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ABSTRACT

This paper develops analytical distributions of temperature indices on which temperature derivatives are written. If the
deviations of daily temperatures from their expected values are modelled as an Ornstein-Uhlenbeck process with time-
varying variance, then the distributions of the temperature index on which the derivative is written is the sum of trun-
cated, correlated Gaussian deviates. The key result of this paper is to provide an analytical approximation to the distri-
bution of this sum, thus allowing the accurate computation of payoffs without the need for any simulation. A data set
comprising average daily temperature spanning over a hundred years for four Australian cities is used to demonstrate
the efficacy of this approach for estimating the payoffs to temperature derivatives. It is demonstrated that expected pay-
offs computed directly from historical records are a particularly poor approach to the problem when there are trends in
underlying average daily temperature. It is shown that the proposed analytical approach is superior to historical pricing.

Keywords: Weather Derivatives; Temperature Models; Cooling-Degree Days; Distributions for Correlated Variables

1. Introduction

A weather derivative takes its value from an underlying
measure of weather, such as temperature, rainfall or
snowfall over a particular period of time, and permits the
financial risk associated with climatic conditions to be
managed. Major participants in this market include utili-
ties and insurance companies along with other firms with
costs or revenues that are dependent upon the weather.
For example, an electricity supplier normally provides its
customers with electricity at a fixed price irrespective of
the wholesale price. On the other hand the wholesale
price of electricity can fluctuate wildly with extreme
temperatures, and so temperature-based derivatives can
provide a hedging tool for fluctuations in wholesale elec-
tricity prices. The first weather derivative was transacted
in the US in 1996 and the size of the market now exceeds
USS$ 8 billion. Almost all weather derivatives are based
on temperature indices such as heating degree days and
cooling degree days and consequently the focus of this
paper will be exclusively on developing closed-form ap-
proximations to the distribution of the temperature indi-
ces on which temperature-based derivatives are written
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which in turn affects their valuation'.

Traditionally, the valuation of options discounts the
expected payoff at the risk-free force of interest based on
a zero-arbitrage argument involving the formation of a
portfolio consisting of a risk-free combination of an op-
tion and the underlying asset [3]. Because temperature
cannot be traded, there is no arbitrage-free pricing
framework available to price this kind of option. The
generally accepted way to value temperature derivatives
is the actuarial method in which the fair price is taken to
be the expected value of the payoff ignoring discounting
and any volatility premium. The crucial element of this
valuation strategy is the accurate calculation of the dis-
tribution of the relevant temperature index on which the
weather derivative is written.

The most direct way to compute the distribution of
temperature indices is from historical records [4,5]. A
more elaborate method is to fit a model to the time-series

'The first recorded activity was an over-the-counter heating degree day
swap option between Entergy-Koch and Enron for the winter of 1997 in
Milwaukee, Wisconsin [1]. Garmen et al. [2] posit that 98% - 99% of
all weather derivatives currently traded are based on temperature. Cur-
rently temperature-based derivatives are traded in several US, European
and Japanese cities.
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of average daily temperature so as to capture seasonal
variations in both temperature and its volatility [5,6]. The
model is then used to simulate temperature outcomes
over the period of the contract in order to construct the
distribution of the temperature-based index on which the
derivative is written. Note that widely-available mete-
orological forecasts are not suitable for this purpose be-
cause these forecasts are made over relatively short ho-
rizons, such as 7 days, whereas temperature derivatives
are often traded well before the contracts generate any
payoffs [6-8].

This paper makes two contributions to the existing lit-
erature on pricing temperature derivatives. First, it builds
on the early work of Benth and Saltyné-Benth [9] by
developing closed-form approximations to the distribu-
tion of the indices on which temperature-based deriva-
tives are written with particular emphasis on obtaining
good estimates of the variance of relevant index. Second,
two methods are provided for estimating the parameters
of the model underpinning the behaviour of temperature
that are required to implement the pricing strategy. There
are respectively a two-step least-squares based approach
and a more comprehensive maximum-likelihood proce-
dure.

The ideas developed in this paper are applied to data
comprising average daily temperatures for over a century
in four Australian cities, namely, Brisbane (BNE), Mel-
bourne (MEL), Perth (PER) and Sydney (SYD), where
accurate temperature records of long-duration are avail-
able at single weather stations. This is a quality data set
which represents a substantial improvement on what ap-
pears to be the current standard used in the literature. The
empirical results based on this data set, demonstrate that
the closed-form pricing strategy performs substantially
better that using historical pricing.

2. A Model of Daily Temperature

The first step in pricing any temperature-based option
must be a model of the underlying index from which the
option derives its value, which in the case of temperature
derivatives is average daily temperature. Let average
daily temperature be expressed as the sum of the seasonal
mean temperature T (t) at time t and the deviation
0(t) of the average daily temperature from its seasonal
mean. Suppose that @(t) is modelled by the Ornstein-
Uhlenbeck process®

d6=-afdt+o(t)dW, a>0, (1.1)

where dW is the increment in the Wiener process. The
parameter ¢ and the volatility o(t) are to be deter-
mined from observations of average daily temperature.
Equation (1.1) has solution

“This specification is consistent with previous work [9-11].
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o(t)=[" e o(s)dw(s), (12)
with autocorrelation function at lag u given by
E[6(t)6(t+u)]=c"S(t),

