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ABSTRACT 

Time-to-event has become one of the primary 
endpoints of many clinical trials. Comparing 
treatments and therapies using time-to-event (or 
“survival”) data requires some care, since survi- 
val differences may occur either early or late in 
the follow-up period, depending on various fac- 
tors such as the initial potency or the duration of 
efficacy of the drugs. In this work, we investi- 
gate the effect of the CIMAvax®EGF vaccine the- 
rapy on the survival of patients with non-small 
cell lung cancer, using stratified and unstratified 
weighted log-rank tests. Weighted log-rank tests 
are designed to identify early and late survival 
differences between treatments. Using these tests, 
we conclude that the vaccine is more efficient 
than the standard therapy among patients less 
than 60 years of age. 
 
Keywords: Log-Rank Test; Fleming-Harrington 
Test; Stratified Tests 

1. INTRODUCTION 

The Center of Molecular Immunology (CIM) is one of 
the centers of the Scientific Pole in Cuba devoted to the 
research, development, and manufacturing of human 
biotechnological products. The CIMAVax®EGF vaccine, 
developed at CIM. Investigating the effect of the CI- 
MAVax®EGF vaccine on patients with NSCLC can be 
based on comparing the survival functions under CI- 
MAVax®EGF and a control therapy. The log-rank test is  

the classical tool that comes to mind for such an analysis. 
However, this test is not appropriate for detecting a de- 
layed separation of the survival curves that may occur 
due to some late effect of one of the treatments. Previous 
studies suggest that such an effect exist for the CIMA 
Vax®EGF vaccine. Moreover, the log-rank test is useful 
when each treatment group is homogeneous, in the sense 
that the survival distribution is the same for every patient 
in the group. Again, previous studies suggest that an 
evaluation of CIMAVax®EGF efficacy should be strati- 
fied over age, since homogeneity only holds within the 
two subpopulations of patients under (respectively over) 
60 years of age. Stratified weighted log-rank tests, such 
as the stratified Fleming-Harrington’s family of tests, can 
be used to deal simultaneously with the issues of late 
effects and stratification. In this work, we apply these 
tests to survival data arising from two clinical trials that 
were conducted to evaluate the CIMAVax®EGF vaccine 
in patients with NSCLC. The first study is a finished 
phase II trial that included 80 patients, the second is an 
on-going phase III trial including 356 patients. Both tri-
als were randomized and controlled with two treatment 
arms, one arm receiving the CIMAVax®EGF vaccine and 
a standard therapy, the other (control group) receiving 
only the standard therapy. In both trials, the primary 
endpoint of interest was the overall survival, measured as 
the duration between inclusion in the trial and death of 
the patient. 

2. PURPOSE 

The purpose of this work is to analyze survival data 
from patients with NSCLC with standard therapy com-  
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pared with patients vaccinated with CIMAVax®EGF. 

3. PATIENTS AND METHODS 

3.1. Study Design and Treatment 

A phase II clinical trial including 80 patients (under a 
balanced design), and a Phase III trial including 356 pa- 
tients (under an unbalanced design 1:2 and still ongoing) 
are analyzed, first separately, and then by combining the 
data from both trials. Both trials are controlled, with two 
treatment arms: one group received the CIMAvax®EGF 
vaccine plus standard therapy and the other the standard 
therapy. Based on previous studies, the statistical analy- 
ses were stratified according to the age of the patients 
(the patients under 60 years were assigned to a stratum, 
the patients over 60 years to another stratum. In the se- 
quel, these strata are respectively referred to as “younger” 
and “older”). Table 1 provides a brief description of the 
data. The overall survival, defined as the duration be- 
tween inclusion in the trial and death was the primary 
endpoint of interest. Some other variables were also as- 
sessed but their analysis falls beyond the objective of the 
present. The ethics boards of all the participant institu- 
tions approved the protocols, and all the patients pro- 
vided a written informed consent. The data were col- 
lected, managed, and analyzed at CIM and CENCEC.  

