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ABSTRACT 

The aim is to parse the mathematical details related to the gravitational model of the three elements theory [1]. This 
model is proven to be coherent and really compatible with relativity. The Riemannian representation of space-time 
which is used in this model is proven to be legal. It allows to understand relativity in a more human sensitive manner 
than Minkowskian usual representation. 
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1. Introduction 

The aim of this article is to depict the mathematical basis 
which supports the gravitational model of the three ele- 
ments theory [1]. The first analysis addresses the link 
between the two space-time representations. Those rep- 
resentations are Minkowskian usual representation and a 
Riemannian representation. The latter must be detailed, 
and usual relativity mechanisms like general relativity 
principles and Lorentz transformation are interpreted in 
this representation in a particular geometrical manner. 
Lorentz transformation is explained by postulate 1 of [1] 
which is interpreted geometrically in a wired manner. 
This must be explained here. Also, application of postu- 
late 3 of [1] uses a strange projection rule, which must be 
explained. The last analysis is checking that the “follow- 
ing geodesic principle” is still valid in this Riemannian 
representation, in a specific case. This is mandatory for 
the calculations which are done in [1]. 

2. Comparison of the Two Metrics 

Let’s call g  the Minkowskian pseudo-Riemannian 
metric coefficients, and h

d d d

 the corresponding Rieman-
nian metric ones. 

As usual we have: 
2s g x x 

               (1) 

With 0x c t  , and 1 2 3, ,ix x x x  the three space co- 
ordinates. In this equation above x  variables are sup- 
posed to be space and time coordinates in some given 

0  reference frame. Let’s choose a 0  base as part of 
this 0  reference frame. In other words, 0  is the  
reference frame at some given instant in time. 

R B
R B 0R

B
B

0g 

In each space-time point, a mathematical theorem 
states that, for the bilinear form associated with this ds2 
quadratic form, it is always possible to find an orthogo- 
nal and normalized base with respect to some fixed 

0  base, for which the metric local matrix is diagonal. 
In these orthogonal bases, the metric coefficients be- 
comes then such that   if  

B B

2 2 2 12 22 32
00 11 22 33d d d d db b b b

. That’s just a 
reminder. But let’s notice that time and space units in 
these  bases are 0  base time and space units. In 
those bases, now the Minkowskian metric can be written: 

s g c t g x g x g x   
1 2 3, , ,t x x x B

   (2) 

b b b b  are coordinates in the  base. By defi- 
nition, the Riemannian coefficients are constructed the 
following way. 

00
00

1
,h                 (3) 

g

1
, 0ii

ii

h i
g

                (4) 

Those equations are a consequence of the differences 
between Minkowskian representation and the Rieman- 
nian representation which is used in this model. The first 
one is of course the metric signature which is + + + + for 
the Riemannian one, in place of the + − − − Min- 
kowskian one. The second difference is that local time is 
inverted. In other words, the diagonal matrix coefficients 
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are inverted when passing from one metric to another. 
This allows to apply the “following geodesics” principle 
in this Riemannian representation, as this will be shown 
in this document. The physics understanding of this sec- 
ond difference is the same as the general relativity ex- 
planation of the twin paradox. Let’s remind that this ex- 
planation is based upon the generation of a global vac- 
uum by the universe in the representation of the reference 
frame attached to the travelling twin. On the contrary the 
twin staying on earth is watching the vacuum generated 
by the travelling twin only locally and that’s the explana- 
tion of the asymmetrical roles of the twins. This is not a 
physical vacuum but a vacuum in the representation of 
space-time. Now in the Riemannian representation, with 
respect to 0  reference frame, this vacuum is supposed 
to be generated globally by the free falling particle (as if 
the free falling particle was not less than the universe 
itself!). On the contrary, in the Minkowskian representa- 
tion in 0  this vacuum is supposed to be generated only 
locally to the particle along its trajectory. Of course, only 
the latter version is the realistic one. But one may notice 
that the mathematical model do not prefer any physical 
configuration. 

R

R

An illustration of this relationship rule between those 
two metrics is given by the case of the Schwarzschild 
metric. 

1
2 21 db b

M2 2d 1 d
M

s c t
    
 

x
x x


  
 

1

     (5) 

Of course this is the Minkowskian metric usual ver-
sion.  

