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ABSTRACT 

In this work, we study some computational aspects for the Bayesian analysis involving stable distributions. It is well 
known that, in general, there is no closed form for the probability density function of stable distributions. However, the 
use of a latent or auxiliary random variable facilitates to obtain any posterior distribution when being related to stable 
distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is 
related to daily price returns of Abbey National shares, considered in [1], and the other is the length distribution analysis 
of coding and non-coding regions in a Homo sapiens chromosome DNA sequence, considered in [2]. Posterior summa-
ries of interest are obtained using the OpenBUGS software. 
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1. Introduction 

A wide class of distributions that encompasses the Gaus-
sian one is given by the class of stable distributions. This 
large class defines location-scale families that are closed 
under convolution. The Gaussian distribution is a special 
case of this distribution family (see for instance, [1]), 
described by four parameters α, β, δ and σ. The 

 0,2   parameter defines the “fatness of the tails”, 
and when α = 2 this class reduces to Gaussian distribu-
tions. The  1,1  



 is the skewness parameter and for 
β = 0 one has symmetric distributions. The location and 
scale parameters are, respectively,  and 

 (see [3]). 
 ,   

0,  
Stable distributions are usually denoted by S  

 , ,    . If a random variable  , ,X S    , then  

 , 0,1
X

Z S
 




  



 (see [4,5]). 

The difficulty associated to stable distributions 
 , ,S    , is that in general there is no simple closed 

form for their probability density functions. However, it 
is known the probability density functions of stable dis- 
tributions are continuous [6,7] and unimodal [8,9]. Also 
the support of all stable distributions is given in (−∞, ∞), 

except for α < 1 and |β| = 1 when the support is (−∞, 0) 
for β = 1 and (0, ∞) for β = −1 (see [10]). 

The characteristic function Φ(.) of a stable distribution 
is given by  

 

 

 
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              
    1      



 

 

(1.1) 

where 1i    and sign(.) function is given by 

 
1, if 0

sign 0, if 0

1, if 0.

x

x

x

x

 
 
 

             (1.2) 

Although a good class for data modeling in different 
areas, one has difficulties to obtain estimates under a 
classical inference approach due to the lack of closed 
form expressions for their probability density functions. 
An alternative is the use of Bayesian methods. However, 
the computational cost can be further exacerbated in as- 
sessing posterior summaries of interest. 

*Corresponding author. A Bayesian analysis of stable distributions is intro- 
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duced by Buckle (1995) using Markov Chain Monte 
Carlo (MCMC) methods. The use of Bayesian methods 
with MCMC simulation can have great flexibility by 
considering latent variables (see, for instance, [11,12]), 
where samples of latent variables are simulated in each 
step of the Gibbs or Metropolis-Hastings algorithms. 

Considering a latent or an auxiliary variable, [1] pro- 
ved a theorem that is useful to simulate samples of the 
joint posterior distribution for the parameters α, β, δ and 
σ. This theorem establishes that a stable distribution for a 
random variable Z defined in (−∞, ∞) is obtained as the 
marginal of a bivariate distribution for the random vari- 
able Z itself and an auxiliary random variable Y. This 
variable Y is defined in the interval (−0.5, aα,β), when 

, and in (aα,β, 0.5), when . The 
quantity aα,β is given by  

 , 0Z    0,Z  

,
, ,

b
a  
  




               (1.3) 

where  

 , min , 2 .
2

b     
  

The joint probability density function for random va- 
riables Z and Y is given by 

 
   , ,

1
, , exp
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z z
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(1.5) 

and 

X
Z





 , for 0.   

From the bivariate density (1.4), [1] shows the mar- 
ginal distribution for the random variable Z is stable Sa 
(  , 0, 1) distributed. Usually, the computational costs to 
obtain posterior summaries of interest using MCMC 
methods are high for this class of models, which could 
give some limitations for practical applications. One 
problem can be the simulation algorithm convergence. In 
this paper, we propose the use of a popular free available 
software to obtain the posterior summaries of interest: 
the OpenBUGS software. 

The paper is organized as follows: in Section 2 we in- 
troduce a special case of the stable distributions, namely, 

the Lévy distribution. In Section 3, we introduce a Bay- 
esian analysis for stable distributions. Two applications 
are presented in Section 4. Section 5 is devoted to some 
concluding remarks. 

