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ABSTRACT 

Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with 
the problem of scheduling jobs with a common due date. A four person game illustrates the basic ideas and the compu- 
tational difficulties. 
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1. A Scheduling Game and Simple Solutions 

A machine may process  jobs, 1 2 nn J , , , ,J J  with 
the completion times 1 2  all positive numbers. 
No two jobs can be simultaneously done, and for all jobs 
there is a common due date  positive. Any schedule 

, , , ,np p p

d
  is a sequence of jobs, and no preemption is allowed. 
The schedule is determined by the numbers 

  , ,C i N  i  the completion dates of the jobs iJ  in 
.  Any deviation from the due date will be penalized, 

either an early or a late completion relative to the due 
date. The total time deviation in a schedule   is given 
by 

    .              (1) i
i N

C d 

*




 

The usual scheduling problem is to: find out the 
schedule   for which the total deviation is minimal. 
In [1], J. J. Kanet solved the problem for the case when 
the sum of completion times is smaller than, or equal to 

 and gave an algorithm for computing a schedule with 
a minimal deviation. Of course, this algorithm may be 
used to find the total penalty for this schedule and also to 
find the total penalty for any minimal deviation corre- 
sponding to any subset of jobs. This makes sense in the 
case when the costs of the deviations, early or late, are 
proportional to their size. In the following, we assume 
that the costs are equal to the penalties. A more general 
case other than Kanet’s has been solved by M. U. Ahmed 
and P. S. Sundararaghavan in [2]. In [3], N. G. Hall and 
M. E. Posner consider similar problems. The literature 

connected to more general cases is huge, and the conclu- 
sions obtained in the present paper can be applied to 
most other cases. For the present discussion, the simplest 
case offered by Kanet’s algorithm, with the above as- 
sumptions, is good enough to suggest similar approaches 
in all other cases, in connection with a new problem to be 
introduced below. 

Assuming that the grand coalition has been formed 
and the total penalty for early and late deviation,   ,w N  
has been computed by some algorithm, a new problem is: 
how much should be a fair individual penalty for each 
job? 

To answer the question, we now build the following 
cooperative game with transferable utilities: let  

 1, 2, ,N n  i

,i

 be the set of players, the player  be  

J  for each  the customer ordering the job 

1,2, ,i n 
, , ,S S N S    ,S i

,d p

 Consider any coalition of customers,  

 and notice that if  then the  
,d minimal schedule starts the corresponding job at i  

and there will be no deviation from the due date. There- 
fore, if we denote the deviation for coalition  by ,S

    0.w i,w S  we have   An algorithm for compu- 
ting the minimal deviation, for example Kanet’s algo- 
rithm, will provide the total deviation  when   0,w S 

2.S   In this way, we get a cooperative TU game  

 , ,N w  .w N   in which we want to divide fairly 

To make the paper self contained let us sketch Kanet’s 
algorithm which will be used in the example shown be- 
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low. Let  be any coalition and denote by S  (be- 
fore ), a sequence of jobs which were already selected, 
with non-increasing processing times and the last job 
ending at  also, denote by 

S ,B
S

;d ,SA  (after ), another 
sequence of jobs which were already selected, with non- 
decreasing processing times and starting at  Now, 
assume that we have 

S

.d
, ,B A

S
S S S S  Kanet’s 

algorithm is continuing to build the partition of  as 
follows: if 

B A 

1,S

,B

S SB A    select the non-selected 
element of  with a maximal processing time and take 
it as the last job in  (now we have 

S

S

1B A S S ,B). Further, if with the new S we have 
1,B A S  

S
,

S S  then choose the non-selected job in 
 with a maximal processing time and take it as the 

first job in SA  (that is starting at ). Repeat the pro- 
cedure, selecting alternatively players in S  then in 

S

d
,B

,A  until  is exhausted; then, the time deviation is 
computed by formula (1) for the corresponding schedule 
and in the same way for any subset of players. 