M is supposed to be the Schwarzschild ray of the at-
tracting object as usual. x is as usual in this metric the 
spatial physical distance from the attracting object (more 
usually written r). , and b b

0
b bct x x x

B
R

B

R

R
R

0R
R

2 2 2 2
00 11d d db b

 are, respec-
tively, the time and space coordinates in the system of 

 bases. ds is the infinitely small space-time length, 
calculated in some given space-time point. The 0  ref-
erence frame which generated this system of  bases 
gets on its origin its time axis parallel to local time axis 
in two cases. The first one is when the origin of 0  is 
located in the middle of the attracting object of this 
Schwarzschild metric. The second one is when the origin 
of 0  is located infinitely far from the attracting object. 
In the latter case, 0  time axis is tangent to the trajec-
tory of a null mass free falling particle. Because of the 
equivalence principle, this free falling particle trajectory 
will coincide with a time coordinate curve in the system 
of  bases. Because of the “following geodesics” prin- 
ciple, it will also be a geodesic in the Minkowskian met- 
ric. As usual this free falling particle gets a null mass, 
because we don’t want it to generate any space-time de- 
formations around it. Otherwise, this should modify the 
studied metric. And it gets a null speed when located 

infinitely far, because this means that its trajectory will 
always be perpendicular to space lines with respect to 

. In other words, this trajectory is a time curve in this 

0  representation. In this document, the expression 
“free falling particle” will always means in fact this par- 
ticular case of free falling particle, and the expression 
“time line” will always means that specific kind of tra- 
jectory. The term “space line” will mean perpendicular 
curves to such time lines. 

B

The corresponding Riemannian version of this Sch- 
warzschild metric is the following. 

s h c t h x  

d

            (6) 

sHere,   is also a function of space and time lengths 
with respect to the  base. As it will be seen, B ds  
allows to draw space and time lines in the space-time 
Riemannian representation, with respect to 0 . It is this 
drawing which will allow to measure space-time lengths 
in this representation. 

R

Using Equations (3), (4), and (5) there is: 
1

2 2 2 2d 1 d 1 db b

M M
c t x

x x


          
   

s      (7) 

  and   spherical coordinates are not written here. 
Their coefficients will get opposite sign when passing 
from one metric to the other, because their Euclidean 
associated local coordinates have their Minkowskian 
coefficients equal to −1. Therefore, they becomes equal 
to +1 during the metric transformation when applying 
Equations (3) and (4). Hence, the and coefficients get 
also their sign modified but that’s all.  

Distance notations 
 Affine distance generated by Euclidean canonical 

metric of  : ,R D . 0

 Distance given by the Riemannian metric and Equa-
tion (7):  ,d . 

On Figure 1 are drawn qualitatively those space lines 
associated with this Schwarzschild Riemannian metric, 
with respect to 0 . It is only after this drawing, that 
space-time lengths can be measured by evaluating the 
distances in 0 between space lines (for measuring time) 
and between time lines (for measuring space). 

R

R

R

On Figure 2 are firstly added two space-time points, A, 
and B. A and B are supposed to be infinitely close one to 
each other, and located on the same time line. It can be 
checked on Figure 2 that the space-time length between 
A and B correspond roughly to the number of space lines 
passed through when going from A to B. Therefore when 
space lines get close from each other, Riemannian local 
time is elapsing faster with respect to 0 . This is the 
case as we get x weaker and weaker, that is, as we get 
closer to the attracting object. Of course, it goes reversely 
for space distances. That’s for a qualitative understand- 
ing. 
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 

Figure 1. Space lines drawn with respect to R0 reference 
frame. 
 

 

Figure 2. Two couples of points, each of them aligned on 
their local time line, B and  sharing the same space line, 
and such that 

B

   , , D A B D A B

d

. 

 
In a precise manner, the Riemannian metric distance 

between A and B is a s  value calculated by Equation 
(7). Let’s calculate this space-time length between A and 
B: 

 
1

2 2 21 d b

M
c t

x


  
 

d 0bx 

2
, dd A B s       (8) 

because here , and then: 

  1
, d

1
bc t

M
x


d A B                (9) 

Now let’s redo this calculation for A B and   
points. Like A and B, they share the same time line, but 
they are located far from the attracting object. It is sup- 
posed: 

 D A B  , ,D A B 

R

              (10) 

In other words, those segment distances are equal with 
respect to the Euclidean canonical metric given by 0 . 
If x B is the distance of the   point from the attracting 
object, we get: 

1
, d

1
bd A B c t

M
x

  




          (11) 

A  and BBecause that’s Equation (9) applied to  . 
Since x  is supposed to be far greater than M, then the 
following approximation can be done. 