2. A Special Case of Stable Distributions: 
Lévy Distribution 

Some special cases of stable distributions are given for 
specified values of α and β. If α = 2 and β = 0 one has the 
Gaussian distribution with δ mean and variance equals to 

22 .  If 0.5   and 1   one has a Lévy distribu- 
tion with probability density function given by 

   
1

32
2

0.5
,,

2
expf x x

x
   


          

    (2.1) 

for δ< x< ∞. Figure 1 presents Lévy probability density 
functions for δ = 0 and different values of the σ scale 
parameter. 

The probability distribution function of the random va- 
riable X with a Lévy distribution defined in (2.1) is given 
by 

   
1

20.5
erf ,, cF x P X x

x
  


     


    (2.2) 

where    erfc 1 erfx x   is the complementary error 
function with the error erf(.) given by 

  2

0

2
erf e d .

x
tx t


              (2.3) 

The Lévy distribution with probability density func-
tion (2.1) has undefined mean and undefined variance but 
its median is given by 
 

 

Figure 1. Lévy density function for δ = 0 and different val- 
ues for the σ scale parameter. 
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2
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Median
1

2 erfc
2




 
  

    

,      (2.4) 1 0.0705230784a  , 

2 0.0422820123a  , 

3 0.0092705272a  , 
where the inverse complementary error function is 

4 0.0001520143a  , 
  1 1erfc 1 erf x x    

5 0.0002765672a   
To obtain the probability, density function or the me- 

dian of a random variable X with a Lévy density function 
different approximations for the complementary error 
function are introduced in the literature (see [13]). Some 
special cases are presented below.  

and  

6 0.0000430638a  ; 

3)  

1)  

 
 42 3 4
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1
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where the maximum error is 5 × 10−4 and a1 = 0.278393, 
,  and ; 2 0.230389a  3 0.000972a  4 0.078108a 

where  
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 166
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1
erf 1 ,

1
x
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 
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     (2.6) and sign(.) is given by (1.2). 

4) An approximation for the inverse error function is 
given by where the maximum error is ,  73 10
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where the constant a and the sign (.) are given in (2.7). 

Assuming a random sample of size n with a Lévy dis- 
tribution with probability density as (2.2), the likelihood 
function for δ and σ is given by 
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ple of size n, where  , ,iX S    , that is,  where I (A) denotes the indicator function of set A. 

Inferences for δ and σ parameters in the case of Lévy 
distribution are obtained using standard Markov Chain 
Monte Carlo methods (see [14,15]). 

 ,0,1i
i

X
Z S





 . 

Assuming a joint prior distribution for α, β, δ and σ, 
given by  0π , , ,    , [1] shows that the joint poste- 
rior distribution for parameters , ,    and σ is given 
by 

3. A Bayesian Analysis for General Stable  
Distributions 

Let us assume that ix , for 1, ,i n  , is a random sam- 
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for , 1, ,i n   0,2  ,  1,1   ,  and 

; 
 ,   

 0,   1 2, , , nx x x  x and  1 2, , , ny y y y are 
respectively, the observed and non-observed data vectors. 
Notice that the bivariate distribution in expression (3.1) 
is given in terms of ix  and the latent variables i , and 
not in terms of i  and i  (there is the Jacobian 

y
z y 1   

multiplied by the right-hand-side of expression (1.4)).  
Observe that when α = 2 one has θ = 2 and , 0b   . 

In this case one has a Gaussian distribution with δ mean 
and 22  variance. 

For a Bayesian analysis of the proposed model, we 
assume uniform U(a,b) independent priors for , ,    
and  , where the hyperparameters a and b are assumed 
to be known in each application following the restrictions 

 0, 2  ,  1,1   ,  ,     and  0,  . 
In the simulation algorithm to obtain a Gibbs sample 

for the random quantities , ,  

0

 and σ having the joint 
posterior distribution (3.1), we assume a uniform U(−0.5, 
0.5) prior distribution for the latent random quantities 

i for  Observe that, in this case, we are as- 
suming ,  , . With this choice of priors, 
one has the possibility to use standard software package 
like OpenBUGS (see [16]) with great simplification to 
obtain the simulated Gibbs samples for the joint posterior 
distribution. 

