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ABSTRACT 

With the rapid development of financial industry, copula methods are more and more widely used for the study of fi- 
nancial fields. By selecting the appropriate copulas, the tail dependence of financial variables can be measured easily. 
Using the nonparametric estimation method to select A12 copula from Archimedean copulas, and do tail dependence 
study of SSE composite index and SESE component index. The results show that the SSE composite index and SESE 
component index simultaneously have the upper tail dependence and lower tail dependence, and the upper tail depend- 
ence coefficient is less than the lower tail dependence coefficient, which is consistent with the real financial market 
rule. 
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1. Introduction 

With the continuous development of the financial mar- 
kets, the relationship of interior financial markets is more 
and more complex, it will promote the study of depend- 
ence between financial market structure. In the quantita- 
tive analysis of related financial market structure, de- 
pendence study is very important, a series of financial 
problems involve the dependence studies, such as risk 
management, portfolio selection, asset pricing and so on. 
Using multivariate distribution function to depict the de- 
pendence between each component is the most common 
method in mathematics; However traditional multivariate 
distribution function exists some problems in practical 
application, when the analysis formulas of multivariate 
distribution function contain many variables, it will be 
difficult to handle, and it requires the type of marginal 
distribution function to fit the type of multivariate distri- 
bution function. In financial analysis, marginal distribu- 
tion often do not have the same type of distribution, this 
makes the traditional multivariate distribution functions 
can not be widely used in the dependence analysis of 
financial markets. By Sklar theorem [1], using the copula 
function to structure flexible multivariate distribution  

function, so as to grasp the real dependence between fi- 
nancial markets. Therefore, in this paper we use copula 
functions to study the tail dependence between SSE com- 
posite index and SZSE component index. 

At present, using copula function to study the depend- 
ence of the financial market already had many achieve- 
ments, but also in many domestic and foreign literatures, 
most of them used parameter estimation method to esti- 
mate parameters of copula functions. The innovation of 
this paper is to use a parameter estimation method for 
parameter estimation, to determine copula functions, and 
then to do the test of tail dependence. 

2. Tail Dependence Based on Copula 

Tail dependence can be used to represent extreme events 
of the interaction between the variables, for example, 
when the random variable X increased or decreased sig- 
nificantly, the probability of the random variable Y in- 
creased or decreased significantly [2]. We use the tail 
dependence coefficient of copula to research the relation- 
ship between SSE composite index and SZSE component 
index. Let X and Y be continuous random variables with 
distribution functions F and G respectively, and whose 
copula is C, and then, based on the copula function we 
define the upper tail dependence coefficient U  and the 
lower tail dependence coefficient L  as follows [3]: 
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where , when , we think the 
upper (lower) tail of X and Y be asymptotic dependence; 
when , we think the upper (lower) tail of X 
and Y be asymptotic independence; where 

 , 0,U L  

  0U L  

1   0U L  

 F t  and 
G t

 
 are the t quantile functions of distribution func- 

tions F  G and  respectively [4].  

3. Selecting Copulas and Estimating  
Parameters 

There are many kinds of copula functions, Elliptic copu- 
las and Archimedean copulas are used commonly, and 
each group has many specific copula functions. Different 
copula functions have different properties, in the actual 
application, choosing the right copula functions need to 
follow two principles: one is that the established model 
of copulas should be easy to operate and understand, to 
avoid the phenomenon of unknown parameters [5]; sec- 
ond is to choose the appropriate copula functions which 
are suitable for the sample datas. Elliptical copula func- 
tions are with a symmetrical tail dependence, this will be 
conflicted with fat-tailed distribution of financial datas. 
Archimedean copulas are the most widely used in the 
financial field, and it is easy to build and calculate them. 
The bivariate normal copula with symmetry and asymp- 
totic tail independence is applied widely, but it is unable 
to capture the asymmetric dependence and tail depend- 
ence between the variables. Here we select copulas which 
have obvious tail features. Because the log return corre- 
lation is accorded with the Archimedean copula distribu- 
tion, so we choose the Clayton copula with obvious 
lower tail features, the Gumbel copulas with obvious up- 
per tail features, and the A12 copula with both upper and 
lower tail features from Archimedean copulas on the fi- 
nancial data fitting [6]. Moreover Archimedean copulas 
have a feature that Kendall’s tau is the analytic function 
of  . By Sklar theorem, when marginal distribution 
function is continuous, the copulas function will be uni- 
quely identified. 