(1.3)
s(t)=[ e o*(s)ds,
where S(t) is the variance of daily average tempera-
ture. It is straightforward to show that o’ (t) and S(t)
satisfy
ds(t
o’ (t) :L+2a8(t).
dt
The joint distribution of the average daily temperatures
Tiand T, at the respective calender times t and (t+s)

t+s

(s>0) is given by the product
f(T.To)=F(TLt) f(Tot+sTt)  (14)

where f(T,,t) is the marginal distribution of T;, namely

T-T)
f(Tt’t)=\/2nS exp _( ZS )
and
1
f(Toot+9T,t)=
\/27'5 ( $+s - e—ZD!SS )
(THS_-FHS_(Tt _-Ft)eias)z

xexp| —

2 ( S[+s - e—ZO(SS[ )

is the transitional probability density function from T,
to T,.. Consequently the joint probability density func-

tion, f(T,,T,),in Equation (1.4) becomes

e’

2 NEYENRRY

where

_ S+S(-I—t _-rt)z_zﬁS(Tt _-rt)(Tt+s_ft+s)+ S(THS_THS)Z
25(8..-4'8)

and S =e¢*. Thus the joint probability density function

of (T,,T,) is multivariate Gaussian with mean value
p=(T.T

t+s

¢

) and covariance matrix

z{ S e_ass‘}.
eS8 S

This model of average daily temperature is now used
to develop a closed-form approximation to the distribu-
tions of the underlying temperature indices on which
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vanilla European options” are written, namely cumulative
heating degree days (HDDs) and cumulative cooling de-
gree days (CDDs).

3. Distribution of Temperature Indices

Let T, denote the average temperatures in degrees Cel-
sius measured on a particular day at a specific weather
station. The HDD and CDD indices at that station on that
day are defined respectively by

HDD = max (T -T,,,0
CDD = max (T,

ave

):

o), (1.5)

where T°C is a threshold temperature. The choice of
threshold, in this instance 18°C, is set by market conven-
tion and is the standard used in the US. In the southern
(northern) hemisphere the HDD (CDD) season would be
from May to September, while the CDD (HDD) season
would be from November to March. Without loss of
generality, the analysis of this paper will be limited to
considering European call options written on cumulative
CDDs.
The CDD index over a period of N consecutive days is
defined by
N
Cy =27, T, =max (T, —-T,0) (1.6)
k=l
where T, is the average daily temperature on the K™
day of the derivative.

2.S

N
k=1
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Let D be the strike of a call option defined as a particular
value of the CDD index. The buyer of this option pays an
up-front premium and receives a payout if the value of
the CDD index exceeds D at the maturity of the option.
The tick value of a cumulative CDD call option with
strike D and duration N days is therefore

7, =max(Cy —D,0). (1.7)

The per-unit monetary payoff from the contract is its
expected tick value

E[7,]=[_(x-D)f (x)dx, (1.8)

where fy (x) is the probability density function of Cy
and therefore the efficacy of this pricing strategy relies
upon the accurate estimation of fy (x). The idea pur-
sued here is that although the daily contributions to Cy
are truncated correlated random variables in which the
degree of truncation is nontrivial, nevertheless Cy will
behave as a Gaussian random variable provided N is
suitably large. The central theoretical result of the paper
is summarized in Proposition 1.

Proposition 1

The tick value Cy of a European option defined on
cumulative cooling degree days is approximately Gaus-
sian distributed with mean value

E[CN]=§\/§[4¢(4)+¢(4)}

and variance Var[C, | with expression

[@(2)-(¢(z)+22(2))x(¢(-2) - 22 (-2)) ]

+2Ni ZN: JSSc(29(2) @ (7,.)+ 20(2) @ (7, ))-E[T] B[T],

k=1| j=k+l

+(2.2,/S S+ B, S ) @(2)+/S. (S~ B8 )8 (2) 6 (7,)

(22, Jﬁ:ﬂi*%)cb(—m,k)xq’[

where z =(T, —T)/\/g ., Bk = ¢ “U™ and the constants

7S -BuaS | afS -Buzis

p+2, 1{(p+z)

Nix> Xjx-Pandqare defined respectively by
B M3 ® (=71,

ik ik » P=—

- s-BA.s - Js-B.s

Proposition 1 establishes that accurate closed-form
expressions for the mean and the variance of Cy are
available in terms of the density function and distribution
function of the standard normal distribution alone. Given

3The choice of European option is not limiting in the sense that many
more complex derivative strategies are in fact combinations of simple
European options.
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BlS ¢<mk>),q:pz[l ol ] 19

JS - BAS @7
these results, the per-unit monetary payoff of a CDD call
option is stated in Proposition 2.

Proposition 2

The per-unit monetary payoff of a European call op-
tion with strike D written on Cy, where the distribution of
Cy is Gaussian with mean and variance established in
Proposition 1, is given by
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E[C,]-D

JVarC[o(é)+ WVarle]’

The focus of subsequent subsections is to develop and
prove the results stated in Proposition 1.

¢, ¢=

3.1. Mean of Cy
It follows directly from Equation (1.6) that
E[CN] :E[Z]'F”""E[TN]
where
B[T,]=—— j (6-T)exp —ﬂ de. (1.10)
‘ * ) . (1.
Let Z :(T_k —T) / \/§ , then the change of variable
0=T, - \/§ z gives immediately

B[TI= Y (3 -2)e e
=S [22(z)+4(z)],

where ¢(z) and ®(Zz) are respectively the probability
density function and cumulative distribution function of
the standard normal. The quoted expression for E[C, ]
follows immediately from result (1.11). Moreover, it

(1.11)

Var[7,]1= S [ @ (2) - (6(2)+ 22(2))x(9(-2) - 20(-2)) ]
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should be noted in passing that the proof of Proposition 2
is analogous to the derivation of Equation (1.11).