 , d bd A B c t  

 d , dbc t D A B c t

              (12) 

That’s because here the space-time deformations gen- 
erated by the attracting object are vanishing. It can be 
written by other means: 

   

B B

         (13) 

Indeed, here the  base is the 0  base except for 
their origins. Back to B point, Equation (9) can be written 
the following way. 

1
d d

1

t
M
x

  


d

             (14) 

This equation gives the time ratio between  , the 
local Riemannian time in B point, and its corresponding 

 time in 0  reference frame. For yielding this equa- 
tion, it has been used Equation (9),  
dt R

 
   

, d ,

d , , d db b

d A B c

c t D A B D A B c t c t

 

      

dc t

. 

 , time distance in 0 , has been renamed  
because this distance can be also evaluated in B point. 
Now let’s calculate the local and physical time dilatation 
between x and 

R dc t

x  distances from the attracting object. 
The same reasoning with Minkowskian metric yields 
relativity time dilatation: 

d 1 d
M

t
x

  

   

              (15) 

Another way to understand the difference between 
Equation (14) and Equation (15) is the following. By 
construction, the physical local time ratio is growing in- 
versely as compared with the Riemannian metric local 
time ratio. In other words, , ,d A B D A B  ratio must 
be inverted in order to get the d dc tc   ratio. That’s 
because local times are inverted when passing from Min- 
kowskian to Riemannian representation. In geometric 
words: 
 The Riemannian time distance is growing proportion-

ally with the number of crossed space lines;  
 Local time physical length is growing proportionally 

with Euclidean distance between two given space 
lines. 

Those values are inversely proportional to each other 
and Equation (15) could be retrieved this way starting 
from Equation (14). In other words, the relativistic coef- 
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ficient 1   is equal to d dt , as seen projected along 
local tangent of space lines. It can be said that it is also 
projected along space lines. This rule is illustrated by 
Figure 3. 

cd represents, everywhere, the local physical dis- 
tance between a given couple of space lines. This dis- 
tance is measured with 0  Euclidean metric. When 
those lines get close to each other, this value decrease 
because it is measured with . 

R

R
d

0

Inversely, the Riemannian distance, s

B
R

, between 
those space lines remains the same everywhere. This dis- 
tance is calculated with Equation (7) in a covariant man- 
ner along space lines. 

3. Covariance and Bases 

This covariance will be used for understanding this geo-
metrical Riemannian mechanism. For this let’s go back 
to Figure 2. 

Let’s write m  the base which is constructing, in B 
point, the inertial reference frame of the free falling 
particle. 

By construction, if u B

m

 are  base vectors, and if  
u mB are  base vectors, there is mg 

u u

B

B

. In  

other words, this m  base is orthogonal with its vectors 
normalized in the Minkowskian metric. This is not a new 
concept. It comes from general relativity in Minkowskian 
representation [2]. 

Now the same way, let’s write r  the following base, 
in B point. If r

u  are the  base vectors, there is  rB

rh uu rB

d

. In other words, this  base is orthogo-  

nal with its vectors normalized in the Riemannian metric. 
s

0u

R

 distance between two space lines is the Riemannian 
length of r  vector. By construction this length stays 
constant along a given space line. 

Inversely, cdt represents the distance between space 
lines calculated along 0  time axis (not along local 
time axis). The cd vector is parallel transported along a 
 

 

Figure 3. Local time, and global time. “cd” vector is paral-
lel transported along space lines. 

given space line. The cdt vector is the projected vector of 
this cd vector. This projection is done along the local 
space line tangents. But evaluation of this cdt vector pro- 
jection can be done everywhere along the corresponding 
space lines, in a parallel transport manner. This is also 
illustrated by Figure 3. 

What about the space length ratio? The rule for the 
answer is the famous “constancy of metric determinant”, 
which is a classical rule of general relativity. Using it, of 
course the consequence is merely an inverted evolution 
of the space length ratio as compared to the time ratio. 

