Some Properties of a Kind of Singular Integral Operator with Weierstrass Function Kernel

Lixia Cao
Department of Information and Computing Sciences, Mathematics College, Northeast Petroleum University, Daqing, China
Email: caolixia98237@163.com

Received June 16, 2013; revised July 16, 2013; accepted July 25, 2013
Copyright © 2013 Lixia Cao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We considered a kind of singular integral operator with Weierstrass function kernel on a simple closed smooth curve in a fundamental period parallelogram. Using the method of complex functions, we established the Bertrand Poincaré formula for changing order of the corresponding integration, and some important properties for this kind of singular integral operator.

Keywords: Weierstrass Function Kernel; Singular Integral Operator; Bertrand Poincaré Formula; Properties

1. Introduction

The properties of singular integral operator with Cauchy or Hilbert kernel on simple closed smooth curve or open arc have been elaborately discussed in [1-3]. Based on these, for the boundary curve is a closed curve or an open are, the authors discussed the singular integral operators and corresponding equation with Cauchy kernel or Hilbert kernel in [1-3]. In recent years, many authors discussed the numerical solution of a class of systems of Cauchy singular integral equations with constant coefficients, Numerical methods for nonlinear singular Volterra integral equations in [4-6].
In this paper, we consider a kind of singular integral operator with Weierstrass function kernel on a simple closed smooth curve in a fundamental period parallelogram. Our goal is to develop the Bertrand poincaré formula for changing order of the corresponding integration, and some important properties of the above singular integral operator.

2. Preliminaries

Definition 1 Suppose that ω_{1}, ω_{2} are complex constants with $\operatorname{Im}\left(\omega_{1} / \omega_{2}\right) \neq 0$, and \mathbf{P} denotes the fundamental period parallelogram with vertices $\pm \omega_{1} \pm \omega_{2}$. Then the
function

$$
\zeta(z)=1 / z+\sum_{m, n}^{\prime}\left[1 /\left(z-\Omega_{m n}\right)+1 / \Omega_{m n}+z / \Omega_{m n}^{2}\right]
$$

is called the Weierstrass ζ-function, where

$$
\Omega_{m n}=2 m \omega_{1}+2 n \omega_{2}
$$

\sum^{\prime} denotes the sum of all $m, n=0, \pm 1, \pm 2, \cdots$, except for $^{m, m}, n=0$.

Definition 2 Suppose that L_{0} is a smooth closed curve in the counterclockwise direction, lying entirely in the fundamental period parallelogram \mathbf{P}, with $z_{0}(\neq 0)$ and the origin lying in the domain S_{0}^{+}enclosed by L_{0}. The following operator

$$
\begin{align*}
& K \varphi \equiv a\left(t_{0}\right) \varphi\left(t_{0}\right) \\
& +\frac{1}{\pi i} \int_{L_{0}} \varphi(t) K\left(t_{0}, t\right)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t, t_{0} \in L_{0} \tag{1}
\end{align*}
$$

is called the singular integral operator with ζ-function kernel on L_{0}, where $\varphi(t) \in H\left(L_{0}\right)$ is the unknown function, and

$$
K\left(t_{0}, t\right) \in H\left(L_{0} \times L_{0}\right), a(t) \in H\left(L_{0}\right)
$$

are the given functions.
Letting $b(t)=K(t, t)$, then (1) becomes

$$
\begin{align*}
& K \varphi \equiv a\left(t_{0}\right) \varphi\left(t_{0}\right)+\frac{b\left(t_{0}\right)}{\pi i} \int_{L_{0}} \varphi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t \tag{2}\\
& +\frac{1}{\pi i} \int_{L_{0}}\left[K\left(t_{0}, t\right)-K\left(t_{0}, t_{0}\right)\right]\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \varphi(t) \mathrm{d} t
\end{align*}
$$