3.2. Variance of Cy

The computation of the variance of Cy is less straight-
forward. The key steps in this calculation are outlined
here with the detail being relegated to Appendices 1 and
2. The analysis begins by noting that Var[C] can be
expressed as the sum of variances and covariances in the
usual form

Var[C, ZVar

+zz ZCOV[TK,T}

k=1 j=k+1

(1.12)

Straightforward calculation indicates that

-(o-1) | _(6-T)
Var[7,]= J' 7, exp{— % ]d& w13

-S[22(z)+0(z)] .

which under the change of variable =T, —\/§ Z be-
comes

thereby completing the computation of the first item on the right hand side of Equation (1.12).
The second item on the right hand side of Equation (1.12) is a sum of covariances of generic form

Cov[T. T;..]= [[ (T -T)(T,

t+s

Var[j;]:SKji(Zk_ZfﬂZ)dz 2 (1.14)
-8 [a@(z)+¢(z)] -
It is demonstrated in Appendix 1 that
(1.15)
—T) f (T ) dTd T, ~B[T ] B[T],, (1.16)

in which t and s (> 0) are to be given appropriate values. First, the integral on the right hand side of Equation (1.16) is
simplified using the change of variables T, =T, — \/_Z and T, =T,.,—/S.,W toget

Cov[ T, T, ] =SS [ [ 1%(
where z = T -T /\/§ and Z,.=(T,.— /\/i and

f(z,s2) is the joint probability den51ty of zand w,
namely

S+s eV Zw)
21\ S,,-A'S ’

where f=¢* and

(1.18)

Cov[T,. T o] = VS Sus (20(2.6) @ (Zs) + 2.:0(2) @ (1)) - B[ T | B[ T,

x[*o [Z‘E ﬂz‘q (2)dz+,/S(S.. - 8°S)9(2) 2 (. ).

NEW
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Zt+s ) f(ZHS’Zt)dZdW_]E[T]t]E[T]HS’ (1.17)

S-%—SZZ B szvﬂ\j 334-5 + S+SVV2
2 ( $+s - ﬂ ? S )

The integral in Equation (1.17) is expressed as a re-
peated integral in which integration is first performed
with respect to W and then again with respect to z The
detailed calculations can be found in Appendix 2, but the
outcome of these operations is that

+(22.,/SS..+ AS)

y(zw)=

(1.19)
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where 77,,. and },,, are defined respectively by

Z,sSus ~ A7/

nt+S

VS-S
(1.20)
o= BfSim -B7. /S
t+s T °
\/$+S_ﬂ2
In particular each component of Cov|7,7,], with

the exception of the integral, may be evaluated from the
probability density function ¢(z) and cumulative dis-
tribution function ®(z) of the standard normal with
appropriately chosen arguments. The usefulness of ex-
pression (1.19) for Cov|[7,,7,,,] can be improved if the
value of the integral appearing in this formula can be
expressed, albeit approximately, in terms of ¢( ) and
®( ) with appropriately chosen arguments.

For positive values of the parameter g, this objective

can be achieved by making the approximation

{As@ ﬂZ«fJ
JS..-5S
]

(1.21)

= 1_q)(_77t+s

noting, in particular, that the approximation agrees with
the interpolated function at z=27 and as zZ— —o in-
dependently of the values of the parameters p and . The
quality of the approximation is improved by choosing the
values of p and q to ensure that the first and second de-
rivatives of the interpolating function match those of the
interpolated function when z=Z7 . The outcome of this
matching procedure is that

BJS 4.
\/$+s _IBZS (D(_n”s)’

2 nt+s(D (_UHS) J
= p?| 1= e Thes)
kK p( ()

p:_
(1.22)

In particular, it is easy to show that q> 0, as required.

The use of the interpolating formula (1.21) to evaluate
the integral in expression (1.19) leads to the conclusion
that

[fo(s..)0
_ 1 p+2z, 1 (p+z)
N‘D(Z‘)‘mq’[ 1+q]e"p[§{w“ﬂ'

(1.23)

Expression (1.23) is now incorporated into expression
(1.19) to give the final approximate form
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Cov[7,, 7]
=/SS.: (26(2.6) P (1106) + 2.0(2) @ (7,5
~E[T])E[T], +(22../SS.. +BS)®(2)

S(S..-A'8)p(2)(m..)
(44+sv5}$+s +,BSI) ( p+2 J

Ja+1 Ji+q

(p+z)
xe p[z{ 1+qg Z‘H

Expressions (1.15) and (1.24) (with t replaced by k and
t+s replaced by j) when substituted into expression
(1.12) provide a closed-form approximation for the vari-
ance of the cumulative temperature index which is then
treated as a Gaussian random variable with the computed
variance and mean value given by expression (1.11).

(1.24)

4. Approximating the Variance

A closed-form expression for the variance of the cumula-
tive temperature index was derived in the previous sub-
section. Curiously a heuristic argument based on inter-
polation can be used to generate a simpler expression for
this variance, one that exhibits good accuracy despite the
empirical nature of the derivation. The argument begins
by noting that the k-th day in the lifetime of a CDD op-
tion will contribute to the cumulative temperature index
driving the value of the option with probability
T.-T ’

Vs

where ®@(z) is the cumulative distribution function of
the standard normal and T is the temperature above
which CDDs are accumulated. If the k-th day always
contributes to the cumulative temperature index then the
variance of that contribution would be S.. On the other
hand if the k-th day never contributes to the cumulative
temperature index then the variance of that contribution
would be zero. Since in reality the k-th day contributes
fraction py of the time then linear interpolation suggests
that the variance of this contribution may be reasonably
approximated by Spy. Based on this idea, the first sum-
mation on the right hand side of Equation (1.12) has ap-
proximate values

P=P(%), z = (1.25)