3.2. Eligibility Criteria  

Included patients had histologic or cytological evi- 
dence of NSLC (Adenocarcinome and Non Adenocarci- 
nome), ECOG performance status 0, 1, or 2, stage IIIb 
and IV, and adequate hematologic, renal, and hepatic 
functions.  

3.3. Statistical Analysis 

3.3.1. Weighted Log-Rank Tests for Two or  
More Samples 

We consider the problem of comparing the hazard 
rates of K (K ≥ 2) treatment groups that is, we consider 
the testing problem: 

     0 1 2 KH : h t h t h t , for all t ι       (1) 

versus 
 
Table 1. Disposition of patients for Phase II and Phase III clini- 
cal trials. 

Trial Phase II Phase III*  

Stratum Vaccine Control Vaccine Control Total 

Older 17 (42%) 10 (25%) 138 (56%) 60 (54%) 198 (56%)

Younger 23 (58%) 30 (75%) 107 (44%) 51(46%) 158 (44%)

Total 40 (100%) 40 (100%) 245 (100%) 111 (100%) 356 (100%)

HA: at least one of the hj is different from the others 
for some t ι  where hj(t) is the hazard rate in the j-th 
group and  denotes the largest time at which some pa- 
tients are still at risk in each group. The alternative hy- 
pothesis is global in the sense that one rejects the null 
hypothesis if at least one of the populations differs from 
the others. The available data for solving this testing 
problem consist of independent durations, possibly right- 
censored, obtained from the K treatment groups. In the 
sequel, we let 1 2 Dt t t    denote the distinct death 
times in the K pooled groups, dij be the number of deaths 
at time ti in the j-th group, and Yij be the number of pa- 
tients at risk at ti in the j-th group ( j 1, , K  , 
i 1, , D  ). Let i ijj 1, K

d d    and i ijj 1, K
Y Y    

be the numbers of deaths and patients at risk in the com- 
bined K groups at time ti, i = 1, ···,D. 

Weighted log-rank tests of H0 are based on weighted 
differences between the Nelson-Aalen estimators of the 
cumulative hazard rates in the K groups and the Nelson- 
Aalen estimator obtained in the pooled groups that is, 
under H0 (see [1,2], for example). Using data from the 
j-th group, the hazard function can be estimated by dij/Yij. 
If the null hypothesis H0 holds, an estimator of the com- 
mon hazard rate is the pooled groups estimator di/Yi. 
Now, Wj(t) be a positive weight function for the j-th 
group. This weight function is chosen so as to detect 
early or late differences between the treatment groups. 
Finally, the weighted log-rank statistic for testing H0 
against HA is defined as: 

    j j i ij ij i ii 1, D
Z ι W t d Y d Y , j 1, , K


      (2) 

If all the Zj() ( j 1, , K  ) are close to zero, then 
there is little evidence to believe that the null hypothesis 
in (1) is false, whereas if one of the Zj() is far from zero, 
then there is evidence that the j-th treatment group has a 
hazard rate differing from that expected under the null 
hypothesis. Although the mathematical theory allows for 
general weight functions in (2), in practice, all the com- 
monly used test statistics have weight Wj(ti) = Yij W(ti), 
where W(ti) is a common weight shared by the K groups. 
Zj() then becomes: 

     j i ij ij i ii 1, D
Z ι W t d Y d Y , j 1, , K


        (3) 

In this case, Zj() can be interpreted as the sum of the 
weighted differences between the observed numbers of 
deaths and the expected number of deaths under H0 in the 
j-th sample. The variance of Zj() in (3) is given by:  

    
jj

2

j i ij ij i i i i ii 1, D

Ŝ

W t Y Y 1 Y Y Y d Y 1 d ,

j 1, , K


  



 



