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ABSTRACT 

A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, 
long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is performed in the present 
study. The dynamic orbits of the system are observed by bifurcation diagrams plotted using the dimensionless unbal- 
ance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is iden-
tified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gear- 
bearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, quasi- 
periodic and chaotic behaviors. The results presented in this study provide some useful insights into the design and de- 
velopment of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear 
regimes. 
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1. Introduction 

We all know that dynamic analyses of turbo-machineries 
are complicated but significant. Nevertheless, most stud- 
ies focused on studying dynamics of single mechanical 
component of machineries e.g., rotors, bearings, gears or 
cams individually. Actually, individual dynamic response 
may influence one another of these mechanical compo- 
nents especially in studying nonlinear dynamic behaviors 
and their behaviors may couple together. Thus multi- 
mechanical components should be modeled and analyzed 
together, and combined nonlinear effects occurring in 
mechanical components to study their real dynamic re- 
sponses for the whole mechanical systems. Many stud- 
ies have focused on analyzing gear dynamics or relative 
researches.  

Vedmar and Anersson [1] presented a method to cal- 
culate dynamic gear tooth force and bearing forces and 
the bearing model was under elastic bearings assumption. 
The simulation results of elastic model were somewhat 
different compared with stiff one. The gear mesh model 
using with constant was studied by a lot of people, such 
as Kahraman and Singh [2], Lin, et al. [3], Yoon and Rao 
[4], and Ichimaru and Hirano [5]. Amabili and Fregolent 

[6] introduced a method based on the measurement of the 
gear torsional vibrations to identify natural frequency, 
damping parameters and equivalent gear error of a spur 
gear pair model. Ozguven and Houser [7,8] performed 
dynamic analysis on gears with the effects of variable 
mesh stiffness, damping, gear errors profile modification 
and backlash. Cai and Hayashi [9] calculated the opti- 
mum profile modification to obtain a zero vibration of 
the gear pair. Umezawa et al. [10] analyzed a single DOF 
numerical gear pair model and compared their numerical 
results with experimental dynamic transmission errors. 
Mcfadden and Toozhy [11] used the high frequency 
technique combined with synchronous averaging to de- 
tect the failure in rolling element bearings. Litvin, et al. 
[12] proposed a modified geometry of an asymmetric 
spur gear drive designed as a favorable shape of trans- 
mission errors of reduced magnitude and also reduced 
contact and bending stresses for an asymmetric spur gear 
drive. Guan, et al. [13] performed finite element method 
to simulate the geared rotor system constructed from 
beam and lumped mass/stiffness elements and compared 
the required actuation effort, control robustness and im- 
plementation cost. Giagopulos, et al. [14] presented an 
analysis on the nonlinear dynamics of a gear-pair system 

Copyright © 2013 SciRes.                                                                                 WJM 



C.-W. CHANG-JIAN 278 

supported on rolling element bearings and used a suitable 
genetic algorithm to measure noise and model error. The- 
odossiades and Natsiavas [15] investigated dynamic re- 
sponses and stability characteristics of rotordynamic sys- 
tems interconnected with gear pairs and supported on oil 
journal bearings. They found many non-periodic dyna- 
mic behaviors. They [16] also analyzed the motor-driven 
gear-pair systems with backlash and found periodic and 
chaotic dynamics in this system. 