The second summation on the right hand side of Equa-
tion (1.12) is a correction to expression (1.26) to take
account of the fact that contributions to the value of the
temperature index from different days are not independ-

(1.26)
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ent. The contribution made by the quantity Cov|[7,,7,,,]
to the variance of the temperature index is argued in a
similar way. In the absence of clipping, the variance of
this product is equal to COV|:9k,9j with value S e U™
assuming that j>k. However, the product 7,7; is
nonzero with probability p,p; and therefore the same
linear interpolation argument suggests that COV|:'Tk , 7. ]

is reasonably approximated by p,p;Se” “07%) Based on
this idea, the second summation on the right hand side of
Equation (1.12) has approximate value

23 3 Cov[ 7,7, = ZZ PS Y Pe

k=1 j=k+1 j=k+1

(1.27)

In conclusion, linear interpolation suggests that the
variance of 7 is well approximated by the formula

Var[C Z pS. +2Z S, z pe .

j=k+1

(1.28)

In fact Equation (1.28) is the first-order approximation
to the closed-from expression of the variance in Proposi-
tion 1. Consequently, it is expected that this approxima-
tion will perform particularly well when the level of
truncation is low and also when the persistence in tem-
perature is low which means that deviations in tempera-
ture, H(t) , are restored to their mean value relatively
quickly.

To test the accuracy of the approximate closed-form
expression for Var[Cy ] stated in Proposition 1, tranches
of one million realizations of Equation (1.1), each of du-
ration 90 days, were constructed for fixed values of «
and o . Specifically, each realization (6,,---,6,,) was
obtained by drawing 6, from the marginal density of
0 expressed in the form N (O, 82) , and subsequent
values of 8 were determined exactly using the iteration

6, =6, + S [2sinh ()&, k=1,---,N, (1.29)

where & ~N(0,1). Realizations of &(t) generated in
this way had mean value zero and stationary standard
deviation S which was set at 4C° for all simulation ex-
periments. A threshold value of 6 was chosen, say O,
and a cumulative CDD for the 90 day period was con-
structed from a realization (6,,---,6,,) using the for-
mula

%
C =) max(6,—0,0).

k=1

(1.30)

For a given value of & and a given value of O,
each tranche of one million realization of Equation (1.1)
generated one million independently and identically dis-
tributed realizations of CDDs. Table 1 shows the result
of seven experiments for the case o =0.2 and thresh-
olds ®€ (-3S,-2S,-S,0,S,2S,3S) . Table 2 shows the
equivalent result when & =0.5 and the thresholds are
unchanged.

Copyright © 2013 SciRes.

Table 1. For a = 0.2 the column headed “®” gives threshold
temperature relative to zero for contributions to cumulative
CDD. Columns headed “Mean” and “Std Dev” give the
mean cumulative CDD and its standard deviation based on
one million simulations. Estimates of this standard devia-
tion based on Proposition 1 (Exact) and the heuristic argu-
ment of Section 1.4 (Approx) are shown.

(€] Mean Std Dev Exact Approx
-12 1080.1 116.63 116.67 116.69
-8 722.98 114.25 114.23 114.32
-4 389.92 99.608 99.545 99.272
0 143.57 63.325 63.269 61.422
4 29.975 24.680 24.465 23.148
8 3.0560 5.7022 5.3141 6.2514
12 0.1379 0.8556 0.5688 1.4022

Table 2. For a = 0.5 the column headed “®” gives threshold
temperature relative to zero for contributions to cumulative
CDD. Columns headed “Mean” and “Std Dev” give the
mean cumulative CDD and its standard deviation based on
one million simulations. Estimates of this standard devia-
tion based on Proposition 1 (Exact) and the heuristic argu-
ment of Section 1.4 (Approx) are shown.

(C] Mean Std Dev Exact Approx
-12 1080.1 75.730 75.751 75.766
-8 723.01 74.189 74.181 74.346
-4 389.95 64.740 64.703 65.310
0 143.60 41.281 41.246 42.409
4 29.982 16.243 16.154 18.359
8 3.0537 3.8667 3.7333 59155
12 0.1379 0.6207 0.5527 1.3970

It is clear from these results that the variance of cumu-
lative CDDs predicted by the closed-form approximation
of Proposition 1 is achieved in practice. Minor differ-
ences between the approximate variance in Proposition 1
and that achieved by simulation become evident only
when the threshold temperature lies two standard devia-
tions or more above the mean temperature largely due to
the fact that under these circumstances realizations of
CDDs will be dominated by zero values. However this is
not a scenario that will be occur in practice.

The most interesting observation in Tables 1 and 2 lies
in the unexpected accuracy of the heuristic estimate of
variance. In the region of most interest, that is when the
threshold temperature lies on or below the average daily
temperature taken to be zero in this analysis, the heuristic
approach delivers parsimonious estimates of variance
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that, although marginally inferior to the estimates of true
variance provided by Proposition 1, are negligibly dif-
ferent from it for all practical purposes.

