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ABSTRACT 

This article checks a perturbing gravitational potential, with some orbit dynamics parameters: the angular precession at 
each single point of any elliptic orbit, the increase of the eccentricity of the Moon and the secular increase of the Astro-
nomical Unit. This potential is consistent with the solution of the precession of Mercury, event which was the first suc-
cess of General Relativity, and now is near to reach its first centenary. We suggest in this paper to update the classic test 
of G.R., studying the gradual progression of precession, not only in its perihelion but testing a complete trajectory 
around the Sun. 
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1. Perturbing Gravitational Potential P( ) 

We will set an inertial frame with the origin in the bary- 
centre of the Sun-Mercury system, and not in the bary- 
centre of the solar system; this is because we are going to 
examine Mercury’s orbit as a geodesic free-fall path, 
isolated from other planets gravitational interference. 

Potential  P   is defined as a slight perturbation to 
the Newtonian gravitational potential, linked with the 
radial velocity of the target. We also assume potential’s 
transmission velocity, equal to that of light (c). 

Consider a target with a radial speed Vr related to the 
inertial frame, moving in the same forward direction as 
the potential. The transit time of the potential crossing 
through the target, will be larger related with the transit 
time when the object is in a rest position and will de- 
crease, if they are moving in opposite directions. The 
larger or reduced transit time between target and poten- 
tial, is proportional to (Vr/c). 

Be t1 the transit time of a potential crossing through an 
object. If the target moves in the same forward direction 
as the potential, the transit time t2 will be larger than t1 
and will have the following expression, only acceptable 
if  (leaving aside second order terms in mag- 
nitude, as radial acceleration): 

Vr c

1Vr t c 2 2 t c t                     (1) 
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This coefficient 2 1 1t t t  

 

, is the dimensionless ra- 

tio of the new real disturbing time (t2 – t1) related to the 
unperturbed transit time (t1). 

The new gravitational potential is equal to the Newto- 
nian, added with a perturbing action proportional to 

2
t t t 2 1 1  . Since the potential is an energy field with 

work characteristics, the perturbance is proportional to 
the square of time as it is the product of the acceleration 
by distance. The disturbance is not linear with time nor 
with the radial distance. It is also necessary to accept that 
as quantum electrodynamic iteration, the intensity is pro- 
portional to   2

t t t2 1 1  
The motion of particles in an external gravitational 

field with a Maxwell framework, is in first order equiva- 
lent to a dynamic system linked with (v/c)2. [1] 

. 

Perturbing potential is then defined as: 

 
2 2

2 1

1

t tGM GM Vr
S

r t r c


       
  

       (3) 

where   = true anomaly.  (same sign as gra- 
vity) for 

  0S  
0 π   0S   π 2π for    and   

 S
. 

As the Newtonian field, potential   has a clear 
physical basis, consistent with the laws of impulse and 
momentum transfer, energy conservation and the action/ 
reaction effect of the usual mechanics. There is not there- 
fore a new potential but the same classic gravitational 
field, perturbed by an action that increases/decreases slight- 
ly the force of gravity: the target has a radial speed. 

 PFinal gravitational potential  , will be the classic 
field, added with the perturbing potential. 
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Point out that, if we apply potential   to any per- 
fect sphere or any compact three-dimension target (in- 
stead of a single particle), the resultant ratio is three 
times (Vr/c)2 as we will conclude in Paragraph 5. 

2. Equations of Motion of Mercury Induced 
by Potential  S

 

 

Any small perturbing potential applied to a target in a 
keplerian ellipse, produces slight changes to the orbital 
parameters, first of all a precession, besides other minor 
actions such as the increase/decrease of the orbital axis 
and eccentricity. 

Consider    as the instantaneous angular preces- 
sion at each single point of the Newtonian ellipse. Pre- 
cession will reach a final value (Δ) at the end of one orbit 
as result of its gradual accumulation. We will use Landau 
& Lifshitz formulation [2], which defines the precession 
produced by a perturbing potential. This formula is valid 
as a theorem, suitable for any small perturbation what- 
ever could be its physical origin and returning the exact 
value. Integration is performed over an unperturbed orbit 
[3] (Using Langrange Planetary Equations, we reach a 
very similar result). 

