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ABSTRACT 

Although frequently encountered in many practical applications, singular nonlinear optimization has been always rec-
ognized as a difficult problem. In the last decades, classical numerical techniques have been proposed to deal with the 
singular problem. However, the issue of numerical instability and high computational complexity has not found a satis-
factory solution so far. In this paper, we consider the singular optimization problem with bounded variables constraint 
rather than the common unconstraint model. A novel neural network model was proposed for solving the problem of 
singular convex optimization with bounded variables. Under the assumption of rank one defect, the original difficult 
problem is transformed into nonsingular constrained optimization problem by enforcing a tensor term. By using the 
augmented Lagrangian method and the projection technique, it is proven that the proposed continuous model is conver-
gent to the solution of the singular optimization problem. Numerical simulation further confirmed the effectiveness of 
the proposed neural network approach. 
 
Keywords: Neural Networks; Singular Nonlinear Optimization; Stationary Point; Augmented Lagrangian Function; 

Convergence; LaSalle’s Invariance Principle Plain 

1. Introduction 

The nonlinear model with rank one defect is of great 
importance for its singular nature. Follwing works of 
Schnabel and Dan Feng [1-3], we have made great im- 
provement for such problem by applying Tensor methods 
by numerical solution [4,5]. For large-scale computational 
problems, the computation of the classical numerical 
method is still far from satisfactory.  

In recent years, neural network approaches were 
proposed to deal with classical nonlinear optimization 
problems. Xia and Wang [6] presented neural networks 
for solving nonlinear convex optimization with bounded 
constraints and box constraints, respectively. Xia [7,8], 
Xia and Wang [9,10] developed several neural networks 
for solving linear and quadratic convex programming 
problems, monotone linear complementary problems, 
and a class of monotone variational inequality problems. 
Recently, projection neural networks for solving mono- 
tone variational inequality problems are developed in 

[11-13] and recurrent neural networks for solving 
nonconvex optimization problem have been also studied 
[14,15]. It is regrettable that the study of singular non- 
linear optimization problems in the neural network me- 
thod have not been involved . 

Recently, more attention were paid to the singular 
optimization problems due to real applications. For 
example, in the problem of singular optimal control, 
assume the state equation is depicted as   

 d
, ,

d

x
F x u t

t
  

where x  is an -dimensional state vector and  is 
an -dimensional control vector, and the control 
piecewise functions satisfy that 

n u
m

, 1,2,,j ju M j m  . 
The cost functional is given as  

    
0

, ,ft

f f t
, dJ x t t L x u t t     

for which the Hamiltonian function is  

  T, , , , .H L x u t F x u t   *Supported by National Natural Science Foundation of China (No. 
61002039) and The Fundamental Research Funds for the Central Uni-
versities (No. DC10040121 and DC12010216). 
#Corresponding author. 

According to the maximum’s principle, when the 
control variables change in the constrain boundary, the 
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minimum conditions of the optimal control function H  
are derived as  

2

2
0, 0

H H

u u

 
 

 
 

If on a given time interval  1 2 0, , ft t t t    ,  there  

exists that 
2

2
det 0

H

u

 
 

 
, then this becomes the so-  

called singular optimal control problem. The optimal 
trajectory corresponding to the segment called singular 
arc. The numerical methods for solving such singular 
control problem can be referred to [16,17]. 

Due to the inherent Parallel mechanism and high- 
speed of hardware implementations, efforts to tackle 
such problems by using neural systems are promising 
and creative. Attempt was made for the first time in our 
recent paper [18] to solve unconstraint singular optimiza- 
tion problem, which turned out to be feasible and effect- 
tive. In this paper, we further improve such result to the 
case of singular optimization problem with bounded 
variables constraint.  

This paper is organized as follows. In Section 2, the 
nonlinear singular convex optimization problem and its 
equivalent formulations are described. In Section 3, a 
recurrent neural network model is proposed to solve such 
singular nonlinear optimization problems. Global con- 
vergence of the proposed neural network is analyzed. 
Finally, in Section 4, several illustrative examples are 
presented to evaluate the effectiveness of the proposed 
neural network method. 

