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ABSTRACT 

The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three 
predators (automated players) and must reach a location in the game field (the computer screen) called preys’ home. 
The game is a sequence of matches and the human players (preys) must cooperate in order to achieve the best perform- 
ance against their opponents (predators). The goal of the predators is to capture the preys, which are the predators try to 
have a “rendez vous” with the preys, using a small amount of the “resources” available to them. The score of the game 
is assigned following a set of rules to the prey team, not to the individual prey. In some situations the rules imply that to 
achieve the best score it is convenient for the prey team to sacrifice one of his components. The video game pursues two 
main purposes. The first one is to show how the closed loop solution of an optimal control problem and elementary sta- 
tistics can be used to generate (game) actors whose movements satisfy the laws of classical mechanics and whose be- 
haviour simulates a simple form of intelligence. The second one is “educational”, in fact the human players in order to 
be successful in the game must understand the restrictions to their movements posed by the laws of classical mechanics 
and must cooperate between themselves. The video game has been developed having in mind as players for children 
aged between five and thirteen years. These children playing the video game acquire an intuitive understanding of the 
basic laws of classical mechanics (Newton’s dynamical principle) and enjoy cooperating with their teammate. The 
video game has been experimented on a sample of a few dozen children. The children aged between five and eight years 
find the game amusing and after playing a few matches develop an intuitive understanding of the laws of classical me- 
chanics. They are able to cooperate in making fruitful decisions based on the positions of the preys (themselves), of the 
predators (their opponents) and on the physical limitations to the movements of the game actors. The interest in the 
game decreases when the age of the players increases. The game is too simple to interest a teenager. The game engine 
consists in the solution of an assignment problem, in the closed loop solution of an optimal control problem and in the 
adaptive choice of some parameters. At the beginning of each match, and when necessary during a match, an assign- 
ment problem is solved, that is the game engine chooses how to assign to the predators the preys to chase. The resulting 
assignment implies some cooperation among the predators and defines the optimal control problem used to compute the 
strategies of the predators during the match that follows. These strategies are determined as the closed loop solution of 
the optimal control problem considered and can be thought as a (first) form of artificial intelligence (AI) of the preda- 
tors. In the optimal control problem the preys and the predators are represented as point masses moving according to 
Newton’s dynamical principle under the action of friction forces and of active forces. The equations of motion of these 
point masses are the constraints of the control problem and are expressed through differential equations. The formula- 
tion of the decision process through optimal control and Newton’s dynamical principle allows us to develop a game 
where the effectiveness and the goals of the automated players can be changed during the game in an intuitive way sim- 
ply modifying the values of some parameters (i.e. mass, friction coefficient, ···). In a sequence of game matches the 
predators (automated players) have “personalities” that try to simulate human behaviour. The predator personalities are 
determined making an elementary statistical analysis of the points scored by the preys in the game matches played and 
consist in the adaptive choice of the value of a parameter (the mass) that appears in the differential equations that define 
the movements of the predators. The values taken by this parameter determine the behaviour of the predators and their 
effectiveness in chasing the preys. The predators personalities are a (second) form of AI based on elementary statistics 
that goes beyond the intelligence used to chase the preys in a match. In a sequence of matches the predators using this 
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second form of AI adapt their behaviour to the preys’ behaviour. The video game can be downloaded from the website: 
http://www.ceri.uniroma1.it/ceri/zirilli/w10/. 
 
Keywords: Video Game; Differential Games; Mechanical Dynamical System; Closed Loop Optimal Control 

1. Introduction 

This paper shows how optimal control models and ele- 
mentary statistics can be used to simulate intelligent be- 
haviour in a video game involving two teams of actors. 
The movements of the actors are restricted by the physi- 
cal laws of classical mechanics. The video game is a 
prey-predator game where two human players (preys) 
face the opposition of three automated players (preda- 
tors). The preys pursue the goal of avoiding the predators 
and of reaching a location on the game field called preys’ 
home. The predators pursue the goal of capturing the 
preys (i.e. of having a “rendez vous” with the preys) us- 
ing a small amount of the “resources” available to them. 

The game is a sequence of matches and the human 
players (preys) must cooperate in order to achieve the 
best score against their opponents (predators). The score 
of the game is the sum of the scores of the matches. The 
score of a match is assigned following a set of rules de- 
scribed in Subsection 4.3 to the prey team, not to the in- 
dividual players. The situation where, at the end of a 
match, a prey is captured and the other one has reached 
the preys’ home generates a score higher than the score 
generated by the situation where, at the end of the match, 
the two preys have avoided the rendez vous with the 
predators but neither of them has reached the preys’ 
home. This fact implies that in some circumstances to 
achieve the best score for the prey team it is convenient 
to sacrifice one of the preys. This is an incentive to co- 
operate for the human players. It is believed that this kind 
of cooperation has several positive effects on the psy- 
chological attitude of the players especially if they are 
aggressive young children [1]. 

The video game is addressed to human players aged 
between five and thirteen years and can be used to stimu- 
late children to develop an intuitive understanding of the 
physical laws involved in the game. The children aged 
between five and thirteen years are usually not aware of 
the relations among mass, friction forces, active forces 
and trajectories implied by Newton’s dynamical principle. 
Playing with the video game and observing the behaviour 
of its actors these children develop an intuitive under- 
standing of the dynamical laws. This understanding al- 
lows them to make effective decisions about the strategy 
to implement to reach the goals of the game. During a 
game match some simple forms of cooperation, commu- 
nication and strategic reasoning are employed by the 
preys and by the predators. These features make the vi- 
deo game amusing. 

The video game can be downloaded from the website: 
http://www.ceri.uniroma1.it/ceri/zirilli/w10/. 

1.1. The Advantages of Using Optimal Control  
and Elementary Statistics to Develop a  
Video Game 

The main advantage of using optimal control in the de- 
velopment of a video game is that allows to manage the 
personalities (i.e. the behaviours) of the automated play- 
ers (sometimes called “autonomous synthetic characters”) 
in a simple way and allows to define trajectories satisfy- 
ing physical laws. The effectiveness of the predators in 
chasing the preys depends on the choice of the utility 
functional of the optimal control problem considered in 
the video game (see Formula (7)) and on the equations of 
motion that are the constraints of the control problem. In 
particular it depends on the choice of the parameters that 
appear in the utility functional and in the equations of 
motion. The equations of motion express the physical 
laws involved in the game. That is modeling the video 
game via an optimal control problem generates predators 
that are able to chase the preys and whose movements 
depend on their physical properties (i.e. mass, friction co- 
efficient, ···) and on the trajectories of the preys. Note 
that there is no preassigned scheme for the movement of 
the predators. 

The automated players (autonomous synthetic charac- 
ters) developed in this video game have two forms of 
artificial intelligence (AI). The first one is used to chase 
the preys during a game match. The second one is used 
when a sequence of matches is played to simulate in the 
autonomous characters the behaviour in similar circum- 
stances of human players. This second AI form is articu- 
lated in three different levels. The first one guarantees 
that the predators behave in a slightly different way in 
each match that is they behave depending on the humor 
of the moment. The second level consists in the dynamic 
change of the game difficulty to avoid that the players 
are discouraged or bored as a consequence of the fact 
that the game is too difficult or too easy. The last level 
simulates the emotional reaction of the predators corre- 
sponding to the human satisfaction or anger for a se- 
quence of victories or of defeats (see Subsection 4.8 for 
technical details). 