  2 d rad.r U 
 


 

 mS
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2
2

m

M M
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             (5) 

where M = m h = angular momentum, 
δU = perturbing potential Energy =  . 
Then, the instantaneous precession referred to   is: 

   21
radr S

h h
        

 ./ radians       (6) 

where h = angular momentum per unit of mass. 
Applied to any elliptic orbit and a planet like Mercury: 
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where e = eccentricity ; p = semi-latus 
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derivates referred to h are: 
21 1e e

h h e


    [4];         (9) 

and then: 
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Final orbital precession Δ(2π), has the same 
ever could be the eccentricity (e > 0), and is exactly the 
final one

  (11) 

value what 

 orbit precession of: 

  2

6
2 rad./orbit 43 sec.arc./cent.

GM

c p


      (12) 

The resultant one orbit precession produced 
turbing potential 

by per- 
 S   applied to Mercury and 

liptic orbit, is 
any el- 

just exactly the same precession obtained 
by General Relativity in 1.915, which explained the ano- 
maly discovered by LeVerrier in 1.859. 

The question now, is how such action is achieved 
throughout the 88-days orbital period and what are the 
theoretical assumptions about the sequential and gradual 
progression of precession along the orbit. Potential 
 S  , and GR produce exactly the same final one orbit 

precession, however the equations of motion are not the 
same therefore, the instantaneous precession at each sin- 
gle point of the elliptic orbit is different. The instantane- 
ous precession produced by  S  , is not constant nor 
linear, causing an angular lead/lag (Ω) related to the 
fixed and linear GR precession. 

Along the upward branch of the orbit, as Mercury 
moves away from the Sun, the radial velocity has the 
same forward direction as the gravitational potential, so 
perturbing acceleration increases gravity. Perturbing ac- 
celeration is directed inward the orbit, so Mercury will 
move inward in relation with the position it should oc- 
cupy in the keplerian ellipse. 

That means that the equilibrium position is located in a 
point nearer to the Sun: a “previous” point of the ca- 
nonical trajectory. That is why the orbit, as a whole un- 
perturbed ellipse, must then rotate a forward angle: a 
positive instantaneous precession    , whose amount 
is determined by Landau & Lifshitz formulation (Equa- 
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tions (10) and (11)). 
Along the descending branch of t  orbit, Mercury 

comes closer to the Sun with a radial speed opposite to 
the gravitational pote

he

ntial, therefore perturbing accelera- 
tion, decreases gravity. The perturbing acceleration is 
directed outside the orbit, so Mercury will move outward 
in relation with the position it should occupy in the ke- 
plerian ellipse; the equilibrium position is located in a 
farther point to the Sun: a “previous” point of the cano- 
nical ellipse. The orbit must rotate also a forward angle: a 
positive instantaneous precession. 

As seen in Figure 1, (graphic expression of Equations 
10 and 11), the instantaneous precession     produced 
by potential  S  , is always positive, producing a for- 

stabl
ys lo

y and a space-time with spherical 
sy

ward advance in both branches of the orbit. This is be- 
cause perturbing potential produces a e position 
which is alwa cated in a “previous” point in the ke- 
plerian trajectory (Figure 2), and therefore precession is 
always positive and also with symmetrical magnitude 
about the major axis. 

In nearly all General Relativity textbooks and articles, 
the trajectory is defined starting from the Schwarzschild 
solution, in a geometr

 

Figure 1. Instantaneous (δ) and orbital (Δ) precession pro- 
duced by GR and  S . 

 

mmetry. On that basis, the equation of the trajectory of 
Mercury, and any other elliptic orbit is: 

   1 cos

p
r

e   


 
          (13) 

where     is a small function that pro
orbit differences, from the Newtonian 
orbit precession. The classic relativity textbook “Gravi- 

by W.

duces the GR 
kepler-ellipse: an 

tation”  Misner [5], concludes in a linear progress- 
sion: 

 
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p
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 

with 0  = 2πK 
As result of it, GR instantaneous pre

with a fixe  related to 
cession is steady, 

d ratio  , so that the advance along 
rbit inear accumulation till its final value 

(F
ir

elliptical integral: 

one o , has a l
igure 1). This particular solution with a constant an- 

gular precession was, the f st result obtained by Ein- 
stein in 1915 [6]: 

“...That contribution from the radius vector and de- 
scribed angle between the perihelion and the aphelion is 
obtained from the 

2

1 2

d

2

x

A 3
2 2 x x



  
 

  
           (15)  

Figure 2. Instantaneous precession dynamics. Keplerian 
and perturbed orbit. Vr = radial velocity. anw = Newtonian 
acceleration. ap = perturbing acceleration. P1 = Position in 

x
B B

where α1 and α2 (…reciprocal values of
minimal distance from the Sun…) 

GR admits also small periodic oscillations that are  

 the maximal and the Keplerian ellipse. P2 = Position induced by perturbing 
acceleration. P3 = Equivalent position of P2 in the Keplerian 
ellipse.   = True anomaly. δ = Instantaneous Precession. 
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insignificant contributions and their only effect is to 
change slightly the position of the perihelion and the in- 
terpretation of rmin and e [7]. 