There are also many studies analyzing performance or 
dynamics or relative researches of bearing systems under 
turbulent assumptions. Constantinescu [17] first present- 
ed a modified Reynolds equation to describe the turbu- 
lent lubrication based on the mixing length concept of 
Prandtl. Elrold and Ng [18] proposed an application to 
the combined lubricant flow of both pressure and shear 
flows. Hirs [19] developed a new method, based on the 
bulk flow concept, by relying on the relationships be- 
tween wall shear stress and mean velocity relative to the 
wall. Hashimoto et al. [20,21] examined the effects of 
wear on steady state and dynamic characteristics of the 
theoretical and experimental methods under operating 
conditions including turbulence. Capone [22] predicted 
dynamic characteristics and stability of a journal bearing 
in a non-laminar lubrication regime. Kumar and Mishra 
[23] analyzed the stability of the rigid rotor in turbulent 
hydrodynamic worn journal bearing and they concluded 
that lower L/D ratios are more stable for worn bearings. 
Lahmar [24] proposed an optimized short bearing theory 
for nonlinear dynamic analysis of turbulent journal bear- 
ings. They also proved that the turbulent effects on the 
dynamic behavior of rotor-bearing systems become more 
significant as the journal rotational speed increases. Re- 
cently, Chang-Jian and Chen [25] studied bifurcation 
analysis and chaotic analysis of a flexible rotor supported 
by turbulent journal bearings with nonlinear suspension. 
It is well known that vibrations of gear pairs are signifi- 
cantly affected by the amplitude and phase of deviations 
of the tooth profile from the true involute one. Gear er- 
rors were therefore must be checked in order to avoid 
bad working conditions for high speed gears and preci- 
sion manufacturing. Although many researches focused 
on the analysis of the hydrodynamic lubrication of jour- 
nal bearing, most of the flow of lubricant is assumed to 
be the laminar flow. The high speed journal bearings 
lubricated with unconventional lubricants of low viscos- 
ity give rise to large film Reynolds numbers, and there- 
fore the flow of the bearing becomes turbulent. 

Although virtually all physical phenomena in the real 
world can be regarded as nonlinear, most of these phe- 
nomena can be simplified to a linear form given a suffi- 
ciently precise linearization technique. However, this 
simplification is inappropriate for high-power, high rota- 
tional speed gear systems, and its application during the  

design and analysis stage may result in a flawed or po- 
tentially dangerous operation. As a result, nonlinear ana- 
lysis methods are generally preferred within engineering 
and academic circles. The current study performs a non- 
linear analysis of the dynamic behavior of a gear pair 
system equipped with long journal bearings under turbu-
lent effect and nonlinear suspension. The non-dimen- 
sional equation of the gear-bearing system is then solved 
using the Runge-Kutta method. The non-periodic behav- 
ior of this system is characterized using phase diagrams, 
power spectra, Poincaré maps, bifurcation diagrams, Ly- 
apunov exponents and the fractal dimension of the sys- 
tem. 

2. Mathematical Modeling 

To be able to simulate the gear-bearing system, some 
assumptions are presented to simplify dynamic models. 
The assumptions of nonlinear suspension (hard spring 
effect), long journal bearing, turbulent flow effect, strongly 
nonlinear gear meshing force and strongly nonlinear fluid 
film force effect are established. Figure 1 shows the 
gear-baring model presented in this study, and Figure 2 
presents a schematic illustration of the dynamic model 
considered between gear and pinion. Og and Op are the 
center of gravity of the gear and pinion, respectively; O1 
and O2 are the geometric centers of the bearing 1 and 
bearing 2, respectively; Oj1 and Oj2 are the geometric 
centers of the journal 1 and journal 2, respectively; m1 is 
the mass of the bearing housing for bearing 1 and m2 is  
 

 

Figure 1. Schematic illustration of the gear-bearing system 
under nonlinear suspension. 
 

 