Y 1, , .i  
0a  
n

b  

In this way, one has the following algorithm: 
1) Start with the initial values  0 ,  0 ,  0 ,  0 ; 
2) Simulate a sample  1 2 n, , ,y y y  y  from the con- 

ditional distributions       0 0 0(0)π ,, , ,i y x    , for 
; 1, ,i n 

3) Update  0 ,  0 ,  0 ,  0 by  1 ,  1 ,  1 , 
 1  from the conditional distributions π  0( |  , (0) , 
(0) , ,x y ), (0)π( |  , (0) , (0) , ,x y ), (0)π( |  , 
(0) , (0) , ,x y ) and (0)π( |  , (0) , (0) , ,x y ); 
4) Repeat Steps 1), 2) and 3) until convergence. 
From expression (3.1), the joint posterior probability 

distribution for , , ,     and  1 2, , , ny y y y   is 
given by 
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where θ and  , .t 


 are respectively defined in (1.4) and 

(1.5) and ih y  is a U(−0.5, 0.5) density function, for 
. 1, ,i n 

Since we are using the OpenBUGS software to simu-
late samples for the joint posterior distribution, we do not 
present here all full conditional distributions needed for 
the Gibbs sampling algorithm. This software only re- 
quires the data distribution and prior distributions of the 

interested random quantities. This gives great computa-
tional simplification for determining posterior summaries 
of interest as shown in the applications below. 

4. Some Applications 

4.1. Buckle’s Data 

In Table 1, we have a data set introduced by [1]. This is 
the daily price return data of Abbey National shares in 
the period from July 31, 1991 to October 08, 1991. 

In Figure 2(a), we present the histogram of the returns 
ρ(.) time series (given in Table 2) while in Figure 2(b) 
we have the Gaussian probability plot for the same data. 
From these figures, one observes that the Gaussian dis-
tribution does not fit well the data. 

Assuming a Lévy distribution with probability density 
function given in (2.1) for a Bayesian analysis we con-
sider the following prior distributions for δ and σ, δ ~ 
U(−1, −0.0271) and σ ~ U (0, 1), where U(a,b) denotes a 
uniform distribution on the interval (a, b). Observe that 
the minimum value for the ρ(.) data is given by −0.0271 
and ix  , that is,  1min , , nx x   To simulate 
samples for the joint posterior distribution for   and σ, 
using standard MCMC methods, we have used Open-
BUGS software which only requires the log-likelihood 
function and prior distributions for model parameters. In 
Table 3, we present the posterior summaries of interest 
considering a burn-in-sample of size 5000 discarded to 
eliminate the initial value effect. After this burn-in-sam- 
ple period we simulate another 200,000 Gibbs samples 
taking every 10-th sample. This gives a final sample of 
size 20,000 to be used for finding the posterior summa- 
ries of interest. Convergence of the Gibbs sample algo- 
rithm was verified by trace-plots of the simulated Gibbs 
samples. From OpenBUGS output we obtain a Deviance 
Information Criterium (DIC) value equals to −151.7. In 
Figure 2, (red line), we have the plot of the fitted Lévy 
density with δ = −0.0487 mean and σ = 0.0391 as the 
scale parameter and the histogram of the ρ (.) returns. 

Assuming a general stable distribution, we present in 
Table 4 the posterior summaries of interest obtained us-
ing OpenBUGS software considering the following pri-
ors: α ~ U(1, 2), β ~ U(−1, 0), δ ~ U(−0.5, 0.5) and σ ~ 
U(0, 0.5). In the simulation procedure, we have used a 
burn-in-sample of size 10,000 and another 490,000 Gibbs 
samples taking every 100-th sample. This gives a final 
sample of size 4900 to be used for finding the posterior 
summaries of interest.  

In Figure 3, we have the trace-plots of the simulated 
Gibbs samples. In Figure 2, we also have the plot of the 
fitted stable distribution with α = 1.653, β = −0.3455, δ = 
0.00782 and σ = 0.001132. We observe good fit of the 
table distribution (black line) The obtained DIC value is s .  
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Table 1. Daily price returns with n = 50. 