2. Problem Formulation and Neural Design 

Let  nx R l x h     . Assume   : ,f x R  is 
a continuous differentiable convex function. Consider the 
following unconstrained convex programming problem, 

 min

s.t.

f x

l x h 
            (1) 

which can be easily transformed to equivalent non- 
negative bounded convex programming problem by 
using the such transformation as ,  u x l 

 min

s.t. 0 .

f x

x c 
           (2) 

Let x  is the unique optimal solution to (2). We will 
discuss the solution of (2) under the following as- 
sumptions. 

Assumption 1  f x  is both strictly convex and four 
times continuous differentiable. For optimum point x , 

1there exists  such that  
and . 

n

   v 
v R

2 f x
  2rank f x n  

Null
Assumption 2 For x x , there exists  T 2 0u f x u   

o nu R . Moreoverfor any nonzer ,  2 f x  and 
 3 f x  are all un ly bounded.  iform

Assumption 3 For any , the 
quantity  

  2v Null f x 

    T 2 2 0.f x v f x v v 4 4v v     

(The reason for this assumption can be found, for 
example, in [4].)  

Lemma 1 For any  and np R T 0p v  , 
   ,2v Null f x     2 Tf x p  p  is nonsingular 

at x . 
Proof. It is easy to verify this result, thus its proof is 

omitted here for the sake of saving space. 
It is seen that when  in Lemma 2.1 take random 

values, the condition  is satisfied with pro- 
bability 1.  

p
Tp v 0

Define function  F x  as follows  

     ,F x f x h x   

where  

      2h x f x x   x

 

, 

   12 Tx f x pp p


   

where T 0p v  . 
According to the definition of  F x , we have the 

following important result, 
Lemma 2 For any 0  , the Hessian matrix 

 2F x  is positive definite. Moreover, if   is small 
enough, then  2F x  is positive definite for any 

nx R .  
Proof. This conclusion can be proved easily according 

to the results in [4] under Assumption A2. Thus the proof 
is omitted here. 

Because the Hessian matrix of  f x  is singular at 
x  for (2), it is generally difficult to obtain ideal con- 
vergence results by conventional optimization algorithm 
(see [1-4]). In order to overcome this difficulty, alter- 
natively we deal with equivalent unconstrained convex 
optimization problem as follows, 

 
0 ,

F xmin

s.t. x c 
           (3) 

for which we can establish the equivalent lemma as fol- 
lows, 

Lemma 3 x  is a solution of (2) if and only if x  is 
a solution of (3).  

Further consider the difficulty caused by computing 
the matrix inverse, we turn optimization question (3) into 
the following equivalent constrained optimization pro- 
blem. 

     
 

T 2

2 T

min

s.t. 0 . 
,g x y f x y f x y

f x pp y p x c

  

    
  (4) 
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Define Lagrange function of (4) as follows, 

     
  

T 2

T 2 T

, ,L x y z f x y f x y

z f x pp y

  

     



p



 

By Assumptions A2 and Lemma 2, it is easy to know 
that the function  ,g x y



 is strictly convex. And based 
on the Karush-Kuhn-Tucker sufficient conditions, the 
KKT point  ˆ ˆ,x y  of the formula (4) is a unique optimal 
solution of the optimization question (4) and there exits 

 satisfies the following condition: ˆ nz R

    

 
 

 

0, if 0,

, , 0, if , 1, 2, ,

0, if 0 ,
., , 0,

, , 0,

0

i

x i ii

i i

y

z

n

x

L x y z x c i n

x c

L x y z

L x y z

x x R x c

  
    

   
 

 

     

 





 

Equivalently, the point  ˆ ˆ ˆ, ,x y z  satisfies the fol- 
lowing condition, 

    
 
 

Tˆ ˆ ˆ ˆ, , 0,

ˆ ˆ ˆ, , 0,

ˆ ˆ ˆ, , 0.

x

y

z

x x L x y z x

L x y z

L x y z

    
 

 









    (5) 