Figure 2. Model of force diagram for pinion and gear. 
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the mass of the bearing housing for bearing 2; mp is the 
mass of the pinion and mg is the mass of the gear; Kp1 and 
Kp2 are the stiffness coefficients of the shafts; K11, K12, 
K21 and K22 are the stiffness coefficients of the springs 
supporting the two bearing housings for bearing 1 and 
bearing 2; C1 and C2 are the damping coefficients of the 
supported structure for bearing 1 and bearing 2, respec- 
tively; K is the stiffness coefficient of the gear mesh, C is 
the damping coefficient of the gear mesh, e is the static 
transmission error and varies as a function of time. Note 
that (Xi, Yi) are fixed coordinates, while (ei, i) are rota- 
tional coordinates, in which ei is the offset of the journal 
center and i is the attitude angle of the rotor relative to 
the X-coordinate direction. 
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According to the principles of force equilibrium, the 
forces acting at the center of journal 1, i.e. Oj1(Xj1, Yj1) 
and center of journal 2, i.e. Oj2(Xj2, Yj2) are given by  
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radial and tangential directions for the center of journal 1, 
respectively, and fei2 and f2 are the viscous damping 
forces in the radial and tangential directions for the cen- 
ter of journal 2, respectively. 
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Equations (13)-(24) describe a non-linear dynamic 
system. In the current study, the approximate solutions of 
these coupled non-linear differential equations are ob- 
tained using the fourth order Runge-Kutta numerical 
scheme. 

3. Analytical Tools for Observing Nonlinear  
Dynamics of Gear-Bearing System  

In the present study, the nonlinear dynamics of the gear- 
bearing system shown in Figure 1 are analyzed using 
Poincaré maps, bifurcation diagrams, the Lyapunov ex- 
ponent and the fractal dimension. The basic principles of 
each analytical method are reviewed in the following 
sub-sections. 

3.1. Dynamic Trajectories and Poincaré Maps 

The dynamic trajectories of the gear-bearing system pro- 
vide a basic indication as to whether the system behavior 
is periodic or non-periodic. However, they are unable to 
identify the onset of chaotic motion. Accordingly, some 
other form of analytical method is required. In the cur- 
rent study, the dynamics of the gear-bearing system are 
analyzed using Poincaré maps derived from the Poincaré 
section of the gear system. A Poincaré section is a hy- 
per-surface in the state space transverse to the flow of the 
system of interest. In non-autonomous systems, points on 
the Poincaré section represent the return points of a time 
series corresponding to a constant interval T, where T is 
the driving period of the excitation force. The projection 
of the Poincaré section on the  y nT  plane is referred 
to as the Poincaré map of the dynamic system. When the 
system performs quasi-periodic motion, the return points 
in the Poincaré map form a closed curve. For chaotic 
motion, the return points form a fractal structure com- 
prising many irregularly-distributed points. Finally, for 
nT-periodic motion, the return points have the form of n 
discrete points. 

3.2. Power Spectrum 

In this study, the spectrum components of the motion 
performed by the gear-bearing system are analyzed by 
using the Fast Fourier Transformation method to derive 
the power spectrum of the displacement of the dimen- 
sionless dynamic transmission error. In the analysis, the 
frequency axis of the power spectrum plot is normalized 
using the rotational speed, . 

3.3. Bifurcation Diagram 

A bifurcation diagram summarizes the essential dyna- 
mics of a gear-train system and is therefore a useful 
means of observing its nonlinear dynamic response. In 
the present analysis, the bifurcation diagrams are gener- 
ated using two different control parameters, namely the 
dimensionless unbalance coefficient, β, and the dimen- 
sionless rotational speed ratio, s, respectively. In each 
case, the bifurcation control parameter is varied with a 
constant step and the state variables at the end of one 
integration step are taken as the initial values for the next  
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step. The corresponding variations of the  y nT  coor- 
dinates of the return points in the Poincaré map are then 
plotted to form the bifurcation diagram. 

3.4. Lyapunov Exponent  

The Lyapunov exponent of a dynamic system characte- 
rizes the rate of separation of infinitesimally close tra- 
jectories and provides a useful test for the presence of 
chaos. In a chaotic system, the points of nearby trajecto- 
ries starting initially within a sphere of radius 0  form 
after time  an approximately ellipsoidal distribution 
with semi-axes of length . The Lyapunov exponents  

t
 j t

of a dynamic system are defined by
 
0

1
lim log j

j
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where j  denotes the rate of divergence of the nearby  

trajectories. The exponents of a system are usually or-
dered into a Lyapunov spectrum, i.e. 1 2 m     . 
A positive value of the maximum Lyapunov exponent 
 1  is generally taken as an indication of chaotic mo- 
tion [25]. 