For the parameter estimation of a specific copula func- 
tion, parametric approach and nonparametric approach 
are common methods: 1) strict maximum likelihood ap- 
proach (EML) and marginal distribution extrapolation 
approach (IFM) are more frequently used in the parame- 
ter method. Maximum likelihood approach estimates 

marginal distribution and parameters of copula function 
at the same time; Marginal distribution extrapolation ap- 
proach divide estimation process into two steps, first to 
estimate the parameters of the marginal distribution func- 
tion, and then estimate the parameters of copula function. 
2) Genest and Rivest approachs are commonly used in 
the nonparametric approach [7]. As we know, for a cop- 
ula function  ,C u v , it is related to the Kendall’s tau as 
following: 

   
 20,1

4 , d ,C u v C u v 1   

So for most of the single parameter Archimedean cop- 
ula functions, because of its generating element  t  is 
a function of the parameter   and the relationship be- 
tween  t  and the Kendall’s tau as follows: 
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By solving the formula above, we can get the estimate 
value of  . The deficiency of EML and IFM approaches 
lie in the parameter estimation of copula function is af- 
fected by the marginal distribution function, if the as- 
sumptive model of marginal distribution function were 
wrong, it will lead to a biased estimate to the copula 
function. Therefore, in this article we use nonparametric 
estimation method in view of the features of the Archi- 
medean copulas, to calculate the estimate value of   by 
the estimate value of the Kendall’s tau, further to esti- 
mate the parameters of copula functions. 

3.1. The Introduction of Three Types of Copulas 

1) Gumbel copula 

      1, exp ln ln , 1GuC u v u v
 

         
 (4) 

Gumbel copula function is very sensitive to the change 
of variables at the upper tail of the distribution, so it can 
quickly capture the changes of upper tail dependence, 
and it can be used to represent the relations between fi- 
nancial variables which have upper tail dependence. Its 
parameter   represent the degree of correlation, when 

1  , the variables are independent; when   , the 
variables are completely related. By formula (1) and (4), 
we can get the upper tail dependence coefficient of 
Gumbel copula function, namely 12 2U

  
t

, by its 
generating element    lnt


  and formula (3), 
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  
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, accordingly, 
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In addition, by the formula 
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We can get  U   under different levels of  . 
2) Clayton copula 

    1
, 1ClC u v u v

 
 

    , 0        (6) 

Clayton Copula function is very sensitive to the 
change of variables at the lower tail of the distribution, so 
it can quickly capture the changes of lower tail depend- 
ence, and it can be used to represent the relations be- 
tween financial variables which have lower tail depend- 
ence. Its parameter   also represent the degree of cor- 
relation, when 0  , the variables are independent; 
when   , the variables are completely related. By 
formula (2) and (6), we can get the lower tail dependence 
coefficient of Clayton copula function, namely 12L

  , 
by its generating element  and formula 
(3), the Kendall’s tau is the analytic function of 
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In addition, by the formula 
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We can get  L   under different levels of  . 
3) A12 copula of Archimedean copulas 
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Gumbel copula function has only the feature of the 
upper tail dependence, and Clayton copula function has 
only the feature of the lower tail dependence, while the 
A12 copula of Archimedean copulas has both upper tail 
and lower tail dependence, by formula (1) and (8), the 
upper tail dependence coefficient can be expressed with 
the formula 12 2U

   , and by formula (2) and (8), the 
lower tail dependence coefficient can be expressed with 
the formula 12L
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3.2. Estimating   with Nonparametric  
Estimation 

In o te the parameters, firstly we need to rder to estima
know the estimated value of the Kendall’s tau, originally 
the Kendall’s tau was not defined by the copula function 
 C  , it was defined by the consistent probability of the 

ran m variable do  ,X Y  minus the non-uniform prob- 
ability of the rando able  ,m vari X Y , that is 
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where  1 1,X Y  and  2 2,X Y  are independent identi-
cally di  sampl  random variable stributed es of the  ,X Y . 

If    1 1, , , ,n nX Y X Y  are independent identically 
di bstri  come from joint distribution uted samples which
function  F   of random variable  ,X Y  and its cop- 
ula functi  on is      1 1, , , , n nC R S R  are the ranks , S  
of these samples, , 1,2, ,iR i n   represent the rank of 

, 1,2, ,iX i n  ; S , 1, 2, ,i i n   represent the rank of 
, 1, 2, ,niY i  

 as 
; then the Kendall’s tau for the sample is 

defined

    
1

2 sgn sgn
1 i j i j

i j n

R R S S
n n   

  
    (10) 

So we can work out 

̂ 

̂  on the basis of ̂ , and the 
copula function can be de rmined solely; then according 
to the next two formulas to calculate the estimated values 
of the upper tail dependence coefficient and the lower tail 
dependence coefficient. 

te  

ˆ1
Û 2 2                   (11) 

ˆ1ˆ 2L
                  (12) 

4. Computing Steps and Results 

4.1. Calculating the Parameter ̂  

We select day’s closing price  , ,ip q n 1024i  , of SSE 
composite index and SZSE com om Janu- ponent index fr
ary 4, 2007 to March 21, 2011. Logarithmic yield  

      1 1, log , logi i i i i ix y p p q q  . 