5. Parameter Estimation

To use this model for predicting the payoffs from tem-
perature-based derivatives an estimate of the parameter
o in Equation (1.1) is required. This parameter meas-
ures the rate at which deviations of temperature from the
seasonal are restored to this mean. In order to do so, it is
first necessary to obtain estimates of T(t) and o(t).
Following Campbell and Diebold [6], T (t) and o(t)
are approximated by the Fourier series

T(s)=a, +bos+2n:ak cos(@,s)+h,sin(@,s),
k= (1.31)

o’(s)=g¢, +kzri;ck cos(@,s)+d, sin(@,s),

where @, =2kn/365 and s=0 is assumed to be the
calender date of the first observation of average daily
temperature. The contribution bys in the expression for
T(s) is present to take account of any annual trend in
daily average temperature. Otherwise expressions (1.31)
assume that seasonal variations in daily average tem-
perature follow an annual cycle which is independent of
calendar year. Consequently, the expression for S(t)
corresponding to the expression (1.31) for o7 (s) is

S(s)=p,+_ pccos(@s)+qsin(@s), (1.32)
k=1

where the Fourier coefficients c,,cC,,--,C,,d,,---,d, are
related to the Fourier coefficients p,, p,,-**, Py> 0>+ *» 0y

by the formulae

-2 i
G =20p + @G } (1.33)

dk =-0 Py +200q,,

where K takes all integer values from k=1 to k=n
inclusive. Two strategies to estimate the value of o and
the coefficients in the Fourier series (1.31) are now de-
scribed.

5.1. Two-Step Estimator

Suppose that the data consists of observations of daily
average temperatures T,,T,,---, T at times t,t,,---,t.
The Fourier coefficients of T (S) can be estimated in a
straightforward way by minimizing the objective func-
tion
N _ 2
¥(a.b,.8..a.0,0.0) = (T -T(Y))
Once these coefficients are known, then the deviations

from the seasonal means 6,,6,,---,6, can be computed

Copyright © 2013 SciRes.

directly from the formula 6; =T, —'IT(t j ) . The problem
iS now to ﬁnd the values of o and the coefficients
Cy»C,+,Cyody,ee-,d,  which best fit the residuals
6.6,, ~-,9n.
Using a result established by Bibby and Sorensen [12],
an unbiased estimate & of « is given by the expres-
sion

10, = -1 O, 10
—logkl kl]lz klzklll ! (1.34)

- G kR

(E aJ Lo 2

The difficulty, however, in using this expression is that
o, is unknown whereas what is known is the seasonal
variance of the residuals. The strategy for finding the
values of « and the coefficients ¢,,c,:-,C,,d,, -, d
is therefore the following.

Step 1: Compute the Fourier coefficients p,, p,, - P,
and q,---,q, of S(t) directly from the deviations
6,,6,,--,6,.

Step 2: Choose an arbitrary value for o, say ¢, and
compute the Fourier coefficients ¢,,cC, -,C,,d,,:--d,
from expression (1.33) with « = ¢, . Knowing the Fou-
rier coefficients of o°(s) enables o;,:-,0; to be
computed from Equation (1.31). Expression (1.34) is
now used to update the estimate of ¢, . This procedure
may then be 1terated by recomputing in turn Cy>Cior G
d,---d, and o, -0, . This procedure is repeated
until consecutive estimates of ¢ are not deemed to be
significantly different.

The estimate of o and the Fourier coefficients a,,h, ,
a, ,a,,b,-,b, and c,c--,C,d,--d, can either
be used as they stand or can be used as an initial guess
for the parameters of the maximum likelihood estimation

procedure outlined in the next subsection.

n

5.2. Maximum-Likelihood Estimation

The feasibility of parameter estimation by maximum
likelihood (ML) in this instance relies on the fact that the
transitional probability density function of average daily
temperature can be computed under the assumption that
the deviations of average daily temperature from its
mean value satisfies the stochastic differential Equation
(1.1). Ito’s lemma applied to the stochastic differential
Equation (1.1) may be shown to lead to the formal solu-

tion
t t +J‘

with 6, =9(tj). The important observation from this
solution is that & t) is a Gau?sia random variable
with mean value E| & t)}zejefa " and variance

o(t)=0 s)dW,, t>t;. (1.35)
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x(ty)= J':_ e 952 (s)ds
’ (1.36)
= s(t)—e (),

where the latter expression for ;((t,tj)t is derived di-
rectly from the definition of S(t) given in Equation
(1.3). Because T =T (t)+6(t), then the average daily
temperature T is itself 7Gaiu§sian distributed with mean
value T (t)+(Tj -T, )e “t) " and variance

2(tt)=S(t)-e>s(t,) in which

T(t)=a, +ht+> a, cos(@t) +h sin(at). (137)

Thus the average daily temperature T (t) has transi-
tional probability density function

(T
f (T,t|Tj,tj)=L,

(1.38)
2my (L))

where

[r=T~(r-m)e ]
27(ty) '

The likelihood of observing the sequence T,,T,,---, Ty
of average daily temperatures at calendar times
t,t,,---,ty is therefore

L(etay,a,a,.0,b,:6,,C,0, 6,0, 0y )
N-1 ) (1.39)

= f ]+19 J+1
=1

y(T.t)=

In practice, the parameters are estimated by minimiz-
ing the negative log-likelihood function

_log£= log27t+ ZIOg( 0~ e (Ii”ft")Sj)
(T. = . A n))z
1 N-1 j+l
3 “20(tj-tj) >
254 S, —e s

i+l j

(1.40)
where the notation S; = S(tj) has been used. The op-
timal values for the parameters of this model are taken to
be those which minimize expression (1.39). Although
model (1.1) is specified in terms of the intrinsic function
o (t), from a purely technical point of view it is easier to
treat the Fourier coefficients of S(t) as the parameters
to be determined by the ML procedure.

6. Empirical Illustration

The task is now to provide a means of gauging the effi-
cacy of the analytical expressions for the mean and vari-
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ance of Cy given derived previously in terms of the the
expected payoffs to options contracts. Payoffs based on
the analytical results of the paper are compared to his-
torical pricing as outlined in [4,5]. The metric for com-
parison is taken to be the mean “profit” of a 90-day call
option contract. Profit is defined from the point of view
of the buyer of the call option as the difference between
the actual tick value of the contract and the expected tick
value or “price” of the option. Of course, this is not
meant to represent a true price for the option, as this no-
tional pricing strategy takes no account of discounting or
overhead expenses. But of course, any pricing scheme
will stand or fall by its ability to estimate the expected
tick value accurately.