The mathematical model that determines the move- 
ment of the predators during a match, that is that deter- 
mines the first form of AI, is the optimal control problem. 
In the optimal control problem the game actors are rep- 
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resented as point masses. The action of the actors (preys 
and predators) during a game match can be seen as an 
attempt to solve a “rendez vous” problem for a set of 
point masses that satisfy Newton’s dynamical principle. 
These point masses are subject to external forces and to 
friction forces. The movements of the preys and of the 
predators are obtained as solution of differential equa- 
tions that depend on the external forces. These differen- 
tial equations express Newton’s dynamical principle. The 
external forces acting on the preys are chosen by the hu- 
man players using joypads and those acting on the preda- 
tors are computed by the game engine as the closed loop 
solution of the optimal control problem considered. The 
utility functional of the control problem depends on the 
prey positions and its minimization corresponds to pur- 
suing the goal of chasing the preys using a small quantity 
of the resources available to the predators, which are us- 
ing a small quantity of the external forces acting on the 
predators. The utility functional chosen determines a form 
of cooperation among the predators. In a sequence of ma- 
tches the autonomous characters of the video game (pre- 
dators) modify their behaviour depending on the behav- 
iour of the human players (preys) that confront them, 
which is depending on the points scored by the human 
players in the matches played. This second form of AI is 
built using elementary statistics and exploiting the prop- 
erties of the control problem employed in the video game. 
In fact the statistical analysis of the points scored by the 
human players in a sequence of matches is used to adapt 
the game in relation to the human players actually play- 
ing. This approach has something in common with the 
idea introduced in [2] of defining a difficulty evaluation 
function for a video game. In the video game presented 
in this paper thank to the mathematical model (i.e. the 
optimal control problem) used it is easy to establish a re- 
lation between the ability of the human players and the 
values of the parameters of the model. That is, it is easy 
to modify dynamically the game difficulty level. 

1.2. Research Background 

In recent years the interest in autonomous synthetic char- 
acters has been constantly growing due to the increased 
importance of computer animation and of interactive me- 
dia. In the technical literature several approaches have 
been suggested to build this kind of characters see, for 
example, Prada and Paiva [3] and Millington [4]. 

In video games these characters are associated to au- 
tomated players. In [4] the behaviour of the automated 
players is based on pathfinding algorithms (Section 4.2 
of [4]), and the decision making capability of these play- 
ers is based on the analysis of random trees. Moreover in 
[4] Chapter 7 the question of how to manage learning ex- 
periences of human and automated players based on AI 

and on elementary statistics is discussed (see Section 
7.3.2 of [4]). 

Indeed one of the most relevant challenges in video 
game AI is to create automated players having an appro- 
priate level of effectiveness in pursuing their goals. This 
is often done implementing a finite state machine (see 
Section 5.3 of [4]), that is presenting the game at several 
“levels” of difficulty. This approach suffers from some 
drawbacks, such as the fact that it is not possible to ad- 
just strategies or difficulty dynamically during the game. 
Recently an alternative approach to the finite state ma- 
chine has been introduced (see [5] and the references 
therein). This approach is called Dynamic Difficulty Ad- 
justment (DDA) and consists in changing automatically 
in real time parameters, scenarios or behaviours in the 
video game based on player’s ability and performance. In 
[5] in a simple prey-predator game the DDA approach is 
implemented through a Monte-Carlo tree search. 

However the problem of defining a measure of the 
game difficulty is in general an open question and several 
approaches have been suggested. One of them consists in 
introducing a difficulty evaluation function defined as a 
conditional probability (see [2] and the reference therein) 
on the “lose” or “win” events. In [2] the authors under- 
line that, once established a measure of the game diffi- 
culty, in general it is not easy to change the game diffi- 
culty dynamically using simple mathematical expressions 
of the game parameters. The use of optimal control and 
of elementary statistics to drive the difficulty adjustment 
algorithm proposed in this paper is an example of a prac- 
tical tool to handle this issue. In fact using these mathe- 
matical models we are able to generate video games with 
a level of difficulty calibrated on the individual players. 
In the following Sections and in [6] it is explained why 
modeling a video game through an optimal control prob- 
lem or a differential game is a way to parameterize the 
difficulty of the video game in an intuitive way. 

Another important issue when a multitude of auto- 
mated players is considered is the simulation of group 
behaviour. The simulation of group behaviour of a mul- 
titude of characters is inspired by the study of human be- 
haviour in the social sciences and usually involves some 
elementary mathematical models limited to path-finding 
algorithms and to some elementary formulae that define 
the movements of the synthetic characters in the game 
scene (see [3,7-10]). The problem of building mathema- 
tical models to describe the behaviour of a multitude of 
autonomous characters interacting as a group has also 
been studied outside the context of AI and of social sci- 
ences. For example it has been studied in natural sciences, 
in fact in 1987 Reynolds [11] developed a mathematical 
model of the flocking behaviour of a group of flying 
creatures (birds or insects). Since then several mathe- 
matical models of the social behaviour of several species 
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of animals, such as birds, fishes, insects, have been stud- 
ied. These models are based on dynamical systems and 
usually do not involve optimal control or differential 
games. The three automated players of the video game 
presented here have some cooperative behaviour (see 
Section 1.3) but are not a multitude and do not exhibit a 
group behaviour. 

The movements of the actors in prey-predator video 
games are realized most of the times using mathematical 
approaches simpler than the optimal control approach 
used here (see [9,10,12]). For example in [9,10] the 
movements of automated players are based on ordinary 
differential equations and on several heuristic rules that 
define the movements of articulated bodies consisting of 
rigid links connected by joints. In absence of joints each 
link has six degrees of freedom, three translational and 
three rotational. In [9,10] the authors model the move- 
ments of these bodies, but do not deal with the problem 
of generating players able to make decisions and to co- 
operate to pursue a goal. In [12] the problems of model- 
ing movements and of simulating a decision making pro- 
cess are dealt together and the results presented have 
some similarities to the ones presented in this paper. In 
fact in [12] each actor of the game is characterized by its 
position vector and by a unit vector called “heading di- 
rection”. The heading directions are not necessarily the 
velocities of the actors in the game scene and their dy- 
namics is described by a system of ordinary differential 
equations that depends on the interactions among actors. 
These interactions are modeled through a function in- 
spired by an analogy with potential theory (see [12] for 
further details). Similarly in [13] the authors deal with 
the problem of modeling prey-predator interactions using 
mathematical models that go beyond simple attraction/ 
repulsion models. In fact in [13] a mathematical model 
obtained modifying the Lotka-Volterra two species equa- 
tions [14] is proposed. The Lotka-Volterra two species 
equations describe the interaction between two species in 
an ecosystem, a predator and a prey species, and consists 
in two ordinary differential equations, the first one de- 
scribes how the prey population changes and the second 
one describes how the predator population changes. In 
[13] the authors propose an algorithm to reproduce col- 
lective crowd behaviour based on a Lotka-Volterra two 
species model and on some steering rules that try to si- 
mulate realistic crowd behaviours. Recall that being a 
member of a crowd changes the behaviour of the indi- 
vidual. The models used in [12,13] suffer from the draw- 
back of not being able to change the game difficulty dy- 
namically. 