In order to discuss the constrained programming pro- 
blem (4), first, we define a augmented Lagrangian func- 
tion of (4) as follows 

     
  
  

T 2

T 2 T

2
2 T

, , ,

, ,
2

L x y z k f x y f x y

z f x pp y p

k
f x pp y p x

  

     

    

 

where  is a penalty parameter and  is an 
approximation of the Lagrange multiplier vector. Hence, 
the problem (4) can be solved by the stationary point of 
the following problem, 

0k  z


, ,

min , , ,
nx y z R

L x y z k
 

             (6) 

Then, the condition (5) can be written as 

   
 
 

Tˆ ˆ ˆ ˆ, , , 0, ,

ˆ ˆ ˆ, , , 0,

ˆ ˆ ˆ, , , 0.

x

y

z

x x L x y z k x

L x y z k

L x y z k

    
 
 

    (7) 

Now, we introduce the projection function P  as 
follows, 

        1 2, , , ,n
nR P u P u P u P  

where 

u

,i

 

   
0, 0,

, 0,

, .

i

i i i

i i i

u

P u u u c

c u c


 
 

        (8) 

From the projection conclusion as shown in [19], the 
first inequality of (7) can be equivalently represented as  

  ˆ ˆ ˆ ˆˆ, , , 0, 0.xP x L x y z k x         

So the optimal solution of (4) and the stationary point 
of (6) meet with the conditions 

  
 
  2 T

, , , , 0,

, , , 0,

.

x

y

x

x P x L x y z k

L x y z k

f x pp y p

 
     
 

  

   (9) 

3. Stability Analysis of the Neural Network 
Model 

By Theorem 8 and Theorem 9 in [20], there exists a 
constant , such that if  is an 
optimal solution of the problem (6), then 

0k   , ,c x y z   
 ,


x y   is an 

optimal solution of the problem (4) and 

   
, ,

min , , , .
nx y z R

L x y z k f x
 

  

Notice that   , , , , ,L x y z L x y z k  . By the Lagrange 
function defined above, we can describe the neural 
network model by the following nonlinear dynamic 
system for solving (10). The logical graph is shown in 
Figure 1. 
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Figure 1. Logical graph of the proposed neural network model. 
 

0

,

        T

1 2, , , , 0,nf x f x f x f x       

        T3 2 2 2
1 2, , , nf x y f x y f x y f x y      

  d
, , ,

d

x
x P x xL x y z

t
     

we have 

  
0 0

d
e d e ,and the activation function  s 

  
 is continuou  sly

differentiable and satisfies that 0s . 
It is easy to see that if  c  ,x y , z

, then it is a equ
 is an optimal 

solution of the problem (6) ilibrium point 
of network (10). Conversely, if  , ,x y z    is a 
equilibrium point of network (10), it m  point 
of original problem (4). To analyze the convergence of 
the neural network (10), the following lemmas are first 
introduced (see [19]). 

Lemma 4 Assume n

ust be KKT

that the set is a closed 
co aliti

R   
nvex set, then the following two inequ es hold,  

     
   

T
0, ,nP x y x P x x R y          

, , nP x P y x y x y R          
 

where is a projection operator defined as : nP R   
  minP   

 For any in al poi
  . 

Lemma 5 iti nt 
      3

0 0 0, , n x t v t w t R , there exists a unique 
continuous solution       3, , nx t

t of (1

v t w t R  for (10). 
Moreover,  x t   pro  . The 
equilibrium poin 0) solves (5).  

Proof: By Assumption A1,  
P

vided that  0x t

  , , ,xx L x y z k x    ,  , , ,y L x y z k  and 
  2 Tf x pp y p    are lo

According to local 
cally Lipschitz continuous. 

existence theorem of ordinary 
differential equation, there exists a unique continuous 
solution       , ,x t v t w t  of (10) for  0 ,t T . 

Next, let initial point  0x t  . Since  

, d
d

t ts s

t t

x
x s P x xL x z s

t


        

ently,  

.

y
 

Or equival

        0

0
0e e e , ,

tt t t s

t
dx t x t P x xL x y z  
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So,   0x t   provided that  0 0x t  , 
  , , , 0P x y z k x L x  

tt s
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 s

. 

