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ABSTRACT 

Let X be a topological vector space and let S be a locally compact space. Let us consider the function space  0 ,C S X  

of all continuous functions :f S X , vanishing outside a compact set of S, equipped with an appropriate topology. In 

this work we will be concerned with the relationship between bounded operators  0: ,T C S X X , and X-valued in- 

tegrals on . When X is a Banach space, such relation has been completely achieved via Bochner integral in 

[1]. In this paper we investigate the context of locally convex spaces and we will focus attention on weak integrals, 
namely the Pettis integrals. Some results in this direction have been obtained, under some special conditions on the 

structure of X and its topological dual 

0 ,C S X 

*X . In this work we consider the case of a semi reflexive locally convex space 
and prove that each Pettis integral with respect to a signed measure  , on S gives rise to a unique bounded operator 

, which has the given Pettis integral form.  X X0: ,T C S
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1. Topological Preliminaries 

Suppose that S is a locally compact space and let X be a 
locally convex TVS. We denote by  the set of 
all continuous functions 

0 ,C S X 
:f S 

 ,C S X 
X

 C S
 vanishing outside a 

compact set of S, put 0 0  if X = R. We 
are interested in representing linear bounded operators 

, by means of weak integrals against 
scalar measures on the Borel 

 0: ,T C S X X
 -field BS of S. Before 

handling more closely this problem, we need some topo- 
logical facts about the space .  X

 , ,C S K X
0

If K is a compact set in S, let  be the set 
of all continuous functions 

,C S


:f S X , vanishing out- 
side K. It is clear that  , ,K


C S X  is a linear subspace 

of . We equip 0 ,C S X  , ,K XC S  with the topology 

K  generated by the family of seminorms: 

      , t K* , , , SupKf C S K X p p f t    

where  p  is the family of seminorms generating the 
locally convex topology of X. The topology K  is the 
topology of uniform convergence on K. 

Next let us observe that    0 , ,KC S X C S K X , , the 

union being performed over all the compact subsets K of 
S. On the other hand if K1 is a subset of K2, then the 
natural embedding    

1 2 1 2  is 
continuous. This allows one to provide the space 

: , , , ,K Ki C S K X C S K X

 0 ,C S X  with the inductive topology   induced by 
the subspaces  , ,C S K X , K . The facts we need 
about the space,  0 ,C S X  is well known: 

1.1. Proposition 

1) The space  0 ,C S X ,   is locally convex Haus- 
dorff and for each compact K, the relative topology of   
on  , ,K XC S  is K , this means that the canonical 
embedding    0: , , ,S K X C S Xki C  is continuous. 

2) Let  0T C  be a linear operator of : ,S X V
 0 ,C S X  into the locally convex Hausdorff space V, 

then T is continuous if and only if the restriction KToi  
of T to the subspace  , ,C S K X  is continuous for each 
compact K. 

1.2. Definition 

For each   in the topological dual *X  of X and for 
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each function  0 ,f C S X
    

, define the function U  
on S by 

f

 ,U f s f s  f s . Then U  sends 
 into . Recall that  is equipped 

with the uniform norm.  
0 ,C S X   0C S  0C S

1.3. Lemma 

The operator U  is linear and bounded. Moreover for 
each 0  , U  is onto. 

Proof: First it is clear that  0CU f . Now by 
Proposition 1.1(b), we have to show that for each com-
pact set K of S the operator 

S

   0C S: ,C S K ,Ki XU o  
is bounded. Since 


  is bounded, there is a seminorm p  

on X and a constant M such that    x Mp  x  for 
all x X . So we have     f s Mp f s  if 

 , ,f C S K X , and      Ki fU o , s f s s S ; 
it follows that 

     f st K t KSup MSupU f f s p    . 

Since by Formula (*), the right side of this inequality is 
 ,KMp f , we deduce that U  is continuous. Now 

suppose 0  . Then there exists x X  such that 
 and 0x    0x . It is clear that we can assume 

  1x  . Now let  0h C S  and define :f S X  
by    .f t h t x , then  0 ,f C S

s
X

  x h
 and we have 

  , because   U f s h sU   1x  . It 
follows that U  is onto.                        ■  

Now we consider the relationship between bounded 
operators , and weak integrals in the 
sense of the following definition. Such relationship is 
reminiscent to the classical Riesz theorem [2]. 