As an intermediate conclusion, the Riemannian dis- 
tance allows drawing space lines. When drawing those 
lines, it is supposed that this Riemannian metric distance, 
ds , between two given space lines is always the same 
when measured everywhere along those lines. Those 
space and time lines are drawn in the 0R  reference 
frame. This representation is understandable with human 
senses. In [1], it allows to understand the relativistic en-
ergy equation in the simple geometric manner of the Py-
thagore theorem. Let’s remind that it is possible to de-
scribe this Pythagore equation, using surfaces, as a func-
tion of luminous points space-time deformation heights. 
This gives the determination of space-time shape in [1]. 

4. How to Apply the Rules of the Postulate 3 
[1] 

When applying the third postulate [1], the projection 
used for writing  2d d 1 ,x 1s oper L L 

R

rB
R

 was done 
along  time axis, not along time lines. 0

On Figure 4 this postulate 3 application mode is 
shown. 

That’s because the determinant of the metric is sup- 
posed to be constant, as it was discussed above. Indeed, a 
geometrical property of this determinant is that it is the 
surface of the ABCD rectangle of Figure 5 which is de- 
scribed by the  base (of course this surface is meas- 
ured in ). 0

But this surface is also the surface of the BDEF paral- 
lelogram of Figure 6 which vertical sides are given by 
the c dt vector. The other vector side of this parallelo- 
 

 

Figure 4. Application of Postulate 3 of [1]. 
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Figure 5. Geometric interpretation of the metric determi-
nant: surface of the ABCD rectangle drawn in the  

base. 
rB

 

 

Figure 6. BDEF parallelogram sharing the same surface as 
the ABCD rectangle. 
 
gram is dx

R
R

 , , d dB D c t x

D A  , dD B D x
h

 which direction is along local space tangent. 
The projection of this vector along 0  time axis is some 
dx fixed vector. This dx vector is parallel to 0  space 
axis and its length stays constant through space and time. 
This is represented on Figures 5-7. Let’s describe this 
more deeply. 

On Figure 5, the surface of the ABCD rectangle is 
equal to , the metric determi- 
nant. 

 D A B D

 , dB c t
B

 and  lengths are con- 
structed from r  base vectors, and therefore from 

 
 

coefficients. There is: 0, rD A B  u , and  

  1, rDD B  u , with   being  (therefore )   ,D 0R

B D E F

associated norm. On Figure 6, the surface of the ABCD 
rectangle is also equal to the surface of the BDEF paral- 
lelogram. 

On Figure 7, cdt and dx remain constant when pass- 
ing from BDEF (parallelogram on the left) to 

 

Figure 7. Interpreting constancy of metric determinant. 
 
the BDEF parallelogram, as well as the surface of the 
B D E F    B B D E F    parallelogram. In , this  paral- 
lelogram is equal to the 

   
d

 
parallelogram (on the right). Inversely, cd and x  are 
modified. The metric determinant stay constant, it is 
equal to  everywhere. It is the surface of  d d d dc t x c t x 

AB C D    rectangle (this  
AB C D  

0R

 rectangle is not drawn). 
The conclusion of this mechanism is the following. 

 R  time lengths are projected along space lines, and 0

 Physical space lengths are projected along 0R  time 
axis. 

In one word, this strange projection rule is explained 
by the constancy of metric determinant. Finally, if v is 
the physical speed of the free falling particle with respect 
to , and if   is the angle between local time axis 
and  time axis, there is: 0R

  d d d
sin

d d d

s x v t v

c t c t c t c



     , and not tan

v

c
 . Here 

 dis xanother legal used notation for d s , the infinitely 
small physical space distance along its space line with 
respect to 0  reference frame. Therefore, the relativistic 
coefficient, yielded by the relativistic operator in [1], is  

R

equal as expected to  
2

2

d
cos 1

d

x v

s c
   , and there- 

2

00 2
00

1
1

v
g

ch
  fore there is . 

5. Comparison of Lorentz Transformation 
Formulation in the Two Metrics 

Let’s go back to the geometrical interpretation of postu- 
late 1 which is done in [1] in the context of the Rieman- 
nian metric. 