Thus, 

c





  

 x t 
re establishin

 provided that 
Befo g the converge m, we need 

the property of the following augmented Lagrangian 
fu

 0x t  . 
nce theore

nction. 
Assumption 4  , ,L x y z  satisfies the local mono- 

tone property of following definition about x .  

      T
, ,xL x y z L x y z  , , 0.xxx       

Now we are ready to establish the stability and the 
convergence results of network (10). 

Theorem 6 Assume that   : nf x R R  is 
strictly convex and the fourth differentiable, and 

 , ,c x y z     is a global optimal solution of the 
problem (6), if the initial point       0 0, , 0x t y t z t  
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with  0x t   is chosen in a small neighborhood of 
point, then the proposed neural network 

of (10) is stable in the sense of Lyap  
conve he stationary point  , ,

the equ
unov and globally

ilibrium 

rgent to t x y z   , where 
x  is the optimal solution of (2).  

Proof. We define V : R  as follows: 

      

         
2

,
2

z f x


 
 

 show that  is a suitable Lyp ov 
c mic system (10), it is evident that 

, ,V x t y t z t

1
, ,L x t y t t x t x   

W
fun

e want to
tion for dyna

V un

        
21

, , ,
2

V x t y t z t x t x


  

,        , , , ,x t y t z t x y z    

 , , 0.V x y z     

Then 
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d d

d d d
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d d d d d

d d d d d

, , .

n
i i i

i i i

x

n
i i i i i

i i i i i i

x

x yV L L L

u t y t z t

x x P x L x y z x

dzd
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And denote that  

      1 2, , ,v nG diag s v s v s v     ,  

      1 2, , ,w nG diag s w s w s w      

we have 
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(12) 
In the first inequality of Lemma 4, let 

 , ,xx x L x y    z  and y x  , then 
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Then, we obtain from (12), (13) and Assumption A4 
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consequently,        , ,V P x t y t z t
by (14), it is evident th  

 is Lypunov 
function, and at

d d d d
0 0, 0, 0.

td d d d

V x v w

t t t
    

By the Lypunov stability theory, systems (10) is 
le. Therefore, when t i

 

asymptotically stab he in tial point 
 0 0 0, ,x y x  is obtain near to the equilibrium point, the 
set        0, ,x t y t z t t t  is bounded. By also using 

nvariant principle, the trajectory of the neural LaSall's i
network (10)        , ,u t y t z t  will converge to the 

ximum invariant subset of the following set 

 

ma

d
, , 0 .

d

V
E x y z S

t
      

Assume again that 

 

  , ,X x x y z E   , then we 
have 

  lim , 0.

t
dist x t X


  

 X x  , we have Specially, when 

  .
t
lim x t x
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The proof is completed. 

4. Numerical Examples 

In order to verify the effectiveness of the presented 
algorithm in this paper, three examples were selected 
fr ese Examples has been used 

e new algorithms (see [1- 
om the literature [21]. Th

to check the effectiveness of th
5]). 

For the first example, it is easy to verify that the 

Hessian matrix of the object function     21

2pf x F x  

is rank one deficiency at the minimizer x . For the last 
two examples, the corresponding  matrix is 
no

e procedure as
n transformation as

Hessian
nsingular at the minimizer. In order to adapt them to 

the singular case, we have adopt the sam  
proposed in [1] by introducing functio  
follows,  

         1T T:F x F x F x A A A A x x
     (16) 

where x  is the root of   0F x   and 

   1 Tn m nF x R R A R A  : , , 1,1,  ,1 .

Now we can construct the relevant objection function 
 pf x   

    21

2pf x F x  

fo
an  if 

r which its Hessian matrix being rank one deficiency 
d the Interval  ,l h  includes the root of the original 
 F x
 

, it can be hat the root of the original checked t
F x
min p

 is the mi f the op ization problem nimizer o tim
  ,f x l x  h  . 