Finally video games where basic physics principles 
hold are presented in [15,16]. In [15,16] the authors are 
motivated by robotics. Their work is based on the 
ALERT (Active Learning Environments with Robotic 

Tangibles) systems. The ALERT systems have been de- 
veloped for e-learning purposes and recently have been 
used to develop educational video games [16]. However 
these are special cases and the majority of the commer- 
cial games violate basic physics principles and give to 
the players the feeling that physics principles can be dis- 
regarded. For example often in video games movement is 
considered only from the kinematic point of view and 
dynamic principles are neglected. Note that the models 
proposed in [12,13,15,16] do not involve optimal control 
problems or differential games. 

The video game proposed in this paper is an extension 
of the video game presented in [6]. In fact both these 
games are based on mathematical models involving dif- 
ferential equations and define actors whose movements 
satisfy Newton’s dynamical principle. In [6] the strate- 
gies implemented by the predators are suboptimal solu- 
tions of the control problem that models the prey-preda- 
tor dynamics. Moreover in [6] the video game does not 
adapt the predators effectiveness to their human oppo- 
nents. The video game presented in [6] is implemented at 
three different levels of difficulty. The levels of difficulty 
considered are given. The predators of [6] have only the 
intelligence needed to chase the prey in a game match 
complying with Newton’s dynamical principle. The vi- 
deo game presented in this paper uses optimal solutions 
of the control problem and has a mechanism to adjust its 
difficulty to the ability of the human players. 

Let us conclude this subsection noting that in mathe- 
matics rendez vous problems involving two actors or two 
sets of actors whose dynamics is defined by systems of 
differential equations have been widely studied. The 
most common mathematical models used to study these 
problems are optimal control models or differential 
games (see, for example, Athans [17], Isaacs [18]). Dif- 
ferential games are the natural model to describe situa- 
tions where two sets of actors having conflicting goals 
moving on trajectories implicitly defined by differential 
equations must choose their strategies respectively to 
maximize or to minimize a cost functional. The game 
developed here is an attempt to investigate the potential- 
ity of these mathematical models in context of video 
games. 

1.3. Interactive and Cooperative Behaviours in  
the Video Game 

Let us summarize the prey-predator interaction and co- 
operation that will be explained in detail in Section 4. Let 
us group the game actors in two teams, which are the team 
1 actors, the preys, and the team 2 actors, the predators. 

Let us explain more in detail of the interaction and 
cooperation among the game actors. We have already 
mentioned that the cooperation between the human play- 
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ers is induced by the rules used to assign the game score 
(see Subsection 4.3 for further details) and in particular 
by the fact that the score is given to the human team not 
to the individual players. 

At the beginning of the first match played the video 
game engine opens a window on the computer screen for 
each human player (see Figure 1). During the game ex- 
ecution each prey is always at the center of its own win- 
dow. Each window shows a neighborhood of the prey at 
its center. Moreover in each window there is a second 
view of the game scene that shows the game scene on a 
global scale, which is on a scale that shows the location 
of all the actors of the game and the location of the 
preys’ home (see Figure 1). Also this global view of the 
game scene has the prey in its center and in the sequel is 
attributed to the “radar” of the player. 

Each human player before beginning to play a match 
observes the initial scene of the game on his radar and 
chooses a strategy to play the match that follows cooper- 
ating with the other human player. For example, observ- 
ing the predators’ positions each human player decides if 
it is convenient for his survival and for the score of the 
human team in the following match to move towards or 
outwards the preys’ home. 

When the game match starts each human player wa- 
tches the time evolution of the game scene in his win- 
dow and uses a joypad to implement the strategy chosen. 
In each match the human players (preys) and the auto- 
mated players (predators) have a finite amount of time to 
achieve their goals. After the expiration of this time the 
match ends. At the end of each match depending on the 
outcome of the match the human players score some 
points (see Subsection 4.3). Under some conditions a 
new match can be played, that is the game can be re- 
sumed from a new initial scene. During the match the 
interaction between preys and predators takes place. 

In the actual implementation of the game the rendez 
vous of a predator with a prey during a game match cor- 
responds to the fact that the distance between the prey 
and the predator becomes smaller than a given tolerance. 
Similarly during the game match a prey reaches its home 
when the distance of the prey from its home becomes 
smaller than a given tolerance. The preys’ home is rep- 
resented as a brown disk in the game field (see Figure 1). 
A prey after having a rendez vous with a predator or after 
reaching the preys home is removed from the game scene 
for the remaining part of the match. 

During the execution of a game match the data gener- 
ated by the human players using the joypads are trans- 
ferred continuously in time to the game engine. The 
game engine processes these data in real time, that is in 
real time computes the new positions and velocities of 
the preys, and computes the closed loop solution of the 
optimal control problem considered to determine the new  

 

Figure 1. An initial scene of the game. 
 
positions and velocities of the predators. Finally the 
game engine redraws preys and predators positions in the 
windows of the players and updates the global views of 
the game scene shown by the radars of the players. 
Moreover at the beginning of each match and when nec- 
essary during a match the game engine solves the as- 
signment problem. 

During a sequence of matches, depending on the sta- 
tistical analysis of the points scored by the human players 
in the matches played, some parameters that define the 
behaviour of the predators are changed. In the imple- 
mentation of the video game presented in Section 4 the 
parameters changed are the masses of the predators, 
however it is possible to change several other parameters 
appearing in the model defining predators with more 
sophisticated behavioural patterns than those implement- 
ed in Section 4. This mechanism makes the game diffi- 
culty adaptive and simulate an elementary form of per- 
sonality in the predators. 

1.4. Outline of the Paper 

In Section 2 we discuss the “rendez vous” problem and 
its formulation as an optimal control problem. In Section 
3 we present the closed loop solution of the optimal con- 
trol problem formulated in Section 2. In Section 4 we 
explain the video game, in particular we explain the co- 
operative behaviour of the preys and of the predators and 
we show how the personalities of the predators are gen- 
erated and adaptively changed during a sequence of 
matches (see Section 4.8). Moreover we present some 
technical and practical details of the implementation of 
the video game. In Section 5 we summarize the experi- 
ence of a few dozen of children that have played with the 
video game and we draw some conclusions. 

2. The Mathematical Model Used in the  
Game Engine 

Let us formulate the optimal control problem whose so- 
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lution is implemented in the engine of the video game. 
The position of the five actors of the video game (two 
preys and three predators) is given by five two-dimen- 
sional vectors in the Euclidean plane. These vectors and 
all the other vectors appearing in this paper are column 
vectors. The preys and the predators are point masses 
moving in the Euclidean plane. We use the vectors ix , 

 to denote the prey positions and the vectors 1,2,i  jy
1,2,3,j  0

0t  t T

, 
 to denote the predator positions. Let T  

be a constant, we assume that the game matches begin at 
time  and end at time 0 

t T 
. That is the game 

matches take place for t  such that . The 
vectors 

0
 i ix x t 0 , ,  t T  i 1, 2,   ,j jy y t

T
 

  describe the movements of the 
game actors in the Euclidean plane during a match, that 
is they describe the action going on in the game scene 
during a match. 