S

 , , ,Example 1: Let 1 2 3 4J J J J

8, 5,p 

 1,2,3,4N 

 be a set of jobs to be 
processed on a single machine, with the processing times 

 and the due date is 1 212, 10,p p p 
39,

3 4

 such that the Kanet’s condition shown above 
holds. We can compute for the set of players 
d 

, and its subsets, the total penalties. Ka-
net’s algorithm will generate the game 

      
        1 2w w w    3 4 0,w   

      

        
     
1,2 10, 1,3

1,4 2,4

w w

w w

 

    
2,3 8,

3,4 5,

w

w





  2,3,4 28.w 

  28w N 

 

      
 

     
     
1, 2,3 18, 1, 2, 4 15,

1,3,4 2,3, 4 13, 1,

w w

w w

 

 

This corresponds to the total deviations of all coali- 
tions, and our problem is to: find out how we should di- 
vide fairly  among the players? We start by 
showing two simple solutions: the Egalitarian allocation 
and the Egalitarian non-separable contribution allocation. 
Denoting the first by *,x  we get   7,7,7,7 .*x

*,yDenoting the second by  which is given in gen- 
eral by formula 

    

    

*

1

i

j N

y w N w N i

w N w N w N j
n 

  

   


   , ,i N
 

  


   , ,

 

(2) 
we get the marginal contributions 

 jM w N w N  j j N    equal to 15, 15, 13, 
10, so that the sum makes 53, and from each marginal 
contribution we should subtract 25/4, to obtain 

35
* ,y 

Looking at the characteristic values of our game, 
shown in example 1, we see that the players 1 and 2 seem 
to be equal, while players 3 and 4 are weaker, hence the 
last two should be asked to pay smaller individual penal- 
ties. 

The first solution does not seem to show this, while the 
second seems more fair, we shall see a method below to 
compare the fairness of the solutions. 

2. Individual Penalties: Set Solutions, 
Shapley Value 

35 27 15
, , .

4 4 4 4
 
 
 

,z

, , ,S S N S   ,z

 

To evaluate the fairness of a possible solution  we 
may use the excess functions; however, here it seems 
more appropriate to use some similar functions that we 
shall call the “cost excess” functions. For any coalition 

 and any allocation  the cost excess 
function is 

   , .i
i S

S z z w S


              (3) 

These are the negatives of usual excess functions, ob- 
viously, we have 2 2n   such functions, because for the 
grand coalition, for any allocation, by definition we have 

 , 0.N z  In words, the cost excess is the difference  

between what the coalition  will pay in  to contri- 
bute as close as possible to the total penalty for herself, 
while it is also contributing to the total penalty for  
Then, what we want to do is to choose the allocation  
which minimizes all cost excesses on the set of alloca- 
tions. Note that the sum of all cost excesses is a constant, 
because for any allocation  we have 

S z

.N
z

z

     1, 2 .n

S N S N

S z w N w S 

 

  

 

     (4) 

Moreover, we can define the average cost excess 

 1
, ,

2 1n
S N

w S z 






z

        (5) 

which by formula (4) does not depend on the allocation 
 This means that if the allocation of some coalition is 

increased, then the allocation of at least one other coali- 
tion will be decreased. How the cost excesses are used to 
compare the fairness of two allocations is illustrated be- 
low. 

Example 2: Return to example 1, and write the cost  

 , ,N w  and any allocation excesses for that game 

      
     

1 2

3 4

1 , , 2 , ,

3 , , 4 , ,

z z z z

z z z z

 

 

 

                      

  
  

1 2

1 3

1,2 , 10,

1,3 , 8,

z z z

z z z





  

                       
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     
     

1 4

2 4

1, 4 , 5, 2,3 ,

2, 4 , 5, 3, 4 ,

z z z z

z z z z

 

 

  

  

2 3

3 4

8,

5,

z z

z z

  

  

1 3

1 2 4

2 18,

15,

z z

z z

 

  

1 3 4

2 3 4

13,

13.

z z

z z

   

 

, 6,6,6, 4,3 .

4.

 

  
  
1,2,3 ,

1, 2,4 ,

z z

z z





 



  
  

1,3, 4 ,

2,3, 4 ,

z z

z z



  
 

Our problem is to minimize all cost excesses, while we 
are on the set of allocations, that is the efficiency condi- 
tion holds. In other words, we want to minimize the 
maximal cost excess, subject to efficiency condition, or 
to use another method to solve a multi objective linear 
programming problem. 