Since $\zeta(t)$ is uniformly convergent in any closed bounded region lying entirely in \mathbf{P},

$$
\left|\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right| \leq 1 /\left|t-t_{0}\right|+M
$$

for any $t_{0}, t \in L_{0}$, where M is some positive finite constant. By noting that $K\left(t_{0}, t\right) \in H^{\alpha}(0<\alpha \leq 1)$, we
obtain

$$
\left|\left[K\left(t_{0}, t\right)-K\left(t_{0}, t_{0}\right)\right]\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right]\right| \leq N /\left|t-t_{0}\right|^{\lambda}
$$

$(0<\lambda \leq 1)$, where N is some positive finite constant. Write

$$
\begin{aligned}
& \qquad K^{0} \varphi \equiv a\left(t_{0}\right) \varphi\left(t_{0}\right)+\frac{b\left(t_{0}\right)}{\pi i} \int_{L_{o}} \varphi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t, \\
& k\left(t_{0}, t\right)=\frac{1}{\pi i}\left[K\left(t_{0}, t\right)-K\left(t_{0}, t_{0}\right)\right]\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \quad \text { defined as } \kappa=\frac{1}{2 \pi}\left[\arg \frac{D(t)}{S(t)}\right]_{L_{0}}, \text { where } \\
& k \varphi \equiv \int_{L_{0}} k\left(t_{0}, t\right) \varphi(t) \mathrm{d} t \\
& \text { then (1) can be rewritten in the form }
\end{aligned}
$$

$$
\begin{equation*}
\left(K^{0}+k\right) \varphi \tag{3}
\end{equation*}
$$

where k is a Fredholm operator and K^{0} is called the characteristic operator of K. Now the index of K is
and for definiteness we assume that $a^{2}(t)-b^{2}(t) \neq 0$, namely we assume that K is an operator of normal type.

Now the associated operator of (1) takes the form

$$
\begin{equation*}
K^{\prime} \psi \equiv a\left(t_{0}\right) \psi\left(t_{0}\right)-\frac{1}{\pi i} \int_{L_{0}} K\left(t, t_{0}\right) \psi t\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t, t_{0} \in L \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
K^{\prime} \psi \equiv a\left(t_{0}\right) \psi\left(t_{0}\right)-\frac{1}{\pi i} \int_{L_{0}} b(t) \psi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t+\int_{L_{0}} k\left(t, t_{0}\right) \psi(t) \mathrm{d} t, \quad t_{0} \in L \tag{4}
\end{equation*}
$$

and so that the associated operator of K^{0} becomes

$$
K^{0^{\prime}} \psi \equiv a\left(t_{0}\right) \psi\left(t_{0}\right)-\frac{1}{\pi i} \int_{L_{0}} b(t) \psi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t, t_{0} \in L .
$$

In addition, if we write

$$
k_{1} \psi\left(t_{0}\right)=\int_{L_{0}}\left\{k\left(t, t_{0}\right)-\frac{1}{\pi i}\left[b(t)-b\left(t_{0}\right)\right]\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right]\right\} \psi(t) \mathrm{d} t, t_{0} \in L
$$

then (4) can be rewritten as

$$
\begin{equation*}
K^{\prime} \psi \equiv a\left(t_{0}\right) \psi\left(t_{0}\right)-\frac{b\left(t_{0}\right)}{\pi i} \int_{L_{0}} \psi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t+k_{1} \psi(t), t_{0} \in L \tag{5}
\end{equation*}
$$

where

$$
\left|\left[b(t)-b\left(t_{0}\right)\right]\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right]\right| \leq D /\left|t-t_{0}\right|^{\lambda} \quad(0 \leq \lambda<1, \quad D \quad \text { is some finite constant }) .
$$

So $k_{1} \psi$ is a Fredholm operator, and then the charac- teristic operator of K^{\prime} operator becomes

$$
\begin{equation*}
K^{\prime 0} \psi \equiv a\left(t_{0}\right) \psi\left(t_{0}\right)-\frac{b\left(t_{0}\right)}{\pi i} \int_{L_{0}} \psi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t \tag{6}
\end{equation*}
$$

Therefore, we concluded that $K^{\prime 0} \psi=K^{0} \psi$ usually can not be established, that is $K^{\prime 0} \psi \neq K^{0 \prime} \psi$.