The most extended and accepted formulation of GR 
orbit fluctuations is: [8] 

  23 1 1
2 2 6c p

1 cos 2 sine
GM

e             (16)    
    also produces very small oscillations but in mag- 

nitude, are 1/30 related with those ed by produc   S   
n a par- potential. There are also other prop sed i

ticular so
osals ba

lution of the Schwarzschild’s methodo-logical 
approaches [9]. 

The peak instantaneous precession produced by  S   
is at   = 1.73 rad,   = 4.56 rad, very close to the peak 
values of Vr (Figure 2). The maximum angular lead/lag 
is at   = 5.42 rad and   = 0.85 rad, with Ω = ±  
0.54 rad related to the fixed and linear GR precession. 

The peak positional lead/lag of Mercury, would hap- 
pen in A [

K 

  = 2.46 rad] and B [  = 3.82 rad]. This is 
because in these points, the radius is larger. 

In case A, Mercury would be in a forward position 
regarding a GR precession. This relative position would 
be i = 2.4  103 m (transversal vector) and j = –0.36  
103 m (radial vector), magnitudes which would be 
equal but with opposite sign in B. Also point out that 
in about 21 days, Mercury would move from the peak 
forward position (A) to the most delayed (B), always 
referred to the relative location with a constant GR 
precession. 

Spacecraft Messenger has begun to orbit Mercury past 
March 18 (2011), and during two years, both will make 
8.4 revolutions around the Sun. That event should after- 
wards allow to measure and draw accurately the geome- 
try of the whole orbit of Mercury, as an open geodesic 
free-fall path, isolated from other planets gravitational 
interference. Another alternative is to wait till the Bepi- 
Colombo be launched in 2015, an European mission to 
Mercury where, testing relativistic gravity is recognized 
as a crucial scientific objective. 

3. The Increase of Eccentricity of the Orbit 
of the Moon 

This increase has recently been presented [10], collecting 
9 

lo 

 
w

the data extracted by the Lunar Laser Ranging along 3
years since its deployment in the Moon by the Apol
missions. 

The increase is: (9 ± 3)  10−12/year [11,12]. 
We will analyse the effects of a small perturbing ac- 

celeration over the eccentricity of any elliptic orbit. Ac- 
cording to Gauss Planetary Equations, (only acceptable

hen 1e  and low orbit inclination), the eccentricity 
variation, is linked with the perturbing acceleration, what- 
ever could be its physical origin: 

 
2d 1

sin
d r

e e
A

t na


           (17) 

where Ar is the radial perturbing acceleration. 
The perturbing acceleration is the derivative of the per- 

turbing potential  S   related to r, th
to obtain the Newtonian acceleration from

et have the 

e same as we do 
 the classic 

gravitational field. All the particles of the targ
same perturbing acceleration whatever they are located in 
the body: 
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where Ar > 0 (same sign as gravity) for 0 π

2r  

   and 
Ar < 0 for π 2π   . 

If we develop Equation (17) and change deriv
related to time (t) with that related to 

atives 
  

2d d d d dt t r

d d d d de e e e h         (20) 
  

     

For a Keplerian ellipse, we have also: 
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and then, 



 2 3
2

d 3
sin

d

e GM
e

c



          

tegration will give the eccentricity increase 
orbit of the Moon around the Earth. Potential 

    (22) 

The in
along one 
 S   always produces a positive an

about the axis of the ellipse. If we consider the sign of Ar 
in

d symmetrical effect 

 each branch of the orbit, we can integrate between 0 
and π with a double factor. 

 2 3
orbit 2

0

6 sin dGMe e
c p

 


             (23) 

the definite integral is: 

2 2
orbit 2 2

6 84
3

GM GMe e e
c p c p

   

eters are: GM = 3.986  1014 
 108 m 

The increase of eccentricity in one orb
120.279 10e

          (24) 

The Earth/Moon param
m3s–2; e = 0.0549; a = 3.84 

it is: 


orbit                      (25) 

and referred to a year: 

12
year

365 0.279 10 3.73 10
27.3

e      12    (26) 
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Then, we can conclude tha
 produ tential 

t the increase of eccentricity 
of the orbit of the Moon ced by po  S  , is 

obtaine onomical detec- 
tion through the Lunar Laser Ranging. 