Ex. 1: Modified Powell Singular Function: 
a) 4, 4n m    

 1 1 2 310b) f x x x x    

   1 2
3 452f x x x   

   2

3 2 2 32f x x x x    

   21 2
4 110 4f x x x    

c) at the minimizer   
Ex. e Function: 
a)   
b) 2

0f   
 2: Beal

 0,0,0,0 .x 

2, 3n m 
   1 1 1 1f x y x x    

   2
2 12 1 2f x y x x    

  1 1 2
3

3 3f x y x    x  

1 2 31.5; 2.25; 2.625y y y 


   

c) at the minimizer 
Ex. fied Broyden Tri ion:   

a) 

0f   
 3: Modi

 3,0.5 .x   
diagonal Funct

4, 4n m    
b)    1 1 13 2 2 1f x x x x2    

   2 2 2 13 2 2f x x x x x3 2     

   3 3 3 2 43 2 2 2f x x x x x      

   4 43 2 4 3f x x x x     

c) 0f   
Meanwhile, we com

at the minimizer 
pare the vior of the 

proposed model with the classical pr ection gradient 
system [11] as follows,  

 1,1, 1 .x   
 dynamic beha

1,

oj

 
d

P x f
t

 d
, 0p

x
x x           (17) 

 simulate the dynamics of the 
corresponding systems. The integral curves a
by using the ODE function ode15s for the numerical 

ch

for which the Hessian matrix at the minimizer is 
generally assumed to be nonsingular. 

We use Matlab 7.0 to
re obtained 

integration. For the proposed system (10) (PR) and the 
classical projection gradient system (10) (PG), we have 

osen the same initial point to numerically solve the 
ODEs. 

For Ex.1, we choose  0 01,0.9,1.5238,10.9605 ,x   
1    for both PR and PG and let 0y  and 

0z  be some random values between 0 and 12. The 
other parameters PR are chosen as 0,l   20,h   

0.0000001,   3000k  . The results are shown in 
Figures 2 and 3. It can b  

urves response of PR converge to
e seen, in Figure 2, that the

 integral c pf ’s 
nimizer mi  0,0,0,0x  . On the contrary, as shown in 

Figure 3, the curves of PG failed to converge to pf ’s
 in

 
mini itial point. 

For Ex. 2, we choose 0, 3, 0.0000001;l h
mizer with the same

    
 0 1,6 ;x rand  5000, 1k     . Similar results are 

obtained, i.e., t sed system PR successfully 
 

he propo  

 

Figure 2. Trajectory of for PR (Ex. 1).  ( )x t  
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found the minimizer while the classical 
system PG failed. Th shown in Figures 4 
and 5 respectively. 

Figures 6 and 7 show the corresponding results for Ex. 
3 with initial conditions chosen as 

 3,0.5x   
e results are 

 0 1, 1, 1, 1 ,x       
0, 1,l h   0.0000001,   50k  00,  1  , 100  . 

 got the minimizer 
PR got stuck all the 

The proposed 
 1,1,1,1x 

time. 

system PR
, while the sy

 finally
stem 

5. Concluding Remarks 

Singular nonlinear convex optimization problems have 
been traditionally studied by classical numerical methods. 
In this paper, a novel neural network model was estab
lished to solve such a difficult problem. Under some mil
assump ed n n 

constraine

mented Lagrange function, a neural  
 

- 
d 

tions, the unconstrain onlinear optimizatio
problem is turned into a d optimization prob- 
lem. By establishing the relationship between KKT 
points and the aug

 

Figure 3. Trajectory of ( )x t  for PG (Ex. 1). 

 

 

Figure 4. Trajectory of for PR (Ex. 2). ( )x t  

 

Figure 5. Trajectory of  for PG (Ex. 2). ( )x t
 

 

Figure 6. Trajectory of for PR (Ex. 3). 

 
 ( )x t  

 

Figure 7. Trajectory of for PG (Ex. 3). ( )x t  

 
network model is successfully obtained. Global analysis 
with illustrative examples supports the presented results.  
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