296 296 300 302 300 304 303 299 293 294 

294 293 295 287 288 297 305 307 307 304 

303 304 304 309 209 309 307 306 304 300 

296 301 298 295 295 293 292 297 294 293 

306 303 301 303 308 305 302 301 297 299 

 

   
(a)                                                          (b) 

Figure 2. (a) Empirical return distribution; (b) Normal probability plot. 
 

Table 2. Returns ρ(t), at time t, for n = 49. 

0.0000 0.0135 0.0067 −0.0066 0.0133 −0.0033 −0.0132 −0.0201 0.0034 0.0000 

−0.0034 0.0068 −0.0271 0.0035 0.0312 0.0269 0.0066 0.0000 −0.0098 −0.0033 

0.0033 0.0000 0.0164 0.0000 0.0000 −0.0065 −0.0033 −0.0065 −0.0132 −0.0133 

0.0169 −0.0100 −0.0101 0.0000 −0.0068 −0.0034 0.0171 −0.0101 −0.0034 0.0444 

−0.0098 −0.0066 0.0066 0.0165 −0.0097 −0.0098 −0.0033 −0.0133 0.0067 - 

 
Table 3. Posterior summaries for the Lévy distribution. 

Parameter Mean Standard Deviation 95% Credible Interval 

δ −0.04868 0.001669 (−0.05284, −0.04628) 

σ 0.03901 0.008916 (0.02343, 0.05948) 

 
Table 4. Posterior summaries for general stable distribution. 

Parameter Mean Standard Deviation 95% Credible Interval 

α 1,653 0.01639 (1.29, 1.965) 

β −0.3455 0.02556 (−0.9188, −0.01257) 

δ 0.00782 0.0702 (0.00549, 0.01048) 

σ 0.001132 1.35e-4 (−0.002478, 0.004601) 
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equal to −70480. From this value we conclude that the 
data is better fitted by the general stable distribution in 
contrast to the Lévy distribution (since it has smaller DIC 
value). 

4.2. Coding and Non-Coding Regions in DNA  
Sequences 

Crato, et al. [2] introduce the length distribution of coding 
and non-coding regions for all Homo Sapiens chromo-
somes available from the European Bioinformatics Insti-
tute. In this way they consider a transformation of the 
genomes in numerical sequences. As an illustration, we  

 

have, respectively, in Tables 5 and 6, the data for coding 
and non-coding length sequences for H. Sapiens chro-
mosomes transformed in a logarithm scale (sequence 
CM000275 extracted from Table 2, in [2]). 

Figure 4 presents the histograms of the data given in 
Tables 5 and 6, assuming a logarithm transformation. 
From these plots, we observe that a Gaussian distribution 
could not be a reasonable model for fitting the data. As-
suming a Lévy distribution with probability density func-
tion (2.1) for a Bayesian analysis we consider the fol-
lowing prior distributions for δ ~ U (−1000, 1.0986), 
where 1.0986 is the minimum of the observations in 

   
(a)                                                            (b) 

   
(c)                                                            (d) 

Figure 3. Trace-plots for and α, β, δ and σ Buckle’s data. 
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logarithm scale, and for σ ~ U (0, 10000). In Table 7, we 
have the posterior summaries of interest considering the 
transformed coding and non-coding data using Open- 
BUGS software. 

Figure 4 shows the fitted Lévy density with δ = 
0.9693 and σ = 3.167 (for coding data) and with δ = 
4.182 and σ = 1.633 (for non-coding data). From this 
figure we observe that the data is not well fitted by the 
Lévy distribution. 

For a Bayesian analysis of the data assuming a general 
stable distribution, we consider the following prior dis-
tributions: α ~ U(0,2), β ~ U(-1,0), δ ~ U(0,3), σ ~  
 

U(0,10). Using the OpenBUGS software, we simulated 
600,000 Gibbs samples. From these 600,000 samples, we 
discarded the first 100,000 as a “burn-in-sample” to 
eliminate the initial value effects. After this “burn- 
in-sample” period, we took every 500-th sample, which 
gives a final Gibbs sample of size 1,000 to be used for 
Monte Carlo of the interested random quantities. Con-
vergence of the Gibbs sampling algorithm was verified 
from trace plots of the simulated samples for each pa-
rameter. Table 8 presents the posterior summaries of 
interest. Figure 5 shows the fitted stable distributions for 
coding and non-coding data. We observe good fit of 

Table 5. Coding sequence CM000275. 