0 ,t  1, 2,3,j

The human players animate the preys located in ix , 
 and in the time interval  pursue the 

goals of avoiding the rendez vous with the predators 
located in 

1,2,i  0 Tt 

jy ,  and of reaching as soon as 
possible the preys home (that is a fixed location in the 
plane). These goals are pursued acting on two joypads. 
The action on the joypads of the human players defines 
two vector functions 

1,2,3,j 

 i iu u ,t ,T 1,2,i  0 t    
taking values in the Euclidean plane. For  the 
vector 

0 t T 
 i iu u t  is the active force acting on the point 

mass representing the prey , . i i 1,2
Let 0 ,T   given the forces   ,i iu u t  

0 t   , , the game engine computes the corre-
sponding movements of the preys 

1,2i 
i ix x t 0 t,  

t
T

, 
. In the video game for every  such that 

, at time t  the positions of the preys up to 
time , that is 

1,2i 
0 t 

t  1
i ix x  , 10 t  ,  are 

known to the automated players. The preys have a 
similar knowledge of the preys and predators positions. 

1, 2,i 

The automated players (predators) located in  
 t 0 t j jy y T 1,2,3,j 

0 t T 
, ,  in the time interval 

 pursue the goals of having a rendez vous with 
the preys located in  i ix x T 1, 2,it 0 t , ,   us- 
ing a “small quantity” of the active forces at their dis- 
posal. These active forces are denoted with  j jv v t , 

  and are functions of t  taking 
values in the Euclidean plane. The force 
0 ,Tt  1,2,3,j 

 j jv v t , 
 acts on the point mass representing the preda- 

tor   
0 t 

,j
,

1,2,3.
T

j

2.1. Newton’s Dynamical Principle Applied to  
Preys and Predators Movement 

The functions  ix t t T 1,2,i , ,  are solutions 
of the following differential equations:  

0  

, 0i i

ii i

x x
m x x u  

with the initial conditions:  

 

, 1,2,t T i          (1) 

0,0 , 1,2,i ix x i               (2) 

  0,0 , 1,2,ii
xx v i               (3) 

where  , 
t 

 denote respectively the first and second 
order derivatives with respect to  of  and ix

m i, 
x

 , 
1,2i  , are real constants. The constants ix

,  0m 
1,2i  , are the masses of the preys. The constants  

ix
1, 2,i0  ,   are the coefficients of the friction 

forces acting on the preys. The vectors 0,i0,ix , xv

i 1,2i 

 are 
given and represent respectively the initial position and 
the initial velocity of the prey , . Note that the 
forces  i iu u t 0 ,t T,   1,2i  , appear in (1) as 
forcing terms. 

 The predators functions jy t 0 t T  1,2,3,j, ,   
are solutions of the following differential equations:  

, 0 , 1,2,3,j j
j j j

y y
m y y v t T j           (4) 

with the initial conditions:  

  0,0 , 1,2,3,j jy y j             (5) 

  0,0 , 1,2,3,jj
yy v j 

0jy
m  1,2,3,j

           (6) 

where ,   are the masses of the preda- 
tors and jy

1,2,3,j0 ,    are the coefficients of the 
friction forces acting on the predators. The vectors j0,

yy , 
j0,

yv
j 1, 2,3.j

 are given and represent respectively the initial posi- 
tion and the initial velocity of the predator ,   
Note that the forces  j jv v t 0 t T  1, 2,3,j, ,   
appear in (4) as forcing terms and that they are deter- 
mined as solution of the optimal control problem formu- 
lated below. 

The differential Equations (1) and (4) are interpreted 
as Newton’s dynamical principle  ma F  for two sets 
of point masses representing respectively the preys and 
the predators. In this sense they are inspired by classical 
mechanics and the movements implicitly defined by 
them, that is the trajectories of the preys and of the 
predators, satisfy basic physics laws. Let us point out that 
for every T  such that 0   once known the data 

 iu t 0 t,  1,2i,   , it is possible to derive an ex- 
plicit formula that gives the corresponding trajectories of 
the preys  ix t 0 t,  1,2i  t, , up to time   . 
This formula reduces the solution of the initial value 
problem (1), (2), (3), that defines   ,ix t 0 t T   , to 
the evaluation of an integral that contains the control 
function  iu t 0 t T,    1,2i , . A similar state- 
ment holds for the initial value problems (4)-(6). 

2.2. The Optimal Control Problem and the  
Dynamics of the Game Actors 

Given i  x t 0 t T,   1,2,i ,  we determine jv t , 
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0 t  T 1, 2,3,j ,  as solution of the optimal control 
problem:  

   

       

3

0, 1,2,3 1

2 3
,

0
1 1

min , d
2

2

j

j

i j

T j jv

v j j

Tx y i j

i j

v t v t t

, d ,i jx t y t x





 

 





t y t t
   


 

 
  (7) 

subject to the constraints (4), (5), (6). In (7) ,   de- 
notes the scalar product in the Euclidean plane. Later 

,   will denote the scalar product in a generic Euclid- 
ean space not necessarily two dimensional. The quanti- 
ties 

,i jx y
 , ,  and 1,2i  1,2, 3j , jv

 , 1, 2,3,j   
that appear in (7) are nonnegative constants satisfying 
some conditions that will be specified later. Note that in 
order to be usable in the video game engine the solution 
of the control problem (7), (4), (5), (6) must be in closed 
loop form. That is for any   such that 0 T  , from 
the knowledge of i x t , 0 t   , , we must 
determine 

1,i  2
 jv t , 0 t   . 

Let us explain why the initial value problem (1), (2), 
(3) and the control problem (7), (4), (5), (6) are a legiti- 
mate mathematical model of the game described in the 

Introduction. In fact the control functions  iu t

t T 1, 2,i 

,  

0   ,  are chosen by the human players act- 
ing on the joypads based on the observation of the scene 
on the computer screen and are interpreted as forces act- 
ing on the preys. These forces define implicitly (through 
the initial value problems (1), (2), (3)) the strategy fol- 
lowed by the human players to achieve their goals. The 
choice of the control functions  iu t , 0 t T 

2
, 

, is reflected in the control problem (7), (4), (5), (6) 
through the presence in (7) of the functions 

1,i 
 ix t

t T 1, 2.i 
, 

,  This implies that the choice of the 
control functions made by the human players determines 
the behaviour of the automated players obtained solving 
the control problem (7), (4), (5), (6). The control func- 
tions 

0  

 t 0 t jv 1, 2,3,

1,2i

, ,  solution of (7), (4), 
(5), (6) define implicitly through the initial value prob- 
lems (4), (5), (6) the movements of the predators. Let us 
explain more in detail the cost functional (7). For 