3.5. Fractal Dimension 

The presence of chaotic vibration in a system is generally 
detected using either the Lyapunov exponent or the frac- 
tal dimension property. The Lyapunov exponent test can 
be used for both dissipative systems and non-dissipative 
(i.e. conservative) systems, but is not easily applied to 
the analysis of experimental data. Conversely, the fractal 
dimension test can only be used for dissipative systems, 
but is easily applied to experimental data. In contrast to 
Fourier transform-based techniques and bifurcation dia- 
grams, which provide only a general indication of the 
change from periodic motion to chaotic behavior, dimen- 
sional measures allow chaotic signals to be differentiated 
from random signals. Although many dimensional meas- 
ures have been proposed, the most commonly applied 
measure is the correlation dimension dG defined by 
Grassberger and Procaccia due to its computational speed 
and the consistency of its results. However, before the 
correlation dimension of a dynamic system flow can be 
evaluated, it is first necessary to generate a time series of 
one of the system variables using a time-delayed pseudo- 
phase-plane method. Assume an original time series of 

  ;  1,2,3, , ,i x x it i N    where  is the time delay 
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plotted in an n-dimensional embedding space. Impor-
tantly, the system flow in the reconstructed n-dimen- 
sional phase space retains the dynamic characteristics of 
the system in the original phase space. In other words, if 
the system flow has the form of a closed orbit in the 
original phase plane, it also forms a closed path in the 
n-dimensional embedding space. Similarly, if the system 
exhibits a chaotic behavior in the original phase plane, its 
path in the embedding space will also be chaotic. The 
characteristics of the attractor in the n-dimensional em- 
bedding space are generally tested using the function  
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, where H 

denotes the Heaviside step function, N represents the 
number of data points, and r is the radius of an n-dimen- 
sional hyper-sphere. For many attractors, this function 
exhibits a power law dependence on r as r  0, i.e. 
  Gdc r r . Therefore, the correlation dimension, dG,  

can be determined from the slope of a plot of  log c r    

versus   log r . Grassberger and Proccacia [26] showed  

that the correlation dimension represents the lower bound 
to the capacity or fractal dimension dc, and approaches its 
value asymptotically when the attracting set is distributed 
more uniformly in the embedding phase space. A set of 
points in the embedding space is said to be fractal if its 
dimension has a finite non-integer value. Otherwise, the 
attractor is referred to as a “strange attractor”. To estab- 
lish the nature of the attractor, the embedding dimension 
is progressively increased, causing the slope of the char- 
acteristic curve to approach a steady state value. This value 
is then used to determine whether the system has a fractal 
structure or a strange attractor structure. If the dimension 
of the system flow is found to be fractal (i.e. to have a 
non-integer value), the system is judged to be chaotic. 

In the current study, the attractors in the embedding 
space were constructed using a total of 60000 data points 
taken from the time series corresponding to the dis- 
placement of the system. Via a process of trial and error, 
the optimum delay time when constructing the time se- 
ries was found to correspond to one third of a revolution 
of the system. The reconstructed attractors were placed in  
embedding spaces with dimensions of n = 2, 4, 6, 8, 10, 
12, 14, 16, 18, and 20, respectively, yielding 10 different  

 log c r    versus   log r  plots for each attractor. The  

number of data points chosen for embedding purposes 
(i.e. 60,000) reflects the need for a compromise between 
the computation time and the accuracy of the results. In 
accordance with Chen & Yau [27], the number of points 
used to estimate the intrinsic dimension of the attracting 
set in the current analysis is less than 42M, where M is 
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the greatest integer value less than the fractal dimension 
of the attracting set. 

