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ABSTRACT 

We considered a kind of singular integral operator with Weierstrass function kernel on a simple closed smooth curve in 
a fundamental period parallelogram. Using the method of complex functions, we established the Bertrand Poincaré 
formula for changing order of the corresponding integration, and some important properties for this kind of singular 
integral operator. 
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1. Introduction 

The properties of singular integral operator with Cauchy 
or Hilbert kernel on simple closed smooth curve or open 
arc have been elaborately discussed in [1-3]. Based on 
these, for the boundary curve is a closed curve or an open 
arc, the authors discussed the singular integral operators 
and corresponding equation with Cauchy kernel or Hil- 
bert kernel in [1-3]. In recent years, many authors dis- 
cussed the numerical solution of a class of systems of 
Cauchy singular integral equations with constant coeffi- 
cients, Numerical methods for nonlinear singular Vol- 
terra integral equations in [4-6].  

In this paper, we consider a kind of singular integral 
operator with Weierstrass function kernel on a simple 
closed smooth curve in a fundamental period parallelo- 
gram. Our goal is to develop the Bertrand poincaré for- 
mula for changing order of the corresponding integration, 
and some important properties of the above singular in- 
tegral operator. 

2. Preliminaries 

Definition 1 Suppose that 1 2,   are complex constants 
with  1 2Im 0   , and P denotes the fundamental 
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is called the singular integral operator with  -function 
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Since  is uniformly convergent in any closed 
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then (1) can be rewritten in the form 
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where is a Fredholm operatok  r and 0K  is called the 
charact istic operator of er K . Now the dex of in K  is  
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where  
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So is a Fredholm operator, and then the charac- teristic operator of K 1k   operator becomes 
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Therefore, we concluded that 0 0K K  
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can not be established, that is 0K   . 
For convenience, we write 
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where the fixed nonzero point and the rigin lie in 
. It is not difficult to results. 
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b) (Poincare-Bertrand formula) 
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3. Some Properties of Operator K 
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where is some finite constant. Substituting (8) into 
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where the sum of the former two terms in the right hand 
of Equation (10) are the characteristic operator, and the 

remainder in that is a Fredholm operator. 
Proof By definition, we deduce that 
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Substituting (13) into (12), we see that  
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