T j 

 , 
 when the nonnegative constant 1,j  2,3

,i jx y
  is 

greater than zero making small the term  

       ,

02

i j Tx y i j , di jx t y t x


 t y t t

j a

 of (7) corre-  

sponds to trying to realize the rendez vous between the 
predator  and the prey i  nd similarly when the non- 
negative constant jv

  i reater than zero making small  

the term 

s g

   
02

, d
j T j jv v t v t t




pt of using a “small q

 of (7) corresponds to  

the attem uantity” of the control 
function jv  (i.e. the available resource) during the ren-  

dez vous In the game implementation we choose . 
1jv

  , 1, 2,3j  . The choice of the constants 
,i jx y

 , 
1, 2,i 1,2,3,j    corresponds to the solution o e 

ent  mentioned previously, that is corre- 
sponds to the assignment of the preys to the predators. In 
fact for 1, 2,i

f th
assignm  problem

  1, 2,3j   when 
,

0i jx y
   the prey i  

is assign th r j  (th  predator  
chases the prey i ), when 

,
0jy

ed to e predato at is the j

ix
   the prey i  is not 

assigned to the predator j lue of the onstant 

,i j

. The va c

x y
  is a measure of the “attraction” of the predator j  

ds the prey i , 1, 2,itowar   1, 2,3.j   That is f r 
1, 2,i

o
  1, 2,3j   increasi  the constant ng the value of

,i jx


y
 creases t

the p m
in he attraction of the predator j  toward 

rey i . In the implementation of the ga e when 

,
0i jx y

  we choose 
,

2i jx y
   , 1,2,i   1, 2,3.j   

nment of the pr  p  d  
game engine at the beginning of each match satisfies the 
following rules: 1) each predator must chase only one 
prey, 2) each prey must be chased by at least one preda- 
tor. These rules imply a kind of cooperation between the 
predators. The assignment of the preys to the predators is 
redone during a match when a prey is captured by a 
predator (i.e. there is a rendez vous) or when a prey 
reaches the preys’ home. In these cases only one prey re- 
mains active in the game scene and all the predators chase 
it. Note that when a rendez vous takes place or a prey 
reaches the prey home the differential models (1), (2), (3) 
and (7), (4), (5), (6) are reformulated in an obvious way 
to take care of the situation determined by these events. 

The match begins at time 0t   and ends at time  

The assig eys to the redators one by the

t 1t , 10 t T  , where 1t he smallest time va
 that 1t

 is t lue 
such for t   two preys have reached the preys’ 
home or one prey has been captured and the other one 
has reached the prey home or two preys have been cap- 
tured. In all the remaining cases the match ends when the 
time assigned to the match is expired, that is when t T

 

 . 
At the beginning of each match when a new (in ) 
scene is proposed the game engine does the assignment 
of the preys to the predators (i.e. chooses the constants 

,i j

itial

x y
 , 1, 2,i   1, 2,3j  ) simply associating to each 

he t pre  Moreover the engine verifies 
that the assignment obtained in this way satisfies the 
rules stated above. For example when using the “nearest 
predator rule” two preys are assigned to the same preda- 
tor the engine changes this assignment, assigning to this 
predator only the nearest prey and giving the other prey 
to the nearest predator among the remaining ones. In the 
assignment problem when necessary some simple choices 
are done. For example, degenerate cases such as the case 
when there are two preys at the same distance from the 
nearest predator are solved making random choices. The 
assignment chosen by the game engine satisfies always 
the rules stated above. 

prey t neares dator.

Copyright © 2013 SciRes.                                                                                  IIM 



M. GIACINTI  ET  AL. 110 

3. The “Closed Loop” Solution of the  
e  

Le e intege p  be the p  dimen- 
l 

Optimal Control Problem Used in th
Game Engine 

t p  be a positiv r, 
siona real Euclidean space and 2  be t  two di- 
mensional null vector. Let us sol osed loop form 
the optimal control problem (7), (4), (5), (6). We define 
the vector of the state variables of problem (7), (4), (5), 
(6) at time t , 

20 he
ve in cl

  12t  , 0 t T  , and the vector 
 , 12i a t  , 0 t the position of the 

e 1,2 , that is:  
t T 
, i 

, tha contains 
 tprey i  at tim

 

 
 
 
 
 
 

 

 

 

 

1
iy t 

1

2
2

,

2
2

3

3 2

0

, , 0 , 1,2.
0

0

i
i a

i

x t
y t

y t x t
t t t T i

y t

x ty t

y t

 

                                  







 (8) 

Moreover let us introduce the vector of the control 
functions at time t ,   6w t  , 0 t T  , that is:  

 
 
 
 

1

2

3

v t

w t v t

v t

, 0 .t T

 
 

   
 
 

         (9) 

Recall that the vectors defined in (8), (9) are column 
vectors. For later convenience we define 2I  to be the 
2 2  identity matrix and 2O  to be the 2 2  null ma- 

The optimal control problem (7), (4), (6) can be 
rewritten as follows:  


trix. (5), 

   

       

0

2
,

0
1

,

min , d
2

1
, d ,

2

w

T i a i a
i

i

w t Rw t t

t t Q t t t   





   





  (10) 

subject to the constraints:  

1 T

      , 0 ,Bw t t T        (11) 

with the initial condition:  

t A t  

 

1,0

1,0

2,0

0

2,0

3,0

3,0

0 ,

y

y

y

y

v

y

v

y

v

 

 
 
 
 
 

   
 
 
 
 
 

              (12) 

ere wh 0 12   is a column vect atrices iQ , 
, and 

or. The m
1,2i  A  are 12 12  real matrices, B  is a  

12 6  ri R  is a
matric

1

2

3

2 2 2 2 2 2,

2 2 2 2 2 2

2 2 2 2 2 2,

2 2 2 2 2 2

2 2 2 2 2 2,

2 2 2 2 2 2

,

1,2,

i

i

i

x y

x y
i

x y

O O O O

O O O O O O

O O I O O O
Q

O O O O O O

O O O O I O

O O O O O O

i






 
 
 
   
 
 
  
 



 (13) 

real mat x and  6 6  real matrix. These 
es are given by:  

I O

1

1

2

2

3

3

2 2 2 2 2 2

2 2 2 2 2

2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2

2 2 2 2 2

2

,

y

y

y

y

y

y

O I O O O O

O O O O O
I

m

O O O O O O

O O O I O OA
O O O O I

I
m

O O O O O
I

m







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (14) 

1

2

3

2 2 2

2 2
2

2 2 2

2 2
2

2 2 2

2 2
2

1

1 ,

1

y

y

y

O O O

O O
I

m

O O O

O OB I
m

O O O

O O
I

m

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

         (15) 

1

2

3

2 2 2

2 2 2

2 2 2

.
v

v

v

I O O

R O I O

O O I







 
 

  
  
 

         (16) 

The matrix vector products appearing in (10), (11) are 
the usual rows by columns matrix, vector products. 

Note that for 1,2i   the matrix iQ  defines the 
as rey i orssignment of the p  to the predat , and that the 
functions  ,i a t , 0 t T  , 1,2i  , are data in the 
optimal co ob , (1 ). 

It is easy to see that the first and the sec
ntrol pr lem (10) 1), (12

ond term of the 
co

blem (10), 
(1

st functional (10) correspond respectively to the first 
and the second term of the cost functional (7). 