Locally, the situation is exactly the same as above be- 
cause of the postulate 1 of [1]. Indeed, in the context of 
Lorentz transformation, space-time deformation is lo- 
cally exactly the same as studied above. Figure 8 shows 
qualitatively those space-time deformations. It could  
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

Figure 8. Space-time deformations in the case of Lorentz 
transformation, with respect to R frame. 
 
even be possible to write also metric equations for this 
case. Space line has rocked with an   angle such as 

 sin v c 
0 0, , , , , , etcm rR R B B B B 

; ,R O ct  ; , , ,ct x y z   

. Therefore, the same construction of vec- 
tors, bases and frames    still 
applies. 

The usual  and  
reference frames will be used as usual when writing 
Lorentz transformation: 

 , ,x y z R O 

 
2 2

22 2

1

1

1

1

x x vt
v c

vx
t t

cv c

 

   
 

R

R







            (16) 

For the geometrical understanding of this transforma- 
tion in [1], a projection of space-time lengths along the 
time and space axis of  referential frame is used. But 
the normal usage of a basis should dictate to project 
those lengths along the time and space axis of   ref- 
erential frame. 

And in the Riemannian representation which has been 
seen above, those projections were even more different. 
They were done, for  time lengths along space lines 
(therefore along  space axis), and for physical space 
lengths along time axis. Indeed, corresponds to  
in the description above, and  corresponds to 

R
R

R R 0R
R B  

(which is just a reduced version of ). B
Let’s write Lorentz transformation in the context of 

the Riemannian metric. Using the strange projection rule 
of this representation, the space-time deformation of Fig-
ure 8, which is the postulate 1 of [1] space-time defor- 
mation, yields the following equations. 

 
2 2

2 2
2

1

1

1

b

b

x x vt
v c

vx
c t

c

 

  
 

O

t v



 

          (17) 

Equations (17) are the result when applying the 
strange projection rule seen above, to the Figure 1 of [1] 
(or Figure 8). Let’s remind that the coordinates of the 

  point are   2, ,o ox t vt vx c

R R

R
 ,

  . Therefore the first 
equation is the projection of local space lengths along 

0  time axis (and along Lorentz frame time axis). The 
second equation is the projection of time lengths along 
space lines and along Lorentz  frame space axis. 
Let’s remind that the final b bx t

B
R

O
O R

variables of (17) are 
the coordinates of space-time events in the base. Here, 
space lines where parallel to 0  space axis, before the 
deformation, which is only local to the  point. There-
fore the speed vector of the  point is parallel to 0  
space axis. This remark allows to write Equations (17). 
Now let’s write  ,r rx t B the r  base coordinates. This 
transformation becomes the following. 

2

r

r

x x vt

vx
t t

c

 

 
                 (18) 

These equations are obtained using r bx h x

O
R

  and 
Equation (17). This is a Galilean transformation, which 
corresponds to the motion of the  point which is the 
local point of the   reference frame. But this motion is 
interpreted now with covariant space and time units. In- 
deed, those  ,r rx t B

O

 coordinates are those of the r  
base which is part of a space-time map. By construction, 
in this map the resulting metric is the Euclidean trivial 
tensor, constant everywhere in space-time. It is therefore 
coherent to find here a Galilean transformation. This last 
formulation of Lorentz transformation is the correspond- 
ing one in this Riemannian representation of space-time. 

Now (16) is derived from (18). First of all, (18) is 
similar to the affine transformation which is the identity 
linear application composed with the O to   transla- 
tion. But it is noticed that the O  point is moving and 
its coordinates are function of x and t. Therefore, (18) is 
in fact a linear transformation with respect to the x and t 
variables. As such, its determinant is no longer 1, which 
was the identity linear transformation determinant. Now 
its determinant is equal to 2 21 v c . Therefore, compo- 

2 2v csition of this transformation (18) with 1 1  which 

multiplies the Identity transformation yields (16), which 
is the same as (18) but with a determinant equal to 1. 
And of course this final (16) result is Lorentz transfor- 
mation. 

This correspondence between those different formula- 
tions of Lorentz transformation gives the explanation of 
the strange projection rule: the geometrical Euclidean 
interpretation is driven by Equation (18). But this equa- 
tion is another formulation of Lorentz transform. 

6. Comparison of the Geodesics between the 
Two Metrics 

Now let’s compare the “following geodesics” principle in 
those two metrics. This comparison is mandatory be- 
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cause this principle is used with the Riemannian metric 
when writing Equation (15) of [1].  