  

and the covariance of Zj() and Zg() is: 
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  2

jj j i ij i ig i i i i ii 1, D
Ŝ W t Y Y Y Y Y d Y 1

j g






  d , 
 

The quantities  are linearly depen- 
dent since 

j 1, K   is zero. Therefore, the test 
statistic is constructed by selecting any K − 1 of the j

   1 KZ ι , , Z ι
 jZ ι

Z s  
(the first K1, say). The estimated variance-covariance 
matrix of the resulting vector is given by the (K − 1) x (K 
− 1) matrix  formed by the appropriate jg . Finally, 
the test statistic is given by the quadratic form:  

Ŝ S

         t1
1 K 1 1 K 1Z ι , , Z ι Z ι , , Z ι

 X   



 

If the null hypothesis H0 is true and the sample size is 
large, X is approximately distributed as a chi-square with 
K − 1 degrees of freedom. An α-level test of H0 thus re- 
jects the null hypothesis when X is greater than the upper 
α-quantile of this chi-square. In particular, when K = 2, 
as is the case in our data set, X should be distributed as a 
chi-square with 1 degree of freedom under H0. 

A variety of weight functions have been proposed in 
the literature (see [4-8], and [3] for a review). The most 
common and widely used test has W(t) = 1 for all t. This 
test is referred to as the Mantel-Haenszel or log-rank test, 
and is available in any modern statistical software. It has 
optimum power to detect alternatives where the hazard 
rates in the K treatment groups are proportional to each 
other. 

Fleming and Harrington proposed (see [3]) a very 
general class of tests that includes the Mantel-Haenszel 
test as a special. Let Ŝ(t) be the Kaplan-Meier estimator 
of the common survival function under H0, based on the 
combined treatment groups. The weight function in the 
Harrington-Fleming’s test is, at time ti: 

     
q

p,q i i 1 i 1
ˆ ˆW t S t 1 S t , p 0, q 0

p

 
       (4) 

Here, the survival function at the previous death time 
is used as a weight for mathematical reasons (this en- 
sures that these weights are known just prior to the time 
at which the comparison is to be made). Letting p = q = 0 
in (4) results in the Mantel-Haenszel test. Letting p = 1 
and q = 0 results in a version of the Mann-Whitney- 
Wilcoxon test. When p > 0 and q = 0, Wp,q give the most 
weight to early departures between the hazard rates in the 
K groups, whereas when p = 0 and q > 0, the corre- 
sponding tests give most weight to departures which oc- 
cur late in time. By an appropriate choice of p and q, one 
can construct tests which have the greatest power against 
alternatives where the K hazard rates differ over any de- 
sired region.  

We applied this methodology to our data sets. Flem- 
ing-Harrington test (with p = 0.5 and q = 0.5) is more 
sensitive to detect differences when the curves have a 
delayed separation in time that is why sometimes the  

results are significant. Mantel-Haenszel test is appropri- 
ate when there is a proportional separation of curves. 

3.3.2. Stratified Test  
As mentioned above, the log-rank tests test is useful 

when each treatment group is homogeneous that is, when 
the survival distribution is the same for every patient 
within a group. A violation of this homogeneity usually 
indicates that one needs to adjust the analysis for some 
other (than the treatment group) covariate. For example, 
previous studies suggest that an evaluation of CIMA 
Vax®EGF efficacy should be stratified over age, since 
homogeneity only holds within the two subpopulations 
of patients under (respectively over) 60 years of age. One 
possible approach to this issue is to base the decision on 
a stratified version of one of the tests discussed above. 
This approach is feasible when the covariate we adjust 
for is categorical and its number of levels is not too large, 
or when it is continuous but can be discretized into a 
workable number of levels. In the sequel, we discuss 
how such stratified tests are constructed, and how they 
can be used to analyze our data. 