The special form of the optimal control pro
1), (12) (i.e.: quadratic cost functional and linear con- 
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The vectors straints) guarantees that the Hamilton Jacobi equation 
associated to it can be reduced to a system of ordinary 
differential equations that can be integrated numerically 
(see [19] pp. 138-142) to obtain an approximate closed 
loop solution of the optimal control problem (10), (11), 
(12) or equivalently of the problem (7), (4), (5), (6). Pro- 
ceeding in this way we approximate the strategy of the 
predators  w t , 0 t T  , solution of problem (10), 
(11), (12), as

2, 2,i ik k t , 0 t T  , 1,2,i   solu- 
tio  cannot be omputed time t

 follows:  

          ,
1, 2,

1

,

0 ,

i a
i i

i

w t R B K t t t k t

t T

 



    

 

  

(17) 

where the optimal trajectory of th riables 

2
1 T  

e state va  t , 
dif

ferential 
0 t T  , is the solution of the following system of - 

equations:  

   

         
2

1 T ,
1, 2,

1

,

0 ,

i a
i i

i

BR B K t t t k t

t T

  



      
 

  (18) 

with the initial condition:  

t A t  

  00 ,                (19) 

and 



 1,iK t  is a 12 12  real matrix,   12k t   is a 2,i

1,i  s vecto t T , . The quantitier, 0  2  1,iK t ,  
 2,ik t , , 1 , that appear in

s oll stems of differential equa- 
tions:  

K

0
tion  of t

t T  i   (17), (18) are 
he f owi

 
, 1, 2,

i iK t Q

t T i



 
    (20) 

, 2
ng sysolu

   
   

T
1, 1, 1,

1 T
1, 1, , 0

i i

i i

t K t A A

K t BR B K t

  

 

       
   

1,2, 2,

,
1, , 0

i i

i a
i

k t A k t

K t t t

  

 





T ,

, 1,2,

i a
iK t A t

T i



 
     (21) 

with the final conditions:  

, 1,2,O i            (22)  1,iK T  

 2,ik T 0, 1,2,i 

wher ),  O  and 

           (23) 

e in (22 (23) 0  are
 di

The sy

 respectively the 
12 12  null matrix and the 12 mensional null vector. 

stem of ordinary differential Equations (20) is 
Riccati system of differential equations. Note that the 
matrices  1, 1,i iK K t , 0 t T  , 1,2i  , solutions of 
(20), (22) pu er at time 0t, can be com ted 

ns of (21), (23)  c at 0  in 
the same way since to do that we should know at time 

0t   the functions  ,i a t , 1,2,i   in the interval 
T0 t  . However it o assume that at 

0
 is not possible t

time t   the prey trajectories contained in the func- 
tions  t , 0 t T,i a   , 1,2i  , are known in the time 
interv t Tal 0  

Hence
. 

 in order to compute the solution of the optimal 
control problem (10), (11), (12) we proceed as follows: 

Step 0. Decompose the interval  0,T  in q   

su
1

10

q

j




   where bintervals, that is let  0, ,j jT t t  , 

(num ically)   
integrating backward in time (20) starting from the l 
condition (22). This can be done, for example, using 
Euler method. This is possible since Equations (20), (22) 
do not depend on the trajectories 

 fina

 ,i a t , 0 t T  , 
1,2i  . 

jt jT q , 0,1, ,j q 1;  1q  do 

Step 1. Solve num

 For 0,1, ,j  
the following steps: 

erically using Euler method back- 
ward in time the system of ordinary differential Equations  

(20) in the interval 1,j jt t     with the null condition at 

1jt t   and store pproximation the a  1,i jK t  of 

 1,i jK t , 1,2i  , obtained in this way. 

 the knowledge of  , Step 2. From i a
jt ,  ,i a

jt , 

 ,i a
jt  approximate   ,i a t  and 1j  ,

1
i a

j 
  re

spectively with

t - 

  1j , ,i a t ,
1

i a
jt 

 n by the fol

 

  give - 

lowing formulae: 

       
2

, ,
1

1
,

2
i a i a, ,i a i a

j j j j

T T
t t t t

q q
   

   
     

   
   (24) 

     , , ,
1 .i a i a i a

j j j

T
t t t

q
  

 
   

 
         (25) 

Solve numerically using Euler method backward in 
time the system of differential Equations (21) in the in- 
terval 1,j jt t    , with the null condition at 1jt t  , that 
is compute:  

       
       

T
1 12,

, ,
1, 1 1 1, 1 1 , 1, 2,

ji

i a i a
i j j i j j

t T q A k t

K t A t K t t i 

 

   

 

  



  
(26) 

with the final conditions:  

2, 2,j ji ik t k 

 2, 1i jk t   0, 1,2,i              (27) 

where  2,i jk t  is the quantity that approximates  

 2,i jk t 2, 1,i  . 

3. F he Step rom t knowledge of an approximation  

 jt  of   jt   compute numerically an approxima- 

tion    of 1jt
  1jt 

  at time 1jt t   solving  

(18), ng Eu hod forwar ime, which i(19) usi ler met d in t s 
compute:  
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         
        

1

3
,1 T

1, 2,
1

.

j j j j j

i a
i j j j ji

i

t t t A t t t

BR B K t t t k t

 

 

 
 

 



   

    

 


 (28) 

Recall that the in  at 0  of 

1 1j jt 
 

itial condition  0t t  t  , 
0 t T  , is given by:  

      0
0 0 .t0t               (29) 

Finally compute the app n roximatio  1jt
  of the w

optimal control  1jw t
  at time 1jt t   formula 

(17).  
Note that usin  0-3 in o approximate 

th

 using

g the Steps  order t
e optimal strategy  1jw t

  and the optimal trajectory 
 1jt 

  at time 
 

Figure 2. The joypad Xbox 360. 
 

e direction (within the window) of the vector that joins 

are: 1) two 
pr

1jt  is necessary to know only t   it 
 jt  and  ,i a jt 1,2 , 0,1, , 1j q  . 

e implement io e vi n 
, i 

at n of thIn deo game described i
Se

4. The Video Game Implementation and the  

Th  Sections and 

ws XP, Vista and 

ust avoid the rendez vous with the 

 

 th
ction 4 Steps 0-3 are used with 30T   seconds and 

300q  . 

Personalities of the Predators 

e video game described in the previous
further specified in this Section has been implemented in 
C# (C sharp) language and can be downloaded from the 
website: http://www.ceri.uniroma1.it/ceri/zirilli/w10/. The 
website contains also some auxiliary material that helps 
the understanding of this paper. 

4.1. System Requirements 

The video game works under Windo
Windows 7 both on 32-bit and on 64 bit thank to a setup 
that recognizes the hardware configuration (32 or 64 bit). 
To play it is necessary to use the joypad Xbox 360 con- 
troller for Windows (see Figure 2). Each human player 
must have a joypad. 

4.2. Game Setting 

The human players m
three automated players (the predators) and must reach a 
given location in the plane called preys’ home. The 
preys’ home is represented by a brown disk with a yel- 
low center on the computer screen. The game field is the 
entire plane and each prey has at its disposal a window 
on the computer screen (see Figure 1). During the game 
each prey is always at the center of its window. That is 
the window scrolls up, down, left and right according to 
the movement of the prey. In every window in the right 
top corner there is a global view of the game scene pro- 
vided by the “radar” of the prey. This global view of the 
scene has the prey at its center and shows all the actors of 
the game and the preys’ home. Finally in the left bottom 
corner of every window there is an arrow that indicates 

th
the center of the window with the preys’ home. This ar- 
row is particularly useful when the preys’ home does not 
appear in the local view of the game scene shown in the 
window to indicate to the prey the direction where to go 
to find its home. Figure 1 shows the two windows of the 
preys as they appear on the computer screen. 