For convenience, we write

$$
\mathrm{X}(z, \sigma)=\zeta(z-\sigma)+\zeta\left(\sigma-z_{0}\right)
$$

where the fixed nonzero point z_{0} and the origin lie in S_{0}^{+}. It is not difficult to get the following results.

Lemma 1 Suppose that $f(t, \tau) \in H\left(L_{0} \times L_{0}\right)$, and with the same L_{0} as mentioned before, then
a) $\int_{L_{0}} \mathrm{~d} t \int_{L_{0}} f(t, \tau) \mathrm{X}(\tau, t) \mathrm{d} \tau=\int_{L_{0}} \mathrm{~d} \tau \int_{L_{0}} f(t, \tau) \mathrm{X}(\tau, t) \mathrm{d} t$,

$$
\int_{L_{0}} \mathrm{X}(\tau, t) \mathrm{d} t \int_{L_{0}} f(t, \tau) \mathrm{d} \tau=\int_{L_{0}} \mathrm{~d} \tau \int_{L_{0}} f(t, \tau) \mathrm{X}(\tau, t) \mathrm{d} t
$$

b) (Poincare-Bertrand formula)

$$
\int_{L_{0}} \mathrm{X}\left(t, t_{0}\right) \mathrm{d} t \int_{L_{0}} f(t, \tau) \mathrm{X}(\tau, t) \mathrm{d} \tau=-\pi^{2} f\left(t_{0}, t_{0}\right)
$$

3. Some Properties of Operator K

1) If $\varphi \in H$, then $K \varphi \in H$.

Proof Through calculation and estimation, we have

$$
\begin{equation*}
\left|\int_{L_{0}} K\left(t_{1}, t\right) \varphi(t) \zeta\left(t_{1}\right) \mathrm{d} t-\int_{L_{0}} K\left(t_{2}, t\right) \varphi(t) \zeta\left(t_{2}\right) \mathrm{d} t\right| \leq M\left|t_{1}-t_{2}\right|^{\alpha}+N\left|\zeta\left(t_{1}\right)-\zeta\left(t_{2}\right)\right| \tag{7}
\end{equation*}
$$

for any $t_{1}, t_{2} \in L_{0}$, where M and N are all finite constant. While for any $t_{1}, t_{2} \in L_{0}$, we have

$$
\begin{equation*}
\left|\zeta\left(t_{1}\right)-\zeta\left(t_{2}\right)\right| \leq\left|\frac{t_{1}-t_{2}}{t_{1} t_{2}}\right|+\sum_{m, n}^{\prime}\left|\frac{t_{1}-t_{2}}{\left(t_{1}-\Omega_{m n}\right)\left(t_{2}-\Omega_{m n}\right)}\right|+\sum_{m, n}^{\prime}\left|\frac{t_{1}-t_{2}}{\Omega_{m n}^{2}}\right| \leq Q\left|t_{1}-t_{2}\right| \tag{8}
\end{equation*}
$$

where Q is some finite constant. Substituting (8) into (7), we obtain

$$
\begin{equation*}
\int_{L_{0}} K\left(t_{0}, t\right) \varphi(t) \zeta\left(t_{0}\right) \mathrm{d} t \in H \tag{9}
\end{equation*}
$$

Similarly we know that

$$
\int_{L_{0}} K\left(t_{0}, t\right) \varphi(t) \zeta\left(t-t_{0}\right) \mathrm{d} t, \int_{L_{0}} K\left(t_{0}, t\right) \varphi(t) \zeta\left(t_{0}-z_{0}\right) \mathrm{d} t, a\left(t_{0}\right) \varphi\left(t_{0}\right) \in H
$$