108 103 68 55 97 73 87 110 320 111 152 177 11 297 61 

42 88 68 64 78 272 190 39 254 18 95 119 263 168 165 

20 101 165 127 74 121 60 97 63 141 132 252 145 57 53 

47 44 425 5 379 246 87 97 179 102 74 161 34 11 116 

431 101 104 58 74 38 9 54 76 111 110 95 124 80 77 

353 215 34 111 77 152 77 60 394 77 111 144 51 353 77 

111 144 51 128 94 110 113 146 174 11 155 254 121 117 212 

48 57 156 183 76 353 54 91 781 69 149 77 122 70 134 

129 145 158 119 158 181 162 119 194 181 124 147 96 358 138 

179 137 599 69 199 350 149 77 122 134 129 145 158 119 158 

181 162 119 194 181 124 147 96 358 138 179 137 599 69 119 

350 323 95 92 32 20 91 282 112 282 1659 554 161 263 46 

90 346 11 139 46 33 183 212 341 512 98 512 109 21 512 

692 101 107 84 151 185 20 15 83 103 50 81 91 5 29 

103 147 64 3 26 180 97 171 157 101 26 180 97 171 4 

479 105 33 74 159 64 94 364 56 31 143 88 78 18 81 

300 103 108 144 458 104 145 200 342 353 77 111 148 125 56 

160 74 37 201 86 131 127 114 278 258 115 68 30 115 68 

57 137 98 91 57 137 91 18 114 152 177 103 108 272 103 

108 227 108 103 177 152 114 110 87 98 50 195 90 53 66 

28 139 159 118 136 141 139 178 191 159 122 89 80 370 159 

31 150 86 83 122 467 91 51 63 139 71 71 37 96 72 

1591 1622 767 122 29 188 88 18 248 88 74 57 8 273 379 

260 44 59 257 260 44 233 33 211 173 77 117 105 18 139 

390 - - - - - - - - - - - - - - 

 

    

(a)                                                            (b) 

Figure 4. Histograms for log(coding) and log(non-coding) and fitted Lévy distributions. 
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Table 6. Non-coding sequence CM000275. 