The possible outcomes of a game match 
eys reach the preys’ home, 2) one prey reaches the 

preys’ home and the other prey has not been captured at 
time t T , 3) one prey reaches the preys’ home and the 
other  has been captured, 4) two preys have not 
reached the preys’ home and have not been captured at 
time t T

prey

 , v) one prey has not reached the preys’ home 
and has t been captured at time t T  and the other 
prey has been captured, 6) both preys have been captured. 
To these different outcomes are attributed points follow- 
ing the rules specified in Section 4.3. 

The game consists in a sequence

no

 of matches, each 
match has a duration of thirty seconds, that is 30T   
seconds. Each match starts from its own initial sce  
initial scene is made of the location of the preys’ home 
and of the preys and predators positions at time 0t

ne. An

 . 
The velocities of the preys and of the predators a e 

0t
t tim

  are chosen to be zero. The initial scenes of the ma- 
re generated randomly. The way of specifying the 

personalities of the predators in a sequence of matches is 
discussed in Section 4.8. At the beginning of each match 
the human players observe the initial scene of the game 
looking at their windows on the screen, in particular 
looking at the image of the game scene shown by their 
radars. Before the beginning or during a pause of a match 
the game action is stopped and the human players can 
agree on an eventually cooperative strategy to play the 
match. The choice of the strategy is dictated by the desire 
of making in the match the best point score that is com- 
patible with the game scene and with the game rules. The 
strategy chosen must be implemented by the human 

tches a
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players using the joypads in the action that takes place 
after starting or resuming the match. 

As already said the match is over when t T  or be- 
fo s

4.3. Score Rules 

me is computed summing the scores 

prey that has not reached the 
pr

h prey that has reached the 
pr

ted to the team of the hu- 
m

of the match, 
th

4.4. Radar View of the Game 

 shown by the radar is 

4.5. Preys’ Home 

 location in the plane denoted with a 

 and Cooperation 

ored disks 
 shown on 

e game, that is: START button, BACK but- 
to

re t T  when one of the following condition  are sat- 
isfied: the two preys have been captured, the two preys 
have reached their home, one prey has been captured and 
the other has reached the preys’ home. The game ends 
when one of the human players presses the BACK button 
of the joypad or when the maximum number of matches 
allowed has been played. In the downloadable version of 
the game the maximum number of matches allowed is 
100. 

The score of the ga
made in the matches. The score of a match is computed 
using the following rules: 

1) One point for each 
eys’ home and has not been captured at the end of the 

match, that is at t T , 
2) Three points for eac
eys’ home during the match. 
The points scored are attribu
an players not to the players individually. 
Note that the score rules, the initial scene 
e rules used in the assignment of the preys to the preda- 

tors and the personalities of the predators (see Section 
4.8) determine the strategy that the human players must 
choose at the beginning of each match. 

The global view of the game scene
a disk on the right top corner of the window associated to 
each prey (Figure 1). In this view the game scene is 
shown completely, that is in this view of the scene the 
preys’ home (brown disk with a yellow center), the 
predators (green, orange and yellow disks) and the preys 
(red and violet disks) are shown. Each prey is at the cen- 
ter of the scene shown by its radar. The view of the scene 
shown by the radar can be removed from the window 
pressing the GREEN button of the joypad. 

The preys’ home is a
brown disk with a yellow center (Figure 1). This loca- 
tion is generated randomly at the beginning of each 
match and remains unchanged during the match. The 
preys’ home is always visible in the global view of the 
game scene shown by the radars and the arrow in the left 
bottom corner of the window of each prey indicates the 
direction within the window where to go to find the 
preys’ home (Figure 1). 

4.6. Preys Movements

The preys are point masses represented as col
(red or violet) in the global views of the scene
the computer screen and their movements are implicitly 
defined by the equations of motion (1) with the initial 
conditions (2), (3). In its own window the prey is the co- 
lored (red, violet) guy at the center of the window (see 
Figure 1). The masses and the friction coefficients of the 
preys are assigned at the beginning of the game by the 
game engine and they remain unchanged until the end of 
the game. 

Five buttons of the joypad are used by the human play- 
ers during th

n, GREEN button, top left washer and bottom right 
washer (see Figure 2). 

The forces  i iu u t , 0 t T  , 1,2i  , appearing 
in Equation (1) are chosen by the human players acting 
on low The movement of the joypads as fol s.  the top left 
washer to the right provides a force that pushes the prey 
to the right of the computer screen, the movement of the 
top left washer up provides a force that pushes the prey 
upwards on the computer screen and so on. The force 
magnitude is directly proportional to the washer slope. 
That is the signals transmitted by the top left washers of 
the joypads to the game engine are interpreted as two 
pairs of real numbers 1

iq , 2
iq  belonging to the range 

 1,1  that can be identified respectively with the Car- 
tesian components (in th  “natural” frame of reference) 

 vectors 
e

of the iu  appearing in Equation (1), 1,2i  . 
These pairs of numbers are functions of time. The move- 
ments impressed n the top left washers as a func f 
time define the forces that the human players provide to 
the corresponding preys as a function of time. 

Before starting a match (or before resuming a paused 
match) the human players must observe the g

 o tion o

ame scene 
on their radar views and depending on the scene ob- 
served they must choose a strategy to play the match that 
follows. For example, if one prey is close to the preys’ 
home but has two predators in its immediate vicinity, 
these predators are presumably assigned to its capture. In 
this case it could be convenient in order to maximize the 
score made in the match to move this prey far from the 
preys’ home forcing the two predators assigned to its 
capture to follow it and as a consequence to move far 
from the preys’ home. This makes easier for the other 
prey to reach home. The choice of the previous strategy 
is motivated by the fact that the score made when one 
prey reaches home and the other is captured or remains 
alive until the end of the match is higher than the score 
obtained when the two preys remain alive until the end of 
the match but neither of them reaches the preys’ home. 
Note that in the choice of their strategy the human play- 
ers must keep in mind that at the beginning of the match 
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one of the preys will be chased by one predator and the 
other one will be chased by two predators. Moreover the 
strategy chosen must consider the assignment rule, that is 
must consider the fact that basically the predators are 
assigned to chase the prey nearest to them in the initial 
scene. Hence at the beginning of a match looking at the 
initial scene shown by the radars the human players can 
image which one of the preys will be chased by two 
predators. Moreover the human players must consider the 
fact that in the initial scene of a match the velocities of 
the preys and of the predators are zero and that this is not 
true in general in the scene of a paused match. After a 
few matches, the human players should be able to evalu- 
ate the differences between the predators. This informa- 
tion is relevant in the choice of the prey strategies in par- 
ticular it is relevant when the predators are located near 
the preys’ home. However as will be seen in Section 4.8 
the personalities of the predators change during a se- 
quence of matches and as a consequence the human 
players in the choice of their strategy must adapt their 
criteria to the changes of the predator personalities. 