Consequently, we have $K \varphi \in H$.
$K_{1} K_{2}$ is also a singular integral operator. That is, if
2) If K_{1}, K_{2} are singular integral operator, then

$$
K_{j} \varphi \equiv a_{j}\left(t_{0}\right) \varphi\left(t_{0}\right)+\frac{1}{\pi i} \int_{L_{0}} \varphi(t) K_{j}\left(t_{0}, t\right)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t, j=1,2
$$

then

$$
\begin{align*}
& K_{1} K_{2} \varphi=\left[a_{1}\left(t_{0}\right) a_{2}\left(t_{0}\right)+b_{1}\left(t_{0}\right) b_{2}\left(t_{0}\right)\right] \varphi\left(t_{0}\right) \\
& +\int_{L_{0}} \frac{\left[a_{1}\left(t_{0}\right) K_{2}\left(t_{0}, t\right)+a_{2}(t) K_{1}\left(t_{0}, t\right)\right]}{\pi i} \varphi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t \tag{10}\\
& +\frac{1}{(\pi i)^{2}} \int_{L_{0}}\left\{\int_{L_{0}} K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right)\left[\zeta\left(t_{1}-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right]\left[\zeta\left(t-t_{1}\right)+\zeta\left(t_{1}-z_{0}\right)\right] \mathrm{d} t_{1}\right\} \varphi(t) \mathrm{d} t
\end{align*}
$$

where the sum of the former two terms in the right hand of Equation (10) are the characteristic operator, and the
remainder in that is a Fredholm operator.
Proof By definition, we deduce that

$$
\begin{aligned}
& K_{1} K_{2} \varphi=a_{1}\left(t_{0}\right) a_{2}\left(t_{0}\right) \varphi\left(t_{0}\right)+\frac{1}{\pi i} \int_{L_{0}} a_{1}\left(t_{0}\right) K_{2}\left(t_{0}, t\right) \varphi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t \\
& +\frac{1}{\pi i} \int_{L_{0}} a_{2}(t) K_{1}\left(t_{0}, t\right) \varphi(t)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right] \mathrm{d} t+C\left(t_{0}\right)
\end{aligned}
$$

where

$$
C\left(t_{0}\right)=\frac{1}{(\pi i)^{2}} \int_{L_{0}} K_{1}\left(t_{0}, t\right)\left[\zeta\left(t-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right]\left\{\int_{L_{0}} K_{2}\left(t, t_{1}\right)\left[\zeta\left(t_{1}-t\right)+\zeta\left(t-z_{0}\right)\right] \varphi\left(t_{1}\right) \mathrm{d} t_{1}\right\} \mathrm{d} t
$$

By virtue of Lemma 1 (b), $C\left(t_{0}\right)$ can be rewritten in the form
$C\left(t_{0}\right)=b_{1}\left(t_{0}\right) b_{2}\left(t_{0}\right) \varphi\left(t_{0}\right)+\frac{1}{(\pi i)^{2}} \int_{L_{0}}\left\{\int_{L_{0}} K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right)\left[\zeta\left(t_{1}-t_{0}\right)+\zeta\left(t_{0}-z_{0}\right)\right]\left[\zeta\left(t-t_{1}\right)+\zeta\left(t_{1}-z_{0}\right)\right] \mathrm{d} t_{1}\right\} \varphi(t) \mathrm{d} t$.
Consequently, (10) is established.
Now we write

$$
\int_{L_{0}} K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right) \zeta\left(t_{1}-t_{0}\right) \zeta\left(t-t_{1}\right) \mathrm{d} t_{1}=\langle 1\rangle+\langle 2\rangle+\langle 3\rangle+\langle 4\rangle
$$

where

$$
\begin{aligned}
& \langle 1\rangle=\int_{L_{0}} \frac{K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right)}{\left(t_{1}-t_{0}\right)\left(t-t_{1}\right)} \mathrm{d} t_{1},\langle 2\rangle=\int_{L_{0}} \frac{K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right)}{t_{1}-t_{0}} \sum_{m, n}^{\prime}\left[\frac{1}{t-t_{1}-\Omega_{m n}}+\frac{1}{\Omega_{m n}}+\frac{t-t_{1}}{\Omega_{m n}^{2}}\right] \mathrm{d} t_{1}, \\
& \langle 3\rangle=\int_{L_{0}} \frac{K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right)}{t-t_{1}} \sum_{m, n}^{\prime}\left[\frac{1}{t_{1}-t_{0}-\Omega_{m n}}+\frac{1}{\Omega_{m n}}+\frac{t_{1}-z_{0}}{\Omega_{m n}^{2}}\right] \mathrm{d} t_{1}, \\
& \langle 4\rangle=\int_{L_{0}} K_{1}\left(t_{0}, t_{1}\right) K_{2}\left(t_{1}, t\right) \sum_{m, n}^{\prime}\left[1 /\left(t-t_{1}-\Omega_{m n}\right)+1 / \Omega_{m n}+\left(t-t_{1}\right) / \Omega_{m n}^{2}\right] \cdot \sum_{m, n}^{\prime}\left[1 /\left(t_{1}-t_{0}-\Omega_{m n}\right)+1 / \Omega_{m n}+\left(t_{1}-t_{0}\right) / \Omega_{m n}^{2}\right] \mathrm{d} t_{1} . \\
& \text { By [1], we know that }\langle 1\rangle \text { is a Fredholm integral. For } \quad a_{3}=a_{1} a_{2}+b_{1} b_{2}, b_{3}=a_{1} b_{2}+a_{2} b_{1}
\end{aligned}
$$

