-
torical CDDs. The option is priced for each year from 1950 
to 2007 inclusive. 

 BNE MEL PER SYD 

Strike D 620 260 550 400 

Historical     

Mean Payoff −17.7 −24.7 −35.1 −4.2 

SDev Payoff 

Model 

off 6. 11.9 1. 9.

Annual 

5. 3 13.4 4.

SDev Payoff 22.4 34.2 36.6 29.2 

25.3 38.3 36.1 42.7 

Quarterly     

Mean Pay 2 3 8 

SDev Payoff 22.7 34.2 34.2 30.1 

Model     

Mean Payoff 5 13. 6 

 the data se ted 
ulative CDDs

uding 2007
. Th

ng a 
eps are

 of 5
peat

parat fits f
ach option. T vi of t

fits are rega
of the m

as m
 use

res of
determ

e perf nce
 tick

es. 

self-explanatory, but the implementation of the closed- 
form approximations needs further elucidation. Two 
variations of this method are implemented, namely an 
annual version and a quarterly version. The annual ap-
proach fits the mean and seasonal variance of average 
daily temperature

e param ters ar ed in mputi
osed

umulativ
oxim

y co
 

, the 
 di
terly

n
ion 

usses on rom u he rc
h year and f

daily tem
e mea nd sea

 90
al var

peri
e of a

e. 
leme only 

perature in of th r unr  to riod
option are eing ed t uence rame

ates for t
t 

n and variance proce  with t same ber
ameters. 

 first stri onclusion to rawn  these
results is just how bad historical pricing performs for the 
Australian temperature data. Interestingly enough, it ap-
pears that historical pricing in three of the cities has sub-
stantially over-priced the call options. This result is 
counter-intuitive as the conventional view is that there is 
an upward trend in temperature which would result in the 
under-pr  the history  cu

ulative CDDs. 
The resolution of this conundrum is to be found in the 

behaviour of temperature between the years 1890 and 
1920. During this period, Brisbane, Melbourne and Perth 
recorded substantial outliers in cumulative CDDs, the 
likes of which were not seen again until late in the sam-
ple period. These outliers will have had a disproportion-
ate affect on the pricing of temperature derivatives in the 
1960s, 1970s and 1980s. Their existence also explains 
the deterioration of profits based on historical pricing 
when moving from lower to higher exercise prices. The 
weather station in Sydney where the temperature data 
were recorded did not show these extreme temperature 
events and consequently historical pricing for Sydney 
performs significantly better. 

Taken as a whole, the closed-approximations used to 
price the call options generate mean profits closer to zero 
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icing is again a manifestation of the outliers 
in

ence in performance when moving from 
th

and with lower standard deviations than historical pricing. 
Nevertheless, this method appears to underprice some-
what, even though these pricing errors are smaller in 
magnitude than those generated by the historical method. 
This underpr

 cumulative CDDs but in this case, not enough weight 
is given to them. There is little difference in terms of 
performance of quarterly and annual models, with the 
exception of Perth where the quarterly model performs 
better. It is conjectured that this is due to the ability of 
the quarterly model to better resolve the extreme tem-
perature variations that are prone to take place in Perth. 
Unlike the case documented for historical pricing, there 
seems little differ

e lower to the higher exercise price for the the closed- 
form approach. 

7. Conclusions 

This paper has derived closed-form expressions for ap-
proximating the distribution of temperature indices. The 
major practical use for these approximations is in esti-
mating the payoffs to temperature-based weather deriva-
tives. Although the cumulative cooling degree day index 
is the focus of this research, the methods used are equally 
applicable to derivatives based on cumulative heating 
degree days. Common practice when modelling average 
daily temperature is to regard the deviations of tempera-
ture from its expected value as an Ornstein-Uhlenbeck 
process. The key result derived in this paper, is that if 
this model of temperature is adopted, then the distribu-
tion of cumulative cooling degree days may be con-
structed as the sum of truncated, correlated Gaussian 
deviates. The mean and variance of the resultant Gaus-
sian distribution depend on the parameters of the under-
lying temperature process and its autocorrelation struc-
ture. 