473 3014 46804 1610 596 315546 82 438 122 1995 1886 2686 

1  2  3  2  

1490

1783 1518 2502 1230 

3312 5216 1905 4273

4426 3091 2781 1494

7079 1556 2507

129 102 6083

5  8  3  2  1  1  2  

1211 3807

3  1  

3778 124 2610 419 1045 4157 123 

1018 1486 2385 

1  1  

1981 1316 1143 1041 4123 2814 

3377 1071

1781 1379 2766 1351

1 2  3  

6403

1046 15536 

1  1  1  1  

1662 

1193 3901 2995 1571

2  4  

4831 5710 2334 1254

1041 9495

2373 3824 1836 256 

2751 2060 2855 693 5216

17891 4797 507006 439 3003 254680 132 08227 3316 27057 77385 99389

11126 1 14946 21801 29460 182825 1282 2657 850 318 5045 6112 

2730 110 699 392 6047 20772 7 31 270 1959 

99 126 0 478 6 94 689 2308 942 1034 936 1 

2590 2357 42188 686 1250 6 398 808 2001 

8 129 607 3731 39 98 129 358 129 29 99 608 

129 102 107 1682 608 107 5 402 86 858 

2556 1917 3300 15979 94268 8404 0693 2501 149896 5176 2545 7795

9 27552 28108 441 226144 310 15 1146 1305 247 1656 3778 

124 2610 419 116 10458 96 4157 123 275 84 116 4880 

567 438 452 173 188 284 154 96 8536 146 1305 2073 

116 8 96 275 84 116 

4880 567 438 452 173 188 284 154 96 75 

2074 7530 471 2014 1257 863 02886 426 369 5266 496 103 

6531 398292 1 3485 547 52053 13 70 6 41846 

560 4016 479 6 5064 67998 441 386840 1522 56 3721 2899 

3500 23 1931 392 699 110 25884 3013 1236 

7424 10533 1265 24203 3013 1236 7424 1955 7994 142294 6042 49782

290 164 8 152 117 2263 8885 409 83 489 882 2368 

836 451 4275 39510 2967 1082 878 610 129 100 

00912 1610 12498 4740 97823 433 1102 1320 1133 654 2979 57170

9491 2576 11103 8314 2576 60172 219 111 949 219 1158 

53 1466 2036 1925 2995 423 423 13114 34 454 

2709 1936 2008 870 83 425 19373 45480 1308 11169 16584 3630

7 5045 9466 67 3 13912 198 651 6242 617 985 

2978 122 1039 2194 2636 1138 2212 1 1 561 437 90 

1401 32 2382 167632 421 1622 145848 1639 7 90 

421 1031 256 421 1357 297 66358 271 78 87 924 139 

78 87 233 51764 138 66 19259 6 189 

 
able 7. Posterior summaries, in the case of the Lévy distribution, for coding and non-coding regions of CM000275 sequence. 

Parameter Mean Standard Deviation 95% Credible Interval 

T

Coding 

δ 0.9693 0.0260 (0.9106, 1.0160) 

Non-coding 

δ 4.182 0.0325 (4.114, 4.239) 

σ 3.1670 0.2437 (2.7060, 3.6490) 

σ 1.633 0.1496 (1.345, 1.628) 
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Table 8. Posterior summaries, in the case eral stable distributi coding and non-coding regions of CM000275 

Parameter Mean Standard Deviation 95% Confidence Interval 

 of gen ons, for 
sequence. 

Coding 

α 1.583 0.09803 (1.402, 1.783) 

−  (− ) 

(  

Non-coding 

α 1.974 0.02802 (1.909, 1.999) 

−  (− ) 

β 0.08868 0.06195 0.246, −0.0029

δ 4.722 0.03743 (4.661, 4.802) 

σ 0.4785 0.03409 0.4098, 0.5424)

β 0.5291 0.3111 0.989, −0.0242

δ 7.882 0.1225 (7.601, 8.100) 

σ 1.638 0.06139 (1.520, 1.767) 

 

    
(a)                                                     (b) 

Figure 5. ibution. 
 

e stable distributions in 

 could be a good alterna- 

 key to obtain a 
go

       

 Histograms for log(coding) and log(non-coding) and fitted stable distr

both cases. techniques (see, for instance, [11]) is theth
od performance for the MCMC simulation method for 

applications using stable distributions. Observe that 
MCMC methods are a class of algorithms for sampling 
from probability distributions based on constructing a 
Markov Chain that has the desired distribution as its 
equilibrium distribution. The state of the chain after a 
large number of steps is then used as a sample of the de- 
sired distribution. The quality of the sample improves as 
a function of the number of steps. The obtained simula- 
tion results for the applications in Section 4, could be 
easily replicated using the same auxiliary random vari- 
able Y defined in Section 1 and the non-informative prior 
distributions defined in Section 3 for the parameters of 
the model. More accurate posterior summaries results 
could be obtained using informative prior distributions 

5. Concluding Remarks 

The use of stable distributions
tive for many applications in data analysis, since this 
model has a great flexibility for fitting the data. With the 
use of Bayesian methods and MCMC simulation meth- 
ods it is possible to get inferences for the model despite 
the nonexistence of an analytical form for the density 
function. It is important to point out that the computa- 
tional work in the sample simulations for the joint poste- 
rior distribution of interest can be greatly simplified us- 
ing standard free softwares like the OpenBUGS software.  

In the simulation study considered in both examples 
introduced in Section 4, the use of data augmentation 
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for the parameters of the model based on prior opinion of 
experts rather than using non-informative priors as it was 
assumed in this paper. Observe that although the non-
existence of an analytical form for the density function 
for stable distributions, the moments could be obtained 
from the characteristic function defined in (1.1). 

We emphasize that the use of OpenBUGS software 
does not require large computational time to get the pos-
terior summaries of interest, even when the simulation of 
a large number of Gibbs samples are needed for the algo- 
rit

e e Processos Estocásticos- 
. Mazucheli gratefully ack- 

. Buckle, “Bayesian Inference for Stable Distribu- 
tions,” Journal of the American Statistical Association
Vol. 90, No. 430  
doi:10.1080/01

hm convergence. These results could be of great inter- 
est for researchers and practitioners, when dealing with 
non Gaussian data, as in the applications presented here. 
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