Let us try to evaluate the fairness of the two alloca- 
tions offered until now.  

For the Egalitarian solution, we can compute the cost 
excesses and put them in a vector of non increasing ex- 
cesses, which may be called the vector of unhappiness, as 
the components are taken in the order of non increasing 
unhappiness 

  * 9,9,9,8,8,7,7,7,7x   

It follows that the most unhappy coalitions are the two 
person coalitions in which one of the players is player 

 For the Egalitarian non separable contribution, we 
find the vector of unhappiness 

 *

35 35 15 15 15 15 15 27 25 25 25
, , , , , , , , , ,

4 4 2 2 2 2 2 4 4 4 4

y

25 11 15
, , , ,

4 2 4

 









 1

 

and the most unhappy coalitions are  and  2 .   
Moreover, we have also  *1 x  larger than  1 * ,y  

that is the most unhappy coalition in *x  is more un- 
happy than the most unhappy coalition in  We can 
say that  is better than 

*.y
*.y *,x  or more fair. Note that 

the same thing could be said if some pairs of corre- 
sponding components in the two unhappiness vectors are 
equal, but the first one which is different is smaller in 
 *y  than in  * .x  In this case, we also write 

   * L * ,y x   where  means the lexicographic  L

order, and read  is better than *y *.x  Until now, we 
have seen two simple solutions belonging to Game Theo- 
ry, they are one point solutions because each one is pro- 
viding a unique solution. 

One of the set solutions from Game Theory is the  
CORE, which for a cost game  like ours is the   ,N w

, .N S  

4.n

set 

 
   

,

: , 0, , 0,n

CO N w

z R N z S z S     
(6)

 

Any element of the CORE is considered as a good al- 
location, because such an allocation covers the total pe- 
nalty for each coalition. Looking at the two simple solu- 
tions of example 1, which as seen in example 2 have all 
excesses non negative, we see that both are in the CORE, 
but, of course, there are others with the same property. 
Moreover, we can also see that the sum of excesses 
equals 96, that is the worth obtained in formula (4) for 
  
The most famous one point solution, which may also 

be in the CORE, is the Shapley Value, introduced in [4], 
and defined by a set of axioms, describing some basic 
properties required for a fair solution. The Shapley Value 
was proved there to be given by the formula 

 
        

:

,

1 ! !
, .

!

i

S i S

SH N w

s n s
v S v S i i N

n



 
     

  (7) 

Example 3: For the game considered in example 1, we 
get 

   , 8,8,7,5 .SH N w   

Computing the cost excesses and ordering them, we 
obtain 

   8,8,8,8,7,7,7,7,7,7,6,6,5,5 .SH   

     We get * * ,L LSH y x   

      2
Minimize , , ,

S N

f w z S z w 


   

 because the first  

components of the unhappiness vectors are in this order, 
hence the Shapley Value is better than the Egalitarian 
non separable contribution, which is better than the Ega- 
litarian solution. Note that this may not be the case for 
other games. Note also that if the game is large, then the 
Shapley Value may not be easy to compute. An algo-  
rithm based upon the so called Average per capita for- 
mula, given by the author in [5], may be used, as it will 
be explained in the next section and the algorithm is al- 
lowing even a parallel computation of the Shapley Value. 
Similar situations may occur in connection with the other 
values. 

3. The Cost Least Square Prenucleolus 

In the following, we may consider as a solution the Least 
Square Prenucleolus of the game, introduced by L. Ruiz, 
F. Valenciano and J. Zarzuelo in [6]. This is similar to 
the Prenucleolus, introduced in connection with the Nu- 
cleolus, due to D. Schmeidler [7], except that this was 
defined by means of the following quadratic program- 
ming problem 

   (8) 

subject to 

 , 0.N z                (9) 
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By using the Kuhn-Tucker conditions, in (8), (9), it 
has been shown that our problem has a unique solution, 
that the authors called the Least Square Prenucleolus, 
namely 

to other scheduling problems in which the associated 
scheduling game can still be generated by some algo- 
rithm. Some of the following remarks may help: 

     1
,i i

j N

w N
LS N w na w a

n n 


  


   , ,j w i N


 



1

: 1

2
.