4.7. Predators Movements and Cooperation 

The predators are point masses represented as co
disks (green, orange and red) on the computer screen

lored 
 and 

sonalities 

 in order to simu- 
 the (supposed) hu- 

ented. 

their movements are implicitly defined by the equations 
of motion (4) with the initial conditions (5), (6). Each 
predator pursues the goal of chasing the prey assigned to 
it by the game engine using a “small quantity” of the re- 
sources available to it (i.e. of its control function). The 
predators are different one from the others. That is the 
parameters that appear in the predator equations are dif- 
ferent for the red, orange and green predator. As ex- 
plained in Section 4.8 in the game actually implemented 
during a sequence of matches the masses of the predators 
change depending on the behaviour of the preys while 
the values of the other parameters have a standard value 
that remains unchanged. 

4.8. The Predator Per

When a sequence of matches is played
late a predators behaviour similar to
man behaviour in the similar circumstances an elemen- 
tary statistical analysis of the points scored by the human 
players in the matches played is used. This mechanism 
provides a form of artificial intelligence to the predators 
that goes beyond the artificial intelligence used to chase 
the preys in a match. In particular out of this mechanism 
three specific forms of artificial intelligence (in short AI 
forms) are implemented. The first AI form consists in 
having the predators to behave in a slightly different way 
in each match. This corresponds to the fact that the hu- 
man behaviour in similar circumstances is not always the 

same but, for example, depends on the humor of the mo- 
ment. The second AI form consists in calibrating the ef- 
fectiveness of the predators in chasing the preys accord- 
ing to the ability of the preys. This is done to avoid to 
discourage or to bore the human players as a conse- 
quence of the fact that the predators are too effective or 
too ineffective in chasing the preys. The third AI form 
wants to simulate in the predator behaviour the emotional 
reaction of a human player to a sequence of defeats or of 
victories. 

Let us go into the details of how these three AI forms 
are implem

For 1,2,3j   we begin assigning to the mass jy
m  

of the predator j  three possible values j j
k

y y
m m , 

3k 1,2, , such that 1 2 30 j j jy y y
m m m   . The para - 

ters 
,i j

me

x y
 , 1, 2i  , 1, 2,3j  , are chosen s e 

nt problem an ero or two. The 
param s 

olving th
assignme d take the values z

eter jy
, 1,j 2,3, jv

  , are assigned at the 
beginning of the game and kept constant during the 
matches. W ve jv

 
e ha  1, j 1,2,3 , and 1 0.4

y
    

0

 

(pink predator), .7   (yellow ator) and2y
  pred  

3 1
y

    (green pre

plement the first AI f
nning of each matc

dator). 

To im orm we do the following: at 
the begi h a random variable jh  is 
sampled, 1, 2,3j  . The random variable jh  assigns to 
the mass of the predator j  the values j

k

y
m , 3k 1, , 

with probability 1 4  and the value 2
jy

m  with probabil- 
ity 1 2 , 1, 2,3j  . 

To implement the second AI form once every ten 
mat  en

, 
ches, the game gine checks the score made by the 

human players in the last ten matches and compares it 
with the maximum score attainable in the matches. If the 
score made is smaller than 20% of the maximum score 
attainable the masses of the predators are increased of 
20%, that is  1 0.2j j

k k

y y
m m  , 1, 2,3k  , 1, 2,3j  , 

if the score made is greater than 70% of the maximum 
score attainable d 
of 20%, that is 

 the masses of the predators are decrease
 1 0.2j j

k k

y y
m m  , 1, 2,3k  ,  

1, 2,3j  . Let us point out that increasing the mass of a 
predator makes , as

, makes easier for the preys to avoid the “rendez 
vous” with this predator. Similarly decreasing the mass 
of a predator makes it faster in its movement and, as a 
consequence, makes more difficult for the preys to avoid 
the “rendez vous” with this predator. That is increasing 
the masses of the predators makes the game easier for the 
human players and decreasing the masses of the preda- 
tors makes the game more difficult for the human players. 
In this way the difficulty of the game increases or de- 
creases depending on the ability of the human players. 
Moreover the random behaviour of the masses of the 
predators that vary between the values k

it slower in its movement and  a con- 
sequence

jm , 1, 2,3k  , 
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depending on the value sampled from the random vari- 
able jh , 1, 2,3j  , makes impossible to ow y 
the ability of the predators when planning a strategy at 
the be nn atch. 

Let us call defeat a match where two preys have been 
captured and victory a m

 kn  precisel

gi ing of a m

atch where both preys have 

 3
 due 

ue to t

s 

teen

ted here. 

 some basic physical laws and to develop 
a 

prey-predator 
ga

[1] A. K. Bay-Hinitz, R. F. Peterson and H. R. Quilitch, “Co- 
operative Gam ggressive and Co- 
operative Beh en,” Journal of Ap- 

rea

presen

ched the preys’ home. To realize the third AI form we 
check the number dn  of consecutive defeats and the 
number vn  of consecutive victories of the human play- 
ers. When 5vn   the masses of the predators are de- 
creased o 0%. This simulates the fact that the predators 
are “hungry” to the repeated victories of the human 
players and become aggressive. When 5dn   the mass- 
es of all predators are increased of 30%. This simulates 
the fact that the predators are satisfied d he repeated 
defeats of the human players and become relaxed. 

5. Experimental Results and Conclusion

f

We have done an experiment on a sample of a few doz
ens of young players aged between five and thir

- 
 

p

years to see the reaction of these players to the exposure 
to the video game. The previous experiences with video 
games of these children were very different. The children 
were divided in three groups. The first group was made 
of children who had never played video games, the sec- 
ond one was made of children having a little experience 
with video games and the third one was made of children 
used to play video games. The players of the first group 
were five-six years old, the age of the players of the re- 
maining groups was between five and thirteen years old. 
The experiment has shown that children aged between 
five and eight years belonging to the first two groups 
enjoy playing the video game and in the first matches 
played find difficult to cooperate. However, after some 
matches, these young players understand the presence of 
restrictions to their movements and to the movements of 
their opponents coming from Newton’s dynamical prin- 
ciple and develop strategies coherent with these restric- 
tions. An interesting finding is that even the youngest 
players (five-six years old) after playing a few matches 
develop an intuitive understanding of Newton’s dynami- 
cal principle and consequently are able to improve their 
ability to escape from the pursuit with the predators and 
to cooperate with their teammate. Playing the video game 
is an enjoyable experience for the first two groups of 
children. In fact the simplicity and the dynamic change 
of the level of difficulty of the game encourage the play- 
ers of the first group and the cooperation amuses the 
players of the second group. The players of the third 
group, in particular the teenager players, after a while get 
bored by the video game. In fact these players are already 
acquainted with the richness of commercial video games 
and are disappointed by the simplicity of the video game 

Concluding the video game at least for the younger 
and inexperienced players is a practical tool to under- 
stand intuitively

cooperative attitude with their teammate. 
Moreover the video game is an example of how ma- 

thematical models taken from optimal control and ele- 
mentary statistics can be used to develop 

mes where the actors’ movements satisfy Newton’s 
dynamical principle and the automated actors simulate a 
form of intelligent behaviour that changes dynamically 
depending on the behaviour of the human players during 
the game. No “a priori” schemes are used to determine 
the automated players’ behaviour. 
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