$$
\left.K_{1}\left(t_{0}, t_{1}\right), K_{2}\left(t_{1}, t\right)\right) \in H\left(L_{0} \times L_{0}\right)
$$

that $\langle 4\rangle$ is continuous about the variable $t \in L_{0}$, and so that $\int_{L_{0}}\langle 4\rangle \varphi(t) \mathrm{d} t$ is also a Fredholm integral. By nothing that $\langle 2\rangle$ and $\langle 3\rangle$ have the same form, we only need to discuss either one of them. Here we consider the integral $\langle 2\rangle$. Write

$$
h(z)=\sum_{m, n}^{\prime}\left[1 /\left(t-z-\Omega_{m n}\right)+1 / \Omega_{m n}+(t-z) / \Omega_{m n}^{2}\right]
$$

then $h\left(t_{1}\right) \in H\left(L_{0}\right)$ is analytic in \mathbf{P} and so that $h\left(t_{1}\right) \in H\left(L_{0}\right)$. Consequently, we read from

$$
K_{1}\left(t_{0}, t_{1}\right), K_{2}\left(t_{1}, t\right) \in H\left(L_{0} \times L_{0}\right)
$$

that $\langle 2\rangle \in H\left(L_{0}\right)$ and so that $\langle 2\rangle$ is continuous on L_{0}, therefore $\int_{L_{0}}\langle 2\rangle \varphi(t) \mathrm{d} t$ is also a Fredholm integral.

So far, we conclude that $K_{1} K_{2}$ is a singular integral operator.
3) Let $K_{3}=K_{1} K_{2}$, where κ_{j} denotes the indices of $K_{j}(j=1,2,3)$, then $\kappa_{3}=\kappa_{1}+\kappa_{2}$.
Proof From 2), we know
and

$$
S_{3}=S_{1} S_{2}, D_{3}=D_{1} D_{2}
$$

so $\kappa_{3}=\kappa_{1}+\kappa_{2}$.
In addition, we can see from

$$
a_{3}=a_{1} a_{2}+b_{1} b_{2} \text { and } b_{3}=a_{1} b_{2}+a_{2} b_{1}
$$

that when K_{1}, K_{2} are normal, K_{3} is also normal.
4) $\left(K_{1} K_{2}\right) K_{2}=K_{1}\left(K_{2} K_{3}\right)$.
5) If K is a singular integral operator, and k is a Fredholm integral operator of the first kind, then $k K$ and $K k$ are also Fredholm integral operators of the first kind.
6) If the indies of K and K^{\prime} are κ and κ^{\prime} respectively, then $\kappa^{\prime}=-\kappa$.
7) $\left(K_{1} K_{2}\right)^{\prime}=K_{2}^{\prime} K_{1}^{\prime}$.