1

n

s

n

s



 

 
   

 

 

(10) 

where 

   , ,i
S i S

a w w S i N       (11) 

As the cost excesses are replacing the excesses, we 
called this value the Cost Least Square Prenucleolus, but 
the expressions (10) and (11) are the same even in our 
case.  

Example 4: Computing by (10) and (11) this solution 
for our game, we get 

  129 1
, ,

16
LS N w 

29 113 77
, , .

16 16 16
 
 
 

 *LS

* *,L L Ly x 

 

The vector of unhappiness is (see foot-note). 
Notice that the sum of cost excesses is also 96. Now, 

checking the comparison of the new solution with the 
other three solutions, we obtain 

   , ,SH N w LS N w  

that is the Shapley Value seems to be more fair than the 
other three values. Of course, the Schmeidler’s Prenu- 
cleolus may also be computed; the computational method, 
due to A. Kopelowitz [8], is also shown in [9]. However, 
this includes a long computation for solving a sequence 
of linear optimization problems. The Prenucleolus would 
be the best, by the definition of the value. 

Another principle may be used to choose the appropri- 
ate allocation: for each allocation available, compute the 
difference between the cost for the most unhappy coali- 
tion and the happiest coalition and choose the allocation 
that gives the smallest difference. Such an allocation 
would not give a high difference of costs between the 
happy and the unhappy coalitions. In our case, we have 

* *5, 6.xd d 

5n 

 

129 77 13
3, ,

16 16 4SH LS yd d   
 

1) The above discussion was illustrated by examples 1, 
2, 3, 4 relative to a four person game. If we have  
jobs, under the same conditions like above, Kanet’s algo- 
rithm still applies when the Kanet’s assumption holds. If 
the objective is different, for example to minimize a 
weighted combination of deviations relative to a common 
due date, then the algorithm by Hall and Posner should 
be used to get the scheduling game. 

2) As soon as the game is available, the problem of di- 
viding fairly the worth of the grand coalition is the prob- 
lem of choosing an efficient value from Game Theory, 
for which the computation could be done. As all single- 
tons have a zero worth, the Center of the imputation set 
[9] becomes the Egalitarian value, which in general is not 
fair. The Egalitarian non-separable contribution may be 
an alternative allocation. The Shapley Value, which has a 
lot of properties derived from the axioms, is the most 
preferred by almost all scientists, but for more than ten 
players it becomes difficult to compute. For such large 
games it may be better to use the formula given by the 
author in [5], called the Average per capita formula 

Notice that by the last principle the four values are or- 
dered in the same way. 

4. Conclusions 

The technology put together in the present paper applies  

1

, , ,
is n

s s
i

s

w w
SH N w i N

s






          (12) 

where sw , is the average worth of coalitions of size s  
and i

sw , is the average worth of coalitions of size s  
that do not contain player  with n  It is 
obvious that the task can be performed by  teams, and 
each one computes one ratio for one 

,i 0, .iw i N  
n

.s  
3) In the computation of the Cost Nucleolus by Ko- 

pelowitz’ method [8,9] the passage from one LP prob- 
lem to the next is not described in details in most sources. 
The complementary conditions show which cost excesses 
should remain constant on all optimal solutions of the 
current problem, and should be kept constant in the next 
problem. These equations should replace the correspon- 
ding inequalities of the current problem and remain satis- 
fied until we meet a problem which has a unique solution. 
The solution of the quadratic programming problem seems 
easier to compute. 
The generalized nucleolus may be used as a solution of 
any Multicriteria Linear Programming problem, as shown 
by the author in [10], working with a three person game. 
The basic idea appeared in a former paper of the author 
[11], as well as in the more recent paper by E. Marchi 
and J. A. Oviedo [12]. 

 

  129 129 63 63 57 57 113 111 111 55 49 95 83 77
* , , , , , , , , , , , , , .

16 16 8 8 8 8 16 16 16 8 8 16 16 16
LS    

 
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