4.

consistent with the data d by astr

 The Increase of the Astronomical Unit 

The increase of the Astronomical Unit was analysed by 
Krasinsky [13] however, there is not a clear explanation 
of its origin. 

The increase is: 15 ± 4 cm/year. 
Perturbing potential  S   produces an increase in the 

semi-major axis of the ellipse that, according to Gauss 
Planetary Equations, will have the following expres- 
sion: 

 
2

d 2

d 1
r

a
e A sen

t n e
  


         (27) 

Using similar formulations as in paragraph before, 
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For one orbit of the Earth around the Sun, 
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The Earth-Sun parameters are: 

GM = 13.27  1019 m3s–2; e = 0.0167 

and then: 

. .year 1U A  1.06 cm year              (31) 

ncrease of the Astro- 
nomical U

Then, we can conclude that the i
nit produced by potential  S   applied to the 

, is con t with the data obtained by 
astronomical detection through the a
ric measurements of distances betwee
m

4], are not appropri ied to 

orbit of the Earth sisten
nalysis of radiomet- 
n the Earth and the 

ajor planets including observations from Martian orbit- 
ers from 1.971. 

If we apply Gauss equations to the orbit of other plan- 
ets, these would be only acceptable for those with a very 
low eccentricity. In other cases with higher eccentricity 
orbits, (as Mercury), the Gauss planetary equations and 
others related [1 ate, appl  S   
perturbing potential. The results are: 

2
Venus/orbit  0.74 10 ma    ; Jupiter /orbit 2.7 ma  ;  

Saturn/orbit 3.8 ma   

5. Potential  S  Application to a Three 
Dimension Solid Sphere 

 S  is a perturbation of the classic gravitational poten- 

tial due to the higher/lower pulse of time that implies a 
radial velocity of the target. The coefficient (Vr/c)2, is a 

 
 a 

radial velocity 

dimensionless ratio which defines the relation between
the applied potential to one particle that moves with

related with another with a perfect circular 
orbit. Instead of a particle, we will consider a solid 
sphere and the perturbing potential  S   transit action 
(Figure 3). The trasmission coefficient is different. 

Be t1 the transit time of the potential through the equa- 
torial diameter of the sphere, when the target is moving 
in a perfect circular orbit. When the target has a radial 
velocity Vr (elliptic orbit), the force of gravity associated 
with the potential, should produce and transmit during t1, 
a larger quantity of energy-work than before; the distance 
travelled has been enlarge with a new length of Vr  t1 
producing a very small increase of the sphere’s active 
volume, linked with the perturbing action: A1  Vr  t1 
(Figure 3) 

In order to distribute this new energy, balanced be- 
tween all the particles of the target, we must consider: 

a) Energy (E) transmitted is in direct proportion to the 
spherical surface (A1). 

b) Not all the diameters have the maximum length as 
in the equator. 

c) The coefficient only compares the perturbing action 
regarding the initial situation. 

d) Distribution of the “perturbing action” volume, be- 
tween the total volume of the sphere. 

Therefore, the coefficient k will be: 
2

1 1 1
3 3

2 3
3

4 3 4 3

AVrt R Vrt Vr Vr

R R


  

 
     (32) 

1

and then: 3k

2R t c

  

6.

Potential 

 Conclusions 

 P



  is defined as a slight perturba
 

tion to the  

 

Figure 3. Perturbing potential action through a three di- 
mension solid sphere with a radial velocity (Vr). 
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Newtonian gravitational potential, linked with the radial 
velocity of the target. The larger or reduced transit time 
between target and potential, is proportional to ±(Vr/c), 
coefficient that gives the relative increase or reduction 
ratio related with a particle-target in a rest position or a 
perfect circular movement. There is not therefore a new 
potential but the same classic field, perturbed by an ac- 
tion that increases/decreases slightly the force of gravity: 
the target has a radial speed. 

Applied to the orbit of Mercury, produces exactly the 
same one orbit secular precession deduced by General 
Relativity; however, the equations of motion are not the 
same, and that means differences in the instantaneous 
angular precession. The instantaneous precession, could 

Does these theoretic proposals suit with the complete 
geodesic trajectory of Mercury? 
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7. Appendix 
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d with spiral galaxies, 
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 now, with these new  S   potential proposals. 

tion curves of spiral galaxies. It would be appro- 
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