Suppose that the covariate we need to adjust for is 
discrete (or continuous and discretized), with M levels. 
Then, we wish to test the hypothesis 

     0,strat 1s 2s KsH : h t h t h t ,

for s 1, M and t ι

  

 




      (5) 

against the alternative that at least one of the hjs is dif- 
ferent from the others for some s and some t  . A strati- 
fied test is constructed similarly as in (2) and (3) (for the 
weighted version of the test), except that all quantities 
are calculated by using only the data from the s-th stra- 
tum, yielding Zjs() and s. The same weight functions as 
in the previous section can be used for the stratified tests. 
A global test of H0,strat in (5) is obtained by summing all 
the within-stratum quantities, such as: Zj() = s = 1,···,M 

Zjs() and ŝjg = s = 1,···,M ŝjgs. Finally, the stratified test sta- 
tistic is defined as 

         t1
1 K 1 1 K 1ι , , ι Z ι , , Z ιZ Z 

  stratX    

where  is the (K − 1) x (K − 1) matrix obtained from 
the ŝjg's. If the null hypothesis H0,strat in (5) is true, and 
the sample size is large, strat  is approximately distrib- 
uted as a chi-square with K − 1 degrees of freedom. An 
α-level test of H0 thus rejects the null hypothesis when 

strat  is greater than the upper α-quantile of this 
chi-square. In particular, when K = 2, as is the case in our 
data set, strat  should be distributed as a chi-square 
with 1 degree of freedom under H0,strat. 

X

X

X

4. RESULTS 

We analyzed the data obtained from the phase II and  
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phase III trials described above, using the methodology 
described in the previous section.  

It was first analyzed both trials separately, and then 
performed a single analysis by combining both data sets 
(such a combination is appropriate here, since both stud- 
ies had similar characteristics: inclusion and exclusion 
criteria, schedule of treatment, ···).  

We performed the Mantel-Haenszel test and the Flem- 
ing-Harrington test with p = 0.5 and q = 0.5. We used the 
stratified versions of both tests, and refining the results 
by testing the hypothesis of no differences between CI- 

MAVax®EGF vaccine and standard therapy within each 
stratum.  

The results are summarized in Table 2 (for the phase 
II trial), Table 3 (for the phase III trial), and Table 4 (for 
the combined data).  

In Table 2 it is observed the median of survival for 
both groups of phase II study (one patient with missing 
data). The younger patients that received the vaccination 
has the highest value (10.47 months) while the rest of 
patients did not reach more than 7 months.  

When age is not taken into account in the stratified 
 
Table 2. Comparison of the results using two different approa- ches for Phase II study. 

Mantel-Haenszel test 
Strata Group N Events Median (0.95 CI) 

Stratified Model By Stratum 

O V 17 17 5.63 (4.53, 8.53) 

 C 9 7 6.77 (1.57, NA) 
p = 0.407 

Y V 23 19 10.47 (3.20, 31.80) 

 C 30 29 5.33 (3.20, 8.20) 

p = 0.25 

p = 0.0493* 

Fleming-Harrington test with p = 0.5 and q = 0.5 
Strata Group N Events Median (0.95 CI) 

Stratified Model By Stratum 

O V 17 17 5.63 (4.53, 8.53) 

 C 9 7 6.77 (1.57, NA) 
p = 0.182 

Y V 23 19 10.47 (3.20, 31.80) 

 C 30 29 5.33 (3.20, 8.20) 

p = 0.37 

p = 0.0383* 

*p < 0.05 O: Older, Y: Younger, V: Vaccine, C: Control. 

 
Table 3. Comparison of the results using two different approaches for Phase III study. 