6.1. Data

The data set comprises daily maximum and minimum
temperature records in degrees Celsius for Brisbane (1/1/
1887-31/8/2007), Melbourne (1/1/1856-31/8/2007), Perth
(1/1/1897-31/8/2007) and Sydney (1/1/1859-31/8/2007).
These locations were chosen primarily because they had
accurate temperature records of over 100 years duration
measured at comparable weather stations®.

Figure 1 shows the long-term expected values (upper
panel) and standard deviations (lower panel) of daily
temperatures for each day of the year. The figure shows
that the behaviour of the mean and standard deviation is
amenable to modelling by a low-order Fourier series ap-
proximation. In this exercise the order of the series is
taken to be 3. The Fourier approximation is applied only
over the period over which the option is to be written,
namely, 1 January to 31 March, inclusive.

Descriptive statistics for cumulative CDDs are re-
ported in Table 3. There are two observations of note
arising from Table 3. First, the distribution of cumulative
CDDs for Melbourne is skewed to the right as evidenced
by a mean which is significantly larger than the median.
Second, Perth is notable for the diffuse nature of the dis-
tribution of cumulative CDDs, recording a standard de-
viation significantly larger than those of the other cities.

The distributions of cumulative CDDs for each city is
illustrated in Figure 2 which plots both the distribution
of historical cumulative CDDs (shaded region) and the
predicted distributions for 1950 (dashed line) and 2007
(solid line) generated by closed-form approximations to
the distributions of CDDs derived in the paper. To the
uniformed eye, the distribution of historical cumulative
CDDs may appear well behaved and taken as reasonable
evidence in favour of using historical records to price
temperature-based derivatives. When compared to the

*All the raw data were supplied by Climate Information Services, Na-
tional Climate Centre, Australian Bureau of Meteorology. The con-
struction of the temperature record for each city is discussed in Appen-
dix 3.
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Figure 1. The expected value of the average daily tempera-
tures (upper panel) and the expected value of the volatility 2 0.08 —
of average daily temperatures (lower panel) are shown for ;:
Brisbane, Melbourne, Perth and Sydney. < 0.06 -
Ay
Table 3. Mean, median, standard deviation, minimum and 0.04 3
maximum cumulative CDDs in four Australian cities. 0.02 —
S Statisti
ummary Statistics 0.00 I | I | | ] |
N Mean (SD) Med. Min. Max. 0 300 375 450 525 600 675 750
Cumulative CDDs
BNE 121  584.2 (54.5) 584.6 463.3 705.9
0.12 5 Svdne
MEL 152 2079 (64.1) 195.6 93.5 391.4 yaney
0.10
PER 111 489.6 (83.3) 492.2 298.3 688.3
2 0.08
SYD 149 350.0 (60.1) 350.2 225.5 533.3 =
£
2 0.06
distributions for 1950 and 2007 generated by the ana- . 0.04
lytical approach, however, the potential for error inherent ’
in the historical approach becomes evident. Not only 0.02 -
does the mean of the predicted distribution change no-
ticeably over time, but the distribution also has lower 0.00 1
Volatility 0 300 300 375 450 525 600
' Cumulative CDDs

6.2. Payoffs

The profits generated by two call-option contracts with
different strike prices, written on the period 1 January to
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Figure 2. Density of historical cumulative CDDs based on
data up to and including 1949 (shaded area), predicted den-
sity of cumulative CDD for 1950 (dashed line) and predicted
density of cumulative CDD for 2007 (solid line).
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31 March are now reported in Tables 4 and 5 respec-
tively. The call options used in the experiment have re-
spective strike prices set to be approximately D= u+
0.50 and D=y+0.750 where y is the uncondi-
tional mean and o is the unconditional standard devia-
tion of CDDs up to the current year under consideration.
The experiments begin by pricing these options for the
year 1950 using data up to and including 1949. The ac-
tual payoft for 1950 is recorded, the profit or loss stored

Table 4. Means and standard deviations of profits to a 90-
day call option defined on CDDs with strike price D ap-
proximately equal to x4 + 0.56, where x4 and o are the un-
conditional mean and standard deviation of available his-
torical CDDs. The option is priced for each year from 1950
to 2007 inclusive.

BNE MEL PER SYD

Strike D 600 240 530 380
Historical

Mean Payoff -8.1 -143 -23.8 7.8

SDev Payoff 33.1 45.8 432 48.9
Quarterly Model

Mean Payoff 7.2 13.2 2.2 11.7

SDev Payoftf 29.6 41.5 41.8 35.5
Annual Model

Mean Payoff 5.8 15.4 18.3 4.0

SDev Payoff 29.1 414 40.0 34.6

Table 5. Means and standard deviations of profits to a 90-
day call option defined on CDDs with strike price D ap-
proximately equal to # + 0.750, where x4 and o are the un-
conditional mean and standard deviation of available his-
torical CDDs. The option is priced for each year from 1950
to 2007 inclusive.

BNE MEL PER SYD

Strike D 620 260 550 400
Historical

Mean Payoff -17.7 —24.7 -35.1 —4.2

SDev Payoff 25.3 383 36.1 42.7
Quarterly Model

Mean Payoff 6.2 11.9 1.3 9.8

SDev Payoftf 22.7 342 342 30.1
Annual Model

Mean Payoff 5.5 133 13.4 4.6

SDev Payoff 22.4 34.2 36.6 29.2
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and the data set updated to include the latest observation
on cumulative CDDs. These steps are repeated up to and
including 2007 giving a total of 58 separate profits for
each option. The means and standard deviations of the
profits are regarded as measures of the performance of
each of the methods used to determine expected tick
values.