 0: ,T C S X X

1.4. Definition 

We say that a bounded operator  has 
a Pettis integral form if there exists a scalar measure of 
bounded variation 

 0: ,T C S X X

  on BS such that, for every con- 
tinuous functional   in *X , we have: 

     0 , , , , df C S X Tf f s    s  

See Reference [3] for details on Pettis integral. 

2. Integral Representation by Pettis Integral 

In what follows, we introduce a class of bounded opera- 
tors , which is, in this context, similar 
to the class  used in [1]. 

 0: ,T C S X X
XXC

2.1. Definition 

Let P be the class of all bounded operators  
 satisfying the following condition:  0: ,T C S X X

, X(I) For *    and  0, ,f g C S X , if  
then . 

U f U g 
  Tg  Tf

It is easy to check that P is a subspace of the space 
 of all bounded operators from   0 , ,L C S X X  ,C S X0  

to X. Also one can prove that P is closed in the weak 
operator topology of   0 , ,L C S X X

 0: ,T C S X X
T P

. Note also that 
for a given bounded , Definition 1.4 
implies condition (I) i.e.  . The crucial point is that 
condition (I) implies the Pettis integral form of Defini- 
tion 1.4, for some bounded scalar measure   on BS. 
This is the content of the following theorem proved in 
[4]. 

2.2. Theorem 

Let  0: ,T C S X  X  be in the class P. Then there is a 
unique bounded signed measure   on BS such that 

   , ,Tf f s   d s  holds for all   in *X  and 
 0 ,f C S X . Moreover for each seminorm p  on X 

we have 
p

T


 , where   is the total variation of 
  and 

p
T


 is the p -norm of T defined by  

  p
B


Sup : pT p Tf f

  

  

 

with  

  10f C


, : Supp SS X fB p s   . 

By this theorem we may denote each operator T in the 
class P by the conventional symbol 

       0 dW f C , ,S X Tf P f s   s  

where the letter P stands for Pettis integral. 

3. Operators Associated to Scalar Measures 
via Pettis Integrals 

In this section we start with a bounded scalar measure 
  on  and we seek for a linear bounded  SB

 0T C X: ,S X  such that the correspondence be- 
tween   and T would be given by formula (W). First 
let us make some observations. 

3.1. Operators via Pettis Integrals 

A little inspection of (W) suggests the following quite 
plausible observations: First the integral  

   , df s  s , as a linear functional of   on *X , 
should beat least continuous for some convenient topol- 
ogy on *X  Also the existence of the corresponding Tf 
in (W) will require that such topology on X should be 
compatible for the dual pair * ,X X . Finally, to get the 
continuity of the functional    , df s sS   , one 
can seek conditions such that if 0   in an appropri- 
ate manner, then  f s,  goes to 0 uniformly for 
s S . Since   is bounded this will give  

   , df s s   0 . 
Such a program has been realized in [4], for a locally 

convex space having the convex compactness property 
[5], according to the following theorems (see [4] for de-
tails). 
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3.2. Theorem 

Let X be a locally convex space with the convex com- 
pactness property, and whose dual *X  is equipped with 
the Mackey topology  * , .X X  If   is a bounded 
scalar measure on BS, then there is a unique bounded 
operator  in the class P satisfying 
(W), with 

 0: ,T C S X X

p
T


  for each seminorm p  on X. 

3.3. Theorem 

Let X be a locally convex Hausdorff space whose dual 
*X  is a barrelled space. If   is a bounded signed 

measure on BS, then there is a unique bounded operator 
 in the class P satisfying (W) with 

respect to 
 0: ,S X XT C

  and such that 
p

T  . 
Most of these results have been obtained for a space 

whose dual is a Mackey space. It is natural to ask if 
similar representations can be established if the dual is 
endowed with another topology, e.g. the strong topology. 