The efficacy of these approximate distributions is 
tested by estimating the payoffs to temperature-based 
derivatives. Time series data spanning over a hundred 
years of average daily temperatures in four major Austra-
lian cities are used to estimate the payoffs to European 
call options written on cooling degree days. The robust 
conclusion to emerge from this line of research is that the 
closed-form distributions perform more reliably than the 

historical pricing method that is commonly advocated in 
the literature. 
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Appendix 1 

Proof of Result (1.15) 

It has been shown in Equation (1.13) that 

[ ] ( )2kz ( )

The manipulation of this integral uses the fact that the 
Gaussian probability density function enjoys the property 

. Thus 

It is now straightforward algebra to verify the asser-
tion in Equation (1.14), namely that 
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[ ]Var k  has value 

where the calculation has noted that  is an even- 
valued function of z and that . 

Appendix 2 

Proof of Result (1.19) 

The calculation of 

( ) ( ) ( )( ) ( ) ( )( ) ,k k k k k k k kS z z z z z z zφ φ Φ − + Φ − − Φ −   
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of the integral 
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in which ( ),t s tf z z+
  is the probability density function 
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where ( )zφ  is the standard normal probabil
nction and ( )

ity density 

expression (1.41) is re-expressed as the repeated integral 

fu g z  is the integral 
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Phase I 

The evaluation of this integral is achieved by changing 
the variable of integration from w to ξ  using the sub-
stitution 
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SS S
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++
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( )g zThe outcome of this operation is that  takes the 
simplified form 
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It now follows immediately from the definition of 
, the cumulative function of the standard normal 

tion, and the basic properties of  that 
( )zΦ

distribu ( )zφ
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in which the dependence of t sξ +
nven

 on z has been sup-
pressed for representational co ience. Consequently 
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This completes the first phase in the computation of 
the value of I using repeated integration. 

Phase II 

The second phase of calculation continues by dividing 
the right hand side of Equation (1.46) into the two inte-
grals    
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The function is now replaced by its definition in t e inte ome rearrangement, I 
is expressed as t four integrals, name  
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The third and f ntegrals on the right hand side of this equation are now manipulated using integration by parts. 
Manipulation of the third integral gives 


ourth i

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2
d ,tzt

t s
t s

S
z z

S S
φ φ ξ

β +−∞
+ − 

              (1.48) 
2

d dt tz zz tt
t s t s t s

t

t t s
t

S
z z z z z z

S

z

ξ φ φ ξ φ φ ξ
β

φ η β

+ + +−∞−∞ −∞

+

 Φ = − Φ − 

= − Φ −

 

where 

t sS
β

+ −

2
.t s t s t t

t s

tS
η + +

+

+

=
s

z S z Sβ

β

−

−
                                  (1.49) 

Manipulation of the fourth integral gives 
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Results (1.48) and ( w incorporated into Equa ) to get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2d .

tzt
t t s t s t t s t t s

t s t

t t s t t t s

S
I z S z z

S S

z z S S S z

φ ξ
β

φ β φ φ η

+ + + + +−∞
+

+ +−∞

= +
−

+ −


          

The final stage of this calculation is  note that 
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To summarize, the repeated integral (1.41) has final value 
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where the constants st+η  and t sχ +
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The construction of the temperature data for the four 
Australian cities used in the empirical illustration is now 
outlined in detail. 

Brisbane: The temperature record contains 44043 ob-
servations starting on the 1/1/1887 and ending on 31/8/ 
2007. The time series is constructed from data collected 

ree weather stations: Brisbane Regional Office 
(Station Number 40214) 1/1/1887-31/3/1986; Brisbane 
Airport (Station Number 40223) 1/4/1986-14/2/2000); 
and again from Brisbane Airport (Station Number 40842) 
15/2/2000-31/8/2007. 

Melbourne: The temperature record contains 55358 
observations starting on 1/1/1856 and ending on 31/8/ 
2007. The time series is a continuous set of observations 
made at the Melbourne Regional Office (Station Number 

changed in the early 1980s although the name of station 
did not. 

Perth: The temperature record contains 40393 obser-
vations starting on 1/1/1897 and ending
The time series is constructed from data collected at two 
weather stations: Perth Regional Office (Station Number 

Sydney: The temperature record contains 54263 ob-
servations starting on 1/1/1859 and ending on 31/8/2007. 
The time series is a continuous set of observations made 
at the Sydney Observatory Hill (
weather station. 

Instances of single missing values were treated by av-
eraging adjacent records. In a few rare cases where sev-
eral days were missing, the long term average for those 
days was inserted. Finally, following Campbell and 
Diebold 
removed. 

 

Appendix 3 
9034) 1/1/1897-2/6/1944; and Perth Airport (Station 
Number 9021) 3/6/1944-31/8/2007. 

from th

 

 on 31/8/2007. 

Station Number 66062) 

[6], all occurrences of the 29 February were 
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