The historical pricing reported in Tables 4 and 5 is
self-explanatory, but the implementation of the closed-
form approximations needs further elucidation. Two
variations of this method are implemented, namely an
annual version and a quarterly version. The annual ap-
proach fits the mean and seasonal variance of average
daily temperature using data for the entire year and the
best estimates of the parameters are used in computing
the closed-from approximations of the distribution of
cumulative CDDs. By contrast, the quarterly version fo-
cusses on the period from 1 January to the 31 March in
each year and fits the mean and seasonal variance of av-
erage daily temperature for this 90-day period alone. In
other words, the fitting procedure is implemented only on
the period over which the contract is written. The main
reason for adopting this approach is that the behaviour of
temperature in parts of the year unrelated to the period of
the option are not being allowed to influence parameter
estimates for the mean and variance processes. Another
benefit of this approach is that better resolution of the
mean and variance processes with the same number of
parameters.

The first striking conclusion to be drawn from these
results is just how bad historical pricing performs for the
Australian temperature data. Interestingly enough, it ap-
pears that historical pricing in three of the cities has sub-
stantially over-priced the call options. This result is
counter-intuitive as the conventional view is that there is
an upward trend in temperature which would result in the
under-pricing of call options priced on the history of cu-
mulative CDDs.

The resolution of this conundrum is to be found in the
behaviour of temperature between the years 1890 and
1920. During this period, Brisbane, Melbourne and Perth
recorded substantial outliers in cumulative CDDs, the
likes of which were not seen again until late in the sam-
ple period. These outliers will have had a disproportion-
ate affect on the pricing of temperature derivatives in the
1960s, 1970s and 1980s. Their existence also explains
the deterioration of profits based on historical pricing
when moving from lower to higher exercise prices. The
weather station in Sydney where the temperature data
were recorded did not show these extreme temperature
events and consequently historical pricing for Sydney
performs significantly better.

Taken as a whole, the closed-approximations used to
price the call options generate mean profits closer to zero
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and with lower standard deviations than historical pricing.

Nevertheless, this method appears to underprice some-
what, even though these pricing errors are smaller in
magnitude than those generated by the historical method.
This underpricing is again a manifestation of the outliers
in cumulative CDDs but in this case, not enough weight
is given to them. There is little difference in terms of
performance of quarterly and annual models, with the
exception of Perth where the quarterly model performs
better. It is conjectured that this is due to the ability of
the quarterly model to better resolve the extreme tem-
perature variations that are prone to take place in Perth.
Unlike the case documented for historical pricing, there
seems little difference in performance when moving from
the lower to the higher exercise price for the the closed-
form approach.

7. Conclusions

This paper has derived closed-form expressions for ap-
proximating the distribution of temperature indices. The
major practical use for these approximations is in esti-
mating the payoffs to temperature-based weather deriva-
tives. Although the cumulative cooling degree day index
is the focus of this research, the methods used are equally
applicable to derivatives based on cumulative heating
degree days. Common practice when modelling average
daily temperature is to regard the deviations of tempera-
ture from its expected value as an Ornstein-Uhlenbeck
process. The key result derived in this paper, is that if
this model of temperature is adopted, then the distribu-
tion of cumulative cooling degree days may be con-
structed as the sum of truncated, correlated Gaussian
deviates. The mean and variance of the resultant Gaus-
sian distribution depend on the parameters of the under-
lying temperature process and its autocorrelation struc-
ture.

The efficacy of these approximate distributions is
tested by estimating the payoffs to temperature-based
derivatives. Time series data spanning over a hundred
years of average daily temperatures in four major Austra-
lian cities are used to estimate the payoffs to European
call options written on cooling degree days. The robust
conclusion to emerge from this line of research is that the
closed-form distributions perform more reliably than the

Copyright © 2013 SciRes.

historical pricing method that is commonly advocated in
the literature.
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Appendix 1
Proof of Result (1.15)
It has been shown in Equation (1.13) that
Var[T,]=S.[* (2 ~2) ¢(2)dz
-s[ae(2)+0(2)]

The manipulation of this integral uses the fact that the
Gaussian probability density function enjoys the property

29(2)=—¢'(2). Thus
SJ " (z-2) ' ¢(2)dz
=S [*(z -2z +2)¢(2)dz
=S2®(2)+S[ " (24 -2)¢(2)dz
=520(2)+S[(22-2)¢(2)|* +S[ " 9(2)dz
=S (% +1)®(2) + Sz ()

It is now straightforward algebra to verify the asser-
tion in Equation (1.14), namely that Var[7,] has value

S [@(2)-(¢(2)+ 22 (2))(¢(-2) 22 (-2)) |
where the calculation has noted that ¢(z) is an even-
valued function of zand that 1-®(z)=®(-z).
Appendix 2
Proof of Result (1.19)

The calculation of Cov[7;,7;,,] requires I, the value
of the integral

V SSﬁ-sJ‘_Z:J_Z:S(ZI - Z)(zl+s _W) f(zt+s’ 4 )dZdW (1.41)
in which f(z.,,,7) is the probability density function

L S+s eV

2n S[+s _,BZS

>

with

y= S+sz2 _2Z\Nﬂ\/ SS+S +$+SV\IZ
2($+s_ﬂ25)

and f=e . Byre-expressing ¥ in the form

S, s .2
2($+s—ﬁ2$){w ﬂzJ;] 2

expression (1.41) is re-expressed as the repeated integral

Copyright © 2013 SciRes.