4. Numerical Results and Discussions 

The nonlinear dynamic equations presented in Equations 
(13) to (24) for the gear-bearing system with nonlinear 
suspension effects, turbulent flow effect, strongly non- 
linear oil-film force and nonlinear gear mesh force were 
solved using the fourth order Runge-Kutta method. The 
time step in the iterative solution procedure was assigned 
a value of π 300  and the termination criterion was spe- 
cified as an error tolerance of less than 0.0001. The time 
series data corresponding to the first 800 revolutions of 
the two gears were deliberately excluded from the dy- 
namic analysis to ensure that the analyzed data related to 
steady-state conditions. The sampled data were used to 
generate the dynamic trajectories, Poincaré maps and 
bifurcation diagrams of the spur gear system in order to 
obtain a basic understanding of its dynamic behavior. 
The maximum Lyapunov exponent and the fractal di- 
mension measure were then used to identify the onset of 
chaotic motion. For convenience, only the data of the 
displacements in the vertical direction were used to gen- 
erate diagrams. 

In practical bearing systems, the rotational speed ratio 
s is commonly used as a control parameter. Accordingly, 
the dynamic behavior of the current gear-bearing system 
was examined using the dimensionless rotational speed 
ratio s as a bifurcation control parameter. Figure 3 pre- 
sents the bifurcation diagrams for the gear-bearing sys- 
tem displacement against the dimensionless rotational 
speed ratio, s and some dynamic trajectories and Poin- 
caré maps (e.g. s = 0.9, 1.0, 1.2, 1.6 and 2.0) are exem- 
plified to describe corresponding dynamic responses. The 
bifurcation diagrams show that the geometric center of 
gear and bearing perform synchronous 1T-periodic mo- 
tion at low values of the rotational speed ratio, i.e. s < 0.9 
and then the chaotic motion can be found as the dimen- 
sionless rotational speed ratio is increased over s = 0.9 
for bearing center. Nevertheless, gear center performs 
quasi-periodic motion at s = 0.9. We may also make sure 
of the chaotic dynamic responses occurring for bearing 
center at i = 0.9 from observing the dynamic orbit (dis- 
ordered trajectory) and Poincaré maps (irregularly-distri- 
buted points). At higher values of the dimensionless rota- 
tional speed ratio, i.e. s > 0.9, the dynamics of the centers 
of bearing 1 and bearing 2 behave as chaos, but gear 
center and pinion center are found to be quasi-periodic 
before the dimensionless rotational speed ratio s > 1.8. 
Then dynamic behavior of gear center and pinion center 
become chaotic while s ≥ 1.8. Therefore, we can find  
that the dynamic behaviors of geometric centers of bear-
ing 1 (or bearing 2) and gear (or pinion) are not syn- 

chronous at higher rotational speed ratios, but persist 
periodic and synchronous at low rotational speed. Above 
results also prove that we will not be able to distinguish 
dynamic behaviors to be chaotic or quasi-periodic mo- 
tions only by dynamic orbits or bifurcation diagrams, but 
also use other schemes such as Poincaré maps, Lyapunov 
exponent or fractal dimension to specify our dynamic 
responses. Thus we introduce Figure 4-7, i.e. phase dia- 
gram, power spectrum, Poincaré Map, Lyapunov expo- 
nent and fractal dimension for 1  and g  with s = 1.8 
and s = 2.0, and we can find the simulation results are 
corresponding with one another. Phase diagrams show 
disordered dynamic behaviors; power spectra reveal nu- 
merous excitation frequencies; the return points in the 
Poincaré maps form geometrically fractal structures; the 
maximum Lyapunov exponent is positive; the fractal di- 
mensions are found to be 1.57 for 1  at s = 1.8, 1.38 for 

g  at s = 1.8, 1.82 for  at s = 2.0 and 1.46 for  at 
s = 2.0. 

y y

y
y 1y gy

Figure 8 present the bifurcation diagrams for the 
dimensionless displacement in the vertical direction of 
the gear-bearing system using the dimensionless un- 
balance coefficient β as a bifurcation parameter. It can be 
observed that the gear system exhibits chaotic motion at 
low values of the dimensionless unbalance coefficient, i.e. 