    We define  , rank , ranki i i iR S x y
we can get ˆ 0.77338

, and by 
formula (10),   . Then by formula 
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(5 and formula (9) respectively; 3) Putting the  which was calculated in step 2) into 
formula (13); 

it), formula (7) we get es- 
timated values of parameters o ent copulas in Ta- 
ble 1. 

f differ

From Table 1, the parameters of three kinds of copu- 
las are 

4)  ~ 0,1CK U , to do test with a Q-Q figure of the 
uniform distribution. 

in their respective domains, this explain that there 
ex

So we use these steps to get the Q-Q test which is 
shown in Figure 1. ist both upper tail dependence and lower tail depend- 

ence between SSE composite index and SZSE compo- 
nent index. Because the A12 copula of Archimedean 
copulas has both upper tail and lower tail dependence, 
we choose A12 copula to study for tail dependence, then 
we should do the test for the selected copula functions. 

4.2. Testing for Copulas 

In Figure 1, the     ,C F X G Y  K t  of A12 copula dis- 
tribute uniformly on the oblique diagonal line and two 
sides, so it obey uniform distribution; Table 2 can also 
explain the       ,C F X G Y

K t  of A12 copula obeys uni- 
form distribution. Therefore, we think that the A12 cop- 
ula function is appropriate for describing the relationship 
between SSE composite index and SZSE component 
index, namely, A12 copula function is feasible to study 
the tail dependence of SSE composite index and SZSE 
component index. 

In order to further illustrate A12 copula f
scribe the tail dependence be

unction can de- 
tween SSE composite index 

and SZSE component index, we do test for the datas. In 
order to avoid the fault of hypothetical marginal distribu- 
tion of copula function, we estimate parameters with the 
Kendall’s tau directly, so we don’t know the marginal 
distribution function. We use the empirical distribution 
and CK  to structure and test variables which obey uni- 
form distribution on inspection. Firstly we use geometric 
meth to test copula distribution, then use K-S statistics 
to do the test of goodness of fit. 

4.3. Studying Tail Dependence 

By formula (11) and formula (12), we can work out the 
upper tail dependence coefficient and the lower tail de- 
pendence coefficient, the results are shown in Table 3. 
 

 

od 

Univariate distribution function  CK t  is defined as 

   
 CK t t


 

t

t
 

where, is the generating elem nt of copula func-  t  e
tions [8]  ,     ,C F X G Y

K t  obeys the standard uniform 
distribution. Setting variables X and Y to obey the em- 
pirical distri e can wok out the  

    

bution, then w
 ,C F X G Y

K t  by means of ̂ . 
For A12 copula function, 

      ,C F X G Y

1
1

t
K t t




  
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        (13)  

Follow the steps to calculate, 
1) To solve the distribution function  iF x  and 

  iy  of logarithm yield G 
1i i n 

 empirical distribution function); 
o solve 

,ix y  (b  and G 

2) T

oth F
are

   ,G y  i i it C F x y formula (8); b Figure 1. Q-Q figure of KC function of A12 copula. 

 
Table 1. Parameter estimation of copulas. 

  ,C u v   ˆ ˆ   ̂  

     1

, exp ln lnGuC u v u v
 


       

  ˆ ˆ1 1 Gumbel Copula   4.41  27

Clayton Copula     1
, 1ClC u v u v

 


      ˆ ˆ ˆ2 1     6.8253 

A12 Copula    
11

1 11 1 1u v
 


         

  ˆ ˆ2 3 1    2.9418 
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st. 

Copula Z P 

Table 2. K-S te

A12 0.988 0.447 

 
able 3. The va  T lues of U  and L . 

Copula Upper tail Lower tail U  L  

A12 12 2   12   0.7343 0.7901 

 
T able 3 show  that the per pen

fficient is 0.7343, the lower tail dependence coefficie
he T s  up  tail de dence co- 

e
is

nt 
 0.7901. It indicates that there exists both upper tail de- 

pendence and lower tail dependence between SSE com- 
posite index and SZSE component index, what’s more, 
the upper tail dependence is less than the lower tail de- 
pendence. The tail dependence between logarithmic yield 
of SSE composite index and logarithmic yield of SZSE 
component index demonstrated the consistency of both 
two extremums; it also demonstrated that whether the 
price rise or fall, there would be different degrees of de- 
pendence between two indices. 

5. Conclusion 

We select Gumbel copula,
ula from Archime

 Clayton copula and A12 cop-
dean copulas, all of which have fea-

 
 

tures of tail dependence. We use the nonparametric esti- 
mation approach to estimate parameters of copula func- 
tions, and find that there exists both upper tail depend- 
ence and lower tail dependence between SSE composite 
index and SZSE component index, therefore, we select 
A12 copula to do the empirical analysis about the tail de- 
pendence between SSE composite index and SZSE com- 
ponent index. The results show that the upper tail de- 
pendence coefficient is less than the lower tail depend- 
ence coefficient between SSE composite index and SZSE 

the downturn of the stock market is higher than the active 
period, which is consistent with the real financial market 
rule [9]. 

com nent index, that is t ay, the dence between 
SSE posite index and SZSE c ent index during 
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