Mantel-Haenszel test 
Stra-tum Group N Events Median 0.95 CI 

Stratified Model By Stratum 

O V 138 98 10.83 (8.80, 12.87) 

 C 60 49 7.53 (5.39, 9.68) 
p = 0.123 

Y V 107 77 11.8 (8.18, 15.42) 

 C 51 40 7.17 (7.90, 11.31) 

p = 0.049* 

p = 0.045* 

Fleming-Harrington test with p = 0.5 and q = 0.5
Stratum Group N Events Median 0.95 CI 

Stratified Model By Stratum 

O V 138 98 10.83 (8.80, 12.87) 

 C 60 49 7.53 (5.39, 9.68) 
p = 0.233 

Y V 107 77 11.8 (8.18, 15.42) 

 C 51 40 7.17 (7.90, 11.31) 

p = 0.108 

p = 0.282 

*p < 0.05 O: Older, Y: Younger, V: Vaccine, C: Control. 
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Table 4. Comparison of the results using two different approaches for combined trials. 

Mantel-Haenszel test 
Stra-tum Group N Events Median 0.95 CI 

Stratified Model By Stratum 

O V 153 113 9.57 (7.44, 11.7) 

 C 69 57 7.17 (5.19, 9.15) 
p = 0.181 

Y V 129 95 11.73 (8.64, 14.82) 

 C 79 67 6.4 (4.97, 7.83) 

p = 0.002** 

p= 0.001** 

Fleming-Harrington test with p = 0.5 and q = 0.5
Stra-tum Group N Events Median 0.95 CI 

Stratified Model By Stratum 

O V 153 113 9.57 (7.44, 11.7) 

 C 69 57 7.17 (5.19, 9.15) 
p = 0.447 

Y V 129 95 11.73 (8.64, 14.82) 

 C 79 67 6.4 (4.97, 7.83) 

p = 0.027* 

p = 0.019* 

*p < 0.05; **p < 0.005; O: Older, Y: Younger, V: Vaccine, C: Control. 

 

 

F  igure 1. Kaplan Meier Survival curves for phase II, III and combined trials in each of the strata. 
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model p values are non-significant but in the stratum 
analysis for the younger patients receiving CIMAVax 
®EGF and for both methods p values are less than 0.05.  

It is observed that there is a survival advantage for 
younger patients with this vaccine.  

P values for the older stratum were non-significant for 
both approaches.  

Table 3 shows the results of Phase III trial. In case of 
the Mantel Haenzel test p value was significant and again 
the youngest people have an advantage (approximately 4 
months) if they receive the vaccine with the overall sur- 
vival greater than those patients in the standard therapy.  

OPEN ACCESS 

Regarding the analysis of Non proportional hazard rate 
p values were non-significant.  

In Table 4 the combined data of Phase II and Phase III 
studies are shown, for both methods performed without 
taking into account the age p values are less than 0.05, 
and considering the age, younger stratum is benefit if 
they are vaccinated with CIMAVax®EGF.  

There is an advantage regarding median values for the 
patients under 60 years (5 months with a significant cli- 
nical and statistical relevance) 

From the Figure 1, the survival curves in the CI- 
MAvax®EGF vaccine group and standard therapy group 
diverge (at least in the younger stratum) after some time 
has elapsed, which suggests that a Fleming-Harrington 
test with q > 0 (that is, for detecting a delayed difference) 
is appropriate.  

It is observed that survival curves from the younger 
stratum are clearly separated, so the vaccinated group has 
an advantage over the group that only received the stan- 
dard therapy while for the older patients for both groups 
of treatment the benefit is the same. In all the survival 
curves regarding the youngest patients vaccinated (the 
last column of Figure 1) it is observed that the separation 
of the curves occurs early in time however patients over 
60 years the effect of the vaccine is seen later (central 
column of the figure) 

5. CONCLUSION 

According to the results of the finished phase II trial, 
we conclude that the group that received the CIMAVax 
®EGF vaccine has a better response in the younger stra- 

tum. The analysis of the phase III trial data also corrobo- 
rates these results which contributes to obtain the sani- 
tary registration of this vaccine. When both studies phase 
II and III are combined, we also infer that the vaccine- 
tion with CIMAVax®EGF is more efficient in younger 
subjects since the median survival was of eleven months 
which is a remarkable figure for patients with NSCLC. 
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