The simplest way to express the “following geodesics” 
principle is the following. The free falling particle tra- 
jectory is a geodesic in the Riemannian metric. That’s the 
most natural and simple way to express the “following 
geodesics” principle. 

Of course, this is not the official one. The official one 
is the following. The free falling particle trajectory is an 
extremal trajectory in the Minkowskian metric. Now, the 
usual following reasoning must be done. It is always 
possible to construct a null trajectory close to any other 
trajectory. Since the free falling particle trajectory is a 
strictly positive one, and because of the signature + − − −, 
(which is not − + + + otherwise the trajectory would be- 
come a minimal one), therefore its extremal value cannot 
be a minimal one. Therefore this is a maximal one. This 
was a reminder. This complicated and mathematical rea- 
soning will be compared further with the one given by 
the gravitational model of the three elements theory. 

Now it must be checked that those two geodesic defi- 
nitions coincide. That is to say: 

1) maximal trajectory in the Minkowskian metric, 
2) minimal trajectory in the Riemannian metric, are 

exactly the same. 
This is false in the general case. But it is true for a 

time line and in the case of the weak space-time defor- 
mations. 

For proving this let’s compare the geodesic trajectories 
in the two metrics. Let’s remind usual equations of ex- 
tremal trajectories in some given metric: 

2

2

x x x  

  
 





 

 
i


           (19) 

 being 0 for ct, or i for x  as usual, and 
  being 

the Christoffel symbols.  is the exponential map metric 
parameter. In the Minkowskian one, it is equal to the 
physical local time. In the Riemannian one, along a time 
line the 



 
d dh

 local time is different, related to the first one 
with 00   . Let’s remind that the difference be- 
tween those local times is driven by the importance of 
the space-time vacuum generated along time lines. The 
extremal (maximal) trajectory in the Minkowskian metric 
is the following. 
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
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 


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          (20) 

It has been supposed 00 11  for i = 
2 and i = 3. Therefore, the corresponding equations for i 
= 2 and i = 3 become trivial and are not written here. It 
has been supposed also that 

0i ig x g x     

1  1 0x x        along 
the trajectory, meaning that this trajectory is a time line. 

Under those considerations, (20) equations are coming 
from (19) equations after calculations. The details of 
these calculations are available in [3]. Now the extremal 
(minimal) trajectory in the Riemannian metric is the fol- 
lowing (expressed with the Minkowskian coefficients 
and Minkowskian local time for comparison). 
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           (21) 

 

It has been supposed also that the trajectory is a time 
line in the Riemannian metric. The difference between 
(20) and (21) trajectory equations is only occurring for 
their second equations and is summarized this way: 

2 2
4
002 2

m rx x
g

 
 

               (22) 
 

1where mx  is the value of x  in the Minkowskian met- 
ric trajectory, and rx  its value in the Riemannian one. 

Therefore, it is impossible to detect this difference in 
the weak deformations case. For example, in the Schwarz-  

schild metric, there is 
4

4
00 1 1

M
g

x
   
 

  for involved  

physical distances. (Of course, x is the distance from the 
attracting object, and M is the Schwarzschild ray). In a 
more convincing manner, the (20) second equation be- 
comes the following. 

2 2

2 22

x Mc




 


               (23) 
x

Which is Newton’s acceleration. Whereas the (21) sec- 
ond equation becomes the following. 

42 2 2

2 2 21
2 2

x Mc M Mc

xx x

        
       (24) 

Which is an approximation of Newton’s acceleration. 
Therefore, those equations are approximately equal. 

Finally, the second equation of (20) can be written us- 
ing the angle of the space curve tangent in this space- 
time Riemannian representation. The result is that Equa- 
tion (15) of [1] is also a good approximation of the last 
equation of (20), in the weak space-time deformations 
case. 

Nevertheless, Equations (20) and (21) do not yield ex- 
actly the same trajectories. Of course, the question of 
which system equation is correct is easy to answer. The 
Minkowskian metric trajectory is the correct one. This 
choice can be argued with the help of the gravitational 
model of the three elements theory. Indeed, in this model 
the classical space-time distance 

2 2 2
00 11d d ds g c t g x   depends upon 00d dg c t c ,  
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related to the total energy of the particle, and 11g dx , 
the height of the asymmetrical space-time vacuum gen- 
erated by the motion of this free falling particle. In this 
model, this vacuum has always a key importance. 