3.4. Definition 

The strong topology  * ,X X  of *X  is the topology 
generated by the family of the seminorms: 

     *
B** , SupBX P x     

where B is running over all the bounded sets of X. 
It is the topology of uniform convergence on the 

bounded sets of X. When we restrict  to the finite 
sets B of X we get the so called weak * topology 

 **

 * ,X X , which is the topology of simple convergence 
on X. We shall denote by * *X X   the space *X  
equipped with the  * ,X X -topology (the  *,X X - 
topology). Then we have: 

3.5. Proposition 

1) For each  there exists a unique  x X

  x X   

such that:     ,x x X     

     

. 

2) , that is, every weak * continuous  X X 

functional on X   is strongly continuous . 

3.6. Definition 

We say that the space X is semireflexive if  

   X X 

   . 

Now we are in a position to state the main results of 
this paper. 

3.7. Theorem 

Let X be a locally convex Hausdorff semireflexive space. 
If   is a bounded signed measure on , then there is 
a unique bounded operator  in the 

class P satisfying: 

SB
 X0: ,T C S X

     0 , , , , d ,f C S X Tf f s s       

p
T


 . 

where   is the variation of  . 
Proof: Fix f in  0 ,C S X  and define the functional  

*:f X R  , by      , df f s   s  . It is clear 

that f  is linear. Moreover . Indeed it is   **
f X  

enough to prove that  
0

lim 0f   . If 0  , in *X  , 
then for each bounded subset B of X,  uni- 
formly for 

 x  0
x B . But since  0 ,f C S X , the set 

  :f s s S  is bounded, so  , 0f s   uniformly  

in s S . Therefore,    , d s  0f s , because the 

measure μ is of bounded variation. Hence .   **
f X  

Since X is semireflexive, ; by Proposition 
3.5(a), there is a unique f

 **
f X 

X   such that 
  ,f f    , *X  . Now let us define the op- 

erator  X X0  by : ,T C S , fTf  ,  0 ,f C S X . 
It is easily checked that T is linear, and satisfies the con- 
dition of the theorem by construction. We have to show 
that T is bounded. Let p  be a seminorm on X, and let 
K be a compact subset of X. For  , ,f C S K X , we 
have: 

   

   

 

 

 ,

Sup  

Sup , d

Sup Sup , .

Sup Sup , .

.

a
pa

p

p

p

f B

B

s KB

s K B

K

p p Tf o

f s s

f s

f s

p f










  









 

 

 

 









 

 

  











Tf

 

which proves the continuity of T. 
Now to compute 

p
T


, observe from the integral  

form of oTf  that   Sup , : .oTf f s s S    .  

Taking the supremum in both sides over 0
pB


 


, the 
polar set of the unit ball  , p x 1pB x X

    of X, 
we get: 

 

 

  

0

0

0

Sup  

Sup Sup , .

Sup Sup , ( ) .

Sup for

p

p

p

B

s SB

s S B

p

o Tf p Tf

f s

f s

p f s f B



















 

 

 





 







   

 

So we deduce that 
p

T


 . To see the reverse ine- 
quality, let us consider a function  0 ,f C S X  of the 
form f g x  , with  0g C S  satisfying 1g   
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and x fixed in X such that   1p x  . With this choice, 
the function f belongs to the unit ball pB


 . Then we 

have 

     , f s g s   x  

and 

         , , d ;Tf f s g s    d s s  s  

so that  

      

   

0Sup
pB

o Tf p s

g s s


 

 




 







 d

d ,

Tf p x g s
 

since . So we get    1p x 

     d
p

p Tf g s s T
    

because pf B


  . 
Therefore  

      0Sup d , , 1
p

g s s g C S g T


        ■ 

By appealing to theorem 2.3, we get the following 
rather precise theorem:  

3.8. Theorem 

Let X be a locally convex Hausdorff semireflexive space. 
Then there is a one to one correspondence between the 
bounded operators  of the class P and 
the X-valued Pettis integrals with respect to some 

bounded signed measure 

 0: ,T C S X X

  on BS. This correspondence 
is given by the relation  W : 

   0 d  , ,f C S X P f s s Tf   
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