0.1  . However, as β is increased from 0.11, non- 
periodic motion is replaced by the sub-synchronous nT- 
periodic motion. To test for the existence of a chaotic 
behavior at the values of the dimensionless unbalance 
coefficient, Figures 9-12 illustrate the phase diagrams, 
power spectra, Poincaré maps and Lyapunov exponents 
for the bearing center and gear center in the vertical 
direction of the gear-bearing system at β = 0.06 and 0.08, 
respectively. In every case, the phase diagrams are highly 
disordered and the power spectra reveal numerous exci- 
tation frequencies. Furthermore, it can be seen that the 
return points in the Poincaré maps form geometrically 
fractal structures and the maximum Lyapunov exponent 
is positive in each case. In other words, the results pre- 
sented in these figures all indicate that the gear center ex- 
hibits a chaotic behavior at the values of the dimen- 
sionless unbalance coefficient (β = 0.06 and 0.08). We 
may conclude and prove that greater unbalance para- 
meters would be able to suppress non-periodic motions 
to be nT-periodic motions and even escape the undesired 
motions. 

5. Conclusion 

This study has presented a numerical analysis of the 
nonlinear dynamic response of a gear-bearing system 
subject to nonlinear suspension effects, turbulent flow 
effect, long journal bearing, nonlinear oil-film force and 
nonlinear gear mesh force. The dynamics of the system    
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(b) 

Figure 3. Bifurcation diagrams of gear-bearing system using dimensionless rotational speed ratio, s, as bifurcation parame-
ter. 
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(a)                                      (b)                             (c) 

 

  
(d)                             (e) 

Figure 4. Simulation results obtained for gear-bearing system with s = 1.8(y1). 
 

 
(a)                                      (b)                             (c) 

 
(d)                             (e) 

Figure 5. Simulation results obtained for gear-bearing system with s = 1.8(y1). 
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(a)                                      (b)                             (c) 

 
 

(d)                             (e) 

Figure 6. Simulation results obtained for gear-bearing system with s = 2.0(y1). 
 

 
(a)                                      (b)                             (c) 

 
(d)                             (e) 

Figure 7. Simulation results obtained for gear-bearing system with s = 2.0(y1). 
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(a) 
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(b) 

Figure 8. Bifurcation diagrams of gear-bearing system using dimensionless unbalance parameter, β, as bifurcation parame-
ter. 
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(a)                         (b) (a)                         (b) 

  
(c)                            (d) (c)                            (d) 

Figure 9. Simulation results obtained for gear-bearing sys-
tem with β = 0.06(y1). 

Figure 11. Simulation results obtained for gear-bearing sys- 
tem with β = 0.08(y1). 

  

  
(a)                         (b) (a)                         (b) 

  
(c)                            (d) (c)                            (d) 

Figure 10. Simulation results obtained for gear-bearing sys- 
tem with β = 0.06(y1). 

Figure 12. Simulation results obtained for gear-bearing sys- 
tem with β = 0.08(y1). 

  
have been analyzed by reference to its dynamic trajecto- 
ries, power spectra, Poincaré maps, bifurcation diagrams, 
maximum Lyapunov exponents and fractal dimensions. 
The analysis has investigated the dynamic response of 
the gear-bearing system as a function of both the dimen- 
sionless unbalance coefficient and the dimensionless ro- 
tational speed ratio. Overall, the results presented in this 
study provide a detailed understanding of the nonlinear  

dynamic response of a gear-bearing system under typical 
unbalance approximations and rotational speed conditions. 
Specifically, the results enable suitable values of the un-
balance coefficient and rotational speed ratio to be speci-
fied such that chaotic behavior can be avoided, thus re-
ducing the amplitude of the vibration within the system 
and extending the system life even for turbulent flow 
approximation. 
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