Through careful calculation, we may obtain 4) - 7).
8) Generally speaking,

$$
\int_{L_{0}} \psi K \varphi \mathrm{~d} t=\int_{L_{0}} \varphi K^{\prime} \psi \mathrm{d} t
$$

can not be established for $\varphi, \psi \in H$.
Proof By definition and calculation, we have

$$
\begin{align*}
\int_{L_{0}} \psi K \varphi \mathrm{~d} t & =\int_{L_{0}} \psi t\left\{a(t) \varphi(t)+\frac{1}{\pi i} \int_{L_{0}} K\left(t, t_{1}\right) \varphi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)+\left(t-z_{0}\right)\right] \mathrm{d} t_{1}\right\} \mathrm{d} t \tag{11}\\
& =\int_{L_{0}} a(t) \varphi(t) \psi(t) \mathrm{d} t+\frac{1}{\pi i} \int_{L_{0}} \psi(t) \int_{L_{0}} K\left(t, t_{1}\right) \varphi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)+\zeta\left(t-z_{0}\right)\right] \mathrm{d} t_{1} \mathrm{~d} t
\end{align*} .
$$

Whereas

$$
\begin{equation*}
\int_{L_{0}} \varphi K^{\prime} \psi \mathrm{d} t=\int_{L_{0}} a(t) \varphi(t) \psi(t) \mathrm{d} t-\frac{1}{\pi i} \int_{L_{0}} \varphi(t) \int_{L_{0}} K\left(t_{1}, t\right) \psi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)+\zeta\left(t-z_{0}\right)\right] \mathrm{d} t_{1} \mathrm{~d} t \tag{12}
\end{equation*}
$$

Let

$$
W=\int_{L_{0}} \varphi(t) \int_{L_{0}} K\left(t_{1}, t\right) \psi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)+\zeta\left(t-z_{0}\right)\right] \mathrm{d} t_{1} \mathrm{~d} t
$$

then by Lemma 1(a), we have

$$
\begin{align*}
W & =\int_{L_{0}}\left\{\int_{L_{0}} K\left(t_{1}, t\right) \varphi(t) \psi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)+\zeta\left(t-z_{0}\right)\right] \mathrm{d} t\right\} \mathrm{d} t_{1} \\
& =-\int_{L_{0}} \psi(t)\left\{\int_{L_{0}} K\left(t, t_{1}\right) \varphi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)-\zeta\left(t_{1}-z_{0}\right)\right] \mathrm{d} t_{1}\right\} \mathrm{d} t \tag{13}
\end{align*}
$$

Substituting (13) into (12), we see that

$$
\begin{equation*}
\left.\int_{L_{0}} \varphi K^{\prime} \psi \mathrm{d} t=\int_{L_{0}} a(t) \varphi(t) \psi t \mathrm{~d} t+\frac{1}{\pi i} \int_{L_{0}} \psi(t)\left\{\int_{L_{0}} K\left(t, t_{1}\right)\right) \varphi\left(t_{1}\right)\left[\zeta\left(t_{1}-t\right)-\zeta\left(t_{1}-z_{0}\right)\right] \mathrm{d} t_{1}\right\} \mathrm{d} t . \tag{14}
\end{equation*}
$$

Therefore, $\int_{L_{0}} \psi K \varphi \mathrm{~d} t=\int_{L_{0}} \varphi K^{\prime} \psi \mathrm{d} t$ cannot be established.

REFERENCES

[1] N. I. Muskhelishvili, "Singular Integral Equations," World Scientific, Singapore City, 1993.
[2] J. K. Lu, "Boundary Value Problems for Analytic Functions," World Scientific, Singapore City, 1993.
[3] F. D. Gakhov, "Boundary Value Problems," Fizmatgiz, Moscow, 1977.
[4] M. C. De Bonis and C. Laurita, "Numerical Solution of Systems of Cauchy Singular Integral Equations with Constant Coefficients," Applied Mathematics and Computa-
tion, Vol. 219, No. 4, 2012, pp. 1391-1410.
doi:10.1016/j.amc.2012.08.022
[5] T. Diogo and M. Rebelo, "Numerical Methods for Nonlinear Singular Volterra Integral Equations," AIP Conference Proceedings, Kos, 19-25 September 2012, pp. 226-229.
[6] C. Laurita, "A Quadrature Method for Cauchy Singular Integral Equations with Index -1," IMA Journal of Numerical Analysis, Vol. 32, No. 3, 2012, pp. 1071-1095. doi:10.1093/imanum/drr032