=S g o pglL(a-D9(de(e (4

where ¢(z) is the standard normal probability density
function and g(z) is the integral

ﬁj‘is_(zws_w)

S 2
S[+s {W_ ﬁz ]
S+s d

2(S+s_ﬂ23)

(1.43)

Phase 1

The evaluation of this integral is achieved by changing
the variable of integration from w to ¢ using the sub-

stitution
T S N
: sﬂ—/ﬁs(w pz J

The outcome of this operation is that g(z) takes the
simplified form

g(Z)=$*§¢FS(”(§+S(z)—é)qﬁ(é)dé (1.44)

§t+s(z): SS——tSBZS[ZHS_ﬂZ\/SE}

It now follows immediately from the definition of
®(z), the cumulative function of the standard normal
distribution, and the basic properties of ¢(z) that

where

0(2)=2F Ry i 0(E)  (149)

S‘FS

in which the dependence of &, on z has been sup-
pressed for representational convenience. Consequently

1=\8(8..-£9)[" (2-2)9(2)

X |:¢(§t+s) + §t+sq) (§t+s ):IdZ.

This completes the first phase in the computation of
the value of | using repeated integration.

(1.46)

Phase 11

The second phase of calculation continues by dividing
the right hand side of Equation (1.46) into the two inte-
grals
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\’ S+s ﬁz I Zt¢ §t+s +§t+s (§t+s))d2
Y S+s IB S LMZ¢ gt+s +§t+s (é’[+s))dz.

The function &, (z) is now replaced by its definition in the first of these integrals, and after some rearrangement, |
is expressed as the sum of four integrals, namely

I =Z¢\¢S S+s_ﬂ2$ J.Z( ¢ é:H-s dZ+tht+s\/SS+sJ. égt+s
_ﬂztSJ. égt+s dZ—V S+s ﬂ S j Z¢ égt+s +§t+s égw-s :IdZ

The third and fourth integrals on the right hand side of this equation are now manipulated using integration by parts.
Manipulation of the third integral gives

_[_Z(mq)(é:t+s)z¢(z)dz=|:_¢ 5t+s ]790_ \/SHTI—Z; é:t+s

:_¢(Zt)q)(77t+s)_ﬁ é:ws)

(1.47)

(1.48)

Sis ﬂ S 2otz

where

2. —B2yS (1.49)
NEWRY

77[+S

Manipulation of the fourth integral gives

[ 2(2)(0(&00)+£..0(&0)) 02
=[—¢(z)(¢(;+s>+é+s¢(;+s))] -5

1.50
s+s RGN (130

[“o(2)@(&,,)dz

==0(2)(9(hs) +11.s@ (1)) = Sis™ ﬂz

Results (1.48) and (1.50) are now incorporated into Equation (1.47) to get

¢ §I+S dz+ Z(+SVS§+S¢ 77[+S
Sis— ﬁ SI (1.51)

+(22,./SS. +5S)[ @ (;+s)¢(z)dz+\/a(s+s—ﬁzs;)¢(z[)¢(nﬁs)-

The final stage of this calculation is to note that

P . Z:¢(Zt+s)x Ztex _L Z— i 2 z
["0(&.5)9(2)d o N p[ 2(§+S_ﬂ25)( ﬂz”s\/;] ]d

— ﬂ z[\/ers :th+s\/_
#(2.s)® :
VS..-8’S

I = ZIS+S

To summarize, the repeated integral (1.41) has final value

I =S8:5(20(2:6) @ (Zi1s) + 2,0(2) @ (7.5))
+(22,1/S8s +89) [ @ (&) 9(2)dz+ S (S5~ 8'S)9(2)9 (..,

(1.52)
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where the constants 77,,, and %, and the function
&.s(2) are defined respectively by

_2../S..-B7%S

77t+s -

\/S+s_ﬁ2s
Tos = Z“/i_ﬁz‘*s*/g, (1.53)
\/S+s_ﬁzs
_ zt+s\/§_ﬂz\/§
é:t+s(z) - > .
\/S+s_ﬁ S
Appendix 3

The construction of the temperature data for the four
Australian cities used in the empirical illustration is now
outlined in detail.

Brisbane: The temperature record contains 44043 ob-
servations starting on the 1/1/1887 and ending on 31/8/
2007. The time series is constructed from data collected
from three weather stations: Brisbane Regional Office
(Station Number 40214) 1/1/1887-31/3/1986; Brisbane
Airport (Station Number 40223) 1/4/1986-14/2/2000);
and again from Brisbane Airport (Station Number 40842)
15/2/2000-31/8/2007.
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Melbourne: The temperature record contains 55358
observations starting on 1/1/1856 and ending on 31/8/
2007. The time series is a continuous set of observations
made at the Melbourne Regional Office (Station Number
86071) weather station. The location of the office
changed in the early 1980s although the name of station
did not.

Perth: The temperature record contains 40393 obser-
vations starting on 1/1/1897 and ending on 31/8/2007.
The time series is constructed from data collected at two
weather stations: Perth Regional Office (Station Number
9034) 1/1/1897-2/6/1944; and Perth Airport (Station
Number 9021) 3/6/1944-31/8/2007.

Sydney: The temperature record contains 54263 ob-
servations starting on 1/1/1859 and ending on 31/8/2007.
The time series is a continuous set of observations made
at the Sydney Observatory Hill (Station Number 66062)
weather station.

Instances of single missing values were treated by av-
eraging adjacent records. In a few rare cases where sev-
eral days were missing, the long term average for those
days was inserted. Finally, following Campbell and
Diebold [6], all occurrences of the 29 February were
removed.
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