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ABSTRACT

This paper receives the characteristic equation for the determine of wave numbers of phase velocities of elastic waves,
in the thin cylindrical shell with the help of the dynamic theory of the elasticity for the transversely isotropic medium

and of the hypothesis of thin shells.
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1. Introduction

Based on the use of the dynamic theory of the elagticity
for the anisotropic medium and with the help of the hy-
pothesis of thin shells, this paper is determined by the
characteristic equation for wave numbers of elastic
waves in the thin transversely isotropic cylindrical shell.

2. The Dynamic Theory of the Elasticity for
the Transversely Isotropic Medium

Let’'s consider the infinite thin transversely isotropic cy-
lindrical shell. The elastic wave is spread along the axis
Z that orthogonal of the plane of the isotropy. The
transversely isotropic elastic medium is characterized by
five elastic moduluses [1]: A4, A4, A3, A, A, OF by
technical moduluses E,, E,, 14, t45,v4,v5. In the chosen
orientation of the axis Z—E, is the Joung’s modulus,
4, isthe shear modulus, v, isthe Poisson’sratio inthe
plane of the isotropy. E,,u, and v, arethe same val-
ues in the transverse plane. These moduluses connected
with each other by the relationship [1-4]:
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The Hooke's law for the transversely isotropic elastic
medium is written in the next form [1]:
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where U,,U,,U. are components of the displacement
vector U.

Equations of the dynamic balance in the circular cy-
lindrical system of coordinates [with the harmonic de-
pendence from the time exp(iwt)] have the following
appearance [1-4]:
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Components of the displacement vector U,,U,,U.
can be presented in the series form [2-4]:
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where k isthewave number of the elastic wave.
Then we substituted (4) in (5), we receive equations of
the dynamic balance in displacements [2-4]:
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Now if components of the displacement vector
U,,U,,U. taken from (6) substitute in (7)-(9), then we
receive following eguations for radia functions
Um(r),Vm(r),Wm(r) [2-4]:
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Boundary conditions: normal (c,) and tangent
(Tw,rrz) Stresses are equal zero at external (r=a)
and internal (r=5b) surfaces of the elastic shell are
added to Equations (10)-(12) [2-4]:
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3. Hypothesis of Thin Shells

The fellow parameter

z

£=—

R,
can be used for thin shells, where
a+b

Ry = 2

is middle radius and z=r—R, is the coordinate taking
from the middle surface [2-5]:
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The rest of equations can be received, by substitution
of decompositions (16) in Equations (10)-(12) and by
equated of coefficients at identical powers & [2-4]:
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where n=0,12,--- .

It is necessary to use 3-(N+1)—6 of Equations
(23)-(25) and for n=0 and n=1 coefficients with
negative indexes are equal to zero. Then in common with
the Equations (17)-(22) the homogeneous system of
3.(N,+1) equations relative to coefficients x,,y,,z,
is formed. Afterwards, we expand the determinant of this
system and let this determinant is equa zero we receive
the characteristic equation for wave numbers k£ of elas-
tic waves of the mode m in the transversely isotropic
cylindrical shell.

Now we sell pay attention to elastic waves, which
have axial symmetry: the dependence from the angle ¢
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disappears. If vector of the shell displacement U has
not of the component U, , then we have waves with the
vertical polarization. In thin case components of strains
Yvor 7, @nd tangent stresses ¢, ,z,. are equal to zero,

Z

but stresses o,,0,,0. and z,. areequal [2-4]:
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Equations of the dynamic balance (their only 2) have
the following form [2-4]:
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For thethin shell U(r) and W (r) can be expanded
in serieses:

U, =exp(i-k

U(r)=U =314, (34
W(r):W:ijn g (35)

Boundary conditions (their only 2) can be expressed as
[2-4]:
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The subsgtitution (32), (33) and (34), (35) into bound-
ary conditions (36), (37) and into equations of the dy-
namic balance (30), (31) results in the system of
2-(N,+1) equations to calculate unknown coefficients
x,,z,. The characteristic equation for wave numbers
k of elastic axisymmetrical waves in the transversely
isotropic cylindrical shell we receive by expanding the
determinant, which is equals zero. The axisymmetrical
wave of the horizontal polarization (torsional wave) has
only one component U, of the displacement vector U.
The problem in this case has the analytic solution. Com-
ponents of strains ¢,,¢,,¢.,7,. ae equa to zero, but
components of strains y,. and y,, areequal to:

3U 5U U,
oz lyr(p -

The equation of the dynamic balance has the following
form:
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The component U, can be presented as:
UW=V(r)-eXp(kt-z—a)-t), (40)

where £, isthetorsional wave number.
We substitute (40) in (39) and have:
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The Equation (41) is the Bessal’ s equation for Bessel’s
Ji(x-r) and Neiman N, (y,-r) functions of the first
order:

V(r):B'Jl(}(l'r)"'c'Nl(Zl"’)' (42)

where B and C arearbitrary constants;

p 2 Y2
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From the boundary condition z,, =0[r=a;r =b],
we receive the characteristic equation for torsional wave
numbers £, :

i)~ ea) | WD) WD) [ b)) [ e M) o
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where

Ji(zl~a)=%[r=a]-

4. Conclusions

In the paper, we found the characteristic equation for
wave numbers of elastic waves in thin transversely iso-
tropic cylindrical shell with the help of the dynamic the-
ory of the elaticity for the orthotropic medium and of
the hypothesis of thin shells both for three—dimensional
and axially symmetric problems.
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