Therefore it is very coherent to have it minimized in 
the trajectories. This straightforward physical reasoning 
must be compared with the mathematical and compli- 
cated official one, which was reminded above. 

As a consequence the Minkowskian metric is still of 
extreme importance and can’t be replaced by the Rie- 
mannian one. 

7. Conclusions 

The aim given in the introduction has been achieved in a 
coherent manner. This proves that the gravitational model 
of the three elements theory is coherent and therefore 
really compatible with relativity. The Riemannian repre- 
sentation of space-time which is used in this model is legal. 
It allows to understand relativity in a more human sensi- 
tive manner than Minkowskian usual representation. 
Postulate 1 of [1] geometrical interpretation and postulate 
3 of [1] application rule has been explained. Equation (15) 
of [1] has been explained. It uses the “following ge- 

odesics” principle in the context of the Riemannian metric. 
And this has been proven to be a correct approximation 
for involved physical distances and for time line trajecto- 
ries. 

Moreover, this geometrical sensitive description of re- 
ality allows the construction of the three elements theory, 
a unifying theory [4]. This theory is fully understandable 
in this geometrical and deterministic manner. It gives a 
complete traceability of the mathematic models calcula- 
tions along their physical explanations. It indicates that a 
more intimate link might exist between classical physics 
theories and reality. 
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Glossary 

c: Speed of light. 
x : Space-time coordinates. 

ix : Space coordinates. 
t: Time variable with respect to  reference frame. 0

x: Space physical distance between a space-time point 
and the center of the attracting object in the Schwarz- 
schild metric, with respect to 0 . It is calculated with 
the help of an integral along a given space line. 

R

R

R

0R
B R

R

0R

B
R

B

R
B

B

0 : Inertial reference frame “attached to” the universe. 
For example, in the case of the Schwarzschild metric, 

is also attached to the attracting object. 

0 : Base located along 0 trajectory. The set of those 
bases is the reference frame. 0

: Inertial reference frame of a “free falling particle” 
(see definition). This particle is supposed as usual as get- 
ting a null mass for avoiding modification of the space- 
time structure. It is located at rest with respect to  
when located infinitely far. 

R

: Orthogonal and normalized base with respect to 

0  Euclidean metric, in which the Minkowskian metric 
is diagonal. 

m : Normalized base with respect to the Minkows- 
kian metric. The set of those bases along a given “time 
line” (see definition) will construct the  reference 
frame. This base is constructed from  base. Its vec- 
tors are parallel to vectors. Their lengths are inverted 
from vectors lengths, with respect to the Minkowskian 
metric. In other words, we get 

B

mg u u
B

R

B B

B



r : Normalized base with respect to the Riemannian 
metric. In some way it explains time and space values 
in reference frame before space-time vacuum genera- 
tion by the free falling particle. This base is constructed 
from  base. Its vectors are parallel to  vectors. 

Their lengths are inverted from  vectors lengths, with 
respect to the Riemannian metric. In other words, we get  



. 

rh 
u u

B

.  

 : The vectors of this base are equal to  
2 21 v c B

B

R

0R

R

which multiplies the vectors of . 

Free falling particle: in this document, this always 
means a special kind of free falling particle. Its trajectory 
coincides with a time coordinate curve in the system of 

 bases. Because of the “following geodesics” princi- 
ple, it is a geodesic in the Minkowskian metric. As usual 
this free falling particle gets a null mass, because we 
don’t want it to generate any space-time deformations 
around it. Otherwise, this should modify the studied met- 
ric. And it gets a null speed when located infinitely far, 
because this means that its trajectory will always be per- 
pendicular to space lines with respect to 0 . In other 
words, this trajectory is a time curve in this  repre-
sentation. 

Space line: a space curve, which is the space three di-
mension manifold, represented by a curve after projec-
tion on the two dimension figures of this document. But 
in this document, this curve is always perpendicular to 
any local time axis in the  representation. 0

Time line: the trajectory of a free falling particle (refer 
to the above definition of “free falling particle”). 

u B

m

:  base vectors. 
u mB

r

:  base vectors. 
u B:  base vectors. r

g : Coefficients of the Minkowskian metric with re-
spect to the  base. B

h : Coefficients of the Riemannian metric with re-
spect to  base. B
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