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ABSTRACT 

 ,TFor real numbers   and   such that 0 1    , we denote by    the class of normalized analytic func- 

tions which satisfy   Re f z  z

 ,T

  , where  denotes the open unit disk. We find some relationships 

involving functions in the class 

  

  . And we estimate the bounds of coefficients and solve Fekete-Szegö problem 

for functions in this class. Furthermore, we investigate the bounds of initial coefficients of inverse functions or bi-uni- 
valent functions. 
 
Keywords: Functions of Bounded Positive Real Part; Fekete-Szegö Problem; Inverse Functions; Bi-Univalent  

Functions 

1. Introduction  
Let A  denote the class of analytic functions in the unit 
disk  : 1z z  

 0 1f  S


 0 0f 
 which is normalized by  

 and . Also let  denote the sub- 
class of 


A  which is composed of functions which are 

univalent in . 
We say that f  is subordinate to F  in , written 

as 


f F z    , if and only if     f z F w z  
for some Schwarz function  such that w z   0 0w   
and   1  w z  . If z F  is univalent in , then 
the subordination 


f F  is equivalent to    0 0f F


 

and .     f F
Definition 1.1. Let   and   be real numbers such 

that 0 1    . The function f A  belongs to the 
class  , T    if f  satisfies the following inequality: 

  Re f z  .z    

We remark that, for given real numbers   and   
 0 1    ,  ,f T    if and only if f  satis- 
fies each of the following two subordination relation- 
ships: 

     
z

z

 

1 1 2

1
f z

z

 



  

and 

 
1 1 2

1

z
f z z

z

 
 


 

:p  

 

. 

Now, we define an analytic function  by 
1

πi2

1 e
1 log

π 1
i

z
p z

z


  



 
  

    
 

p
p 

.         (1) 

The above function  was introduced by Kuroki and 
Owa [1] and they proved  maps  onto a convex 
domain    : Rew w     , conformally. Using 
this fact and the definition of subordination, we can ob- 
tain the following Lemma, directly. 

 Lemma 1.1. Let f z A  and 0 1    . Then 
 ,f T  

 

 if and only if 
1

2πi

1 e
1 i log

π 1

z

z
f z


  




 

  
   

 




p

  1
1 n

nn
p z B z




 

        (2) 

in . 
And we note that the function , defined by (1), has 

the form , where 

 
1

2 πi

i 1 e .
π

n

nB n
n


   


 
    

 
        (3) 
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  and   such that  For given real numbers 
0 1     ,, we denote T    the class of bi- 
univalent functions consisting the functions in A  such 
that  , f T   1f T and  ,   1, where f   is 
the inverse function of f . 

In our present investigation, we first find some relation- 
ships for functions in bounded positive class  ,T  

S

 ,T

. 
And we solve several coefficient problems including Fe- 
kete-Szegö problems for functions in the class. Further- 
more, we estimate the bounds of initial coefficients of in- 
verse functions and bi-univalent functions. For the coef- 
ficient bounds of functions in special subclasses of , 
the readers may be referred to the works [2-4]. 

2. Relations Involving Bounds on the Real  
Parts 

In this section, we shall find some relations involving the 
functions in   . And the following Lemma will be 
needed in finding the relations. 

Lemma 2.1 (see Miller and Mocanu [5]) Let   be a 
set in the complex plane  and let b  be a complex 
number such that . Suppose that a function 

 satisfies the condition 


Re 0b



 i , ; z   

  
2   :

 

for all real   2
, i     z2Reb b  and all 

 p z
2

1 2b z b z 

. 
If the function  defined by  

 is analytic in  and if  p z b  
    , zp z 

Re 0 

p z , 

then  in .  p z

Theorem 2.2. Let f A , 1 2 1   and 

  Re f z   .z          (4) 

Then 

   2 1
.

3 3
z2Re

f z

z


     
  

       (5) 

Proof. We put 

22 1

3 3
    

and let 

   1

1
p z

f z

z



 

  
 

p  0 1p 


. 

Then  is analytic in  and . And 

         
    

1 1

, ,

p z

p z z z

f z

p

zp z  



   



 

     

 

, 1 1 .r s r s

where 

       

   

 

Using (4), we have 

      , : : Re : .p z zp z z w w        

,

 

   with 21 2   

  Re i ,

Now, let . And we    

shall find the maximum value of   

     

. Now, 
we put 

i , 1 i 1 : iu v             

u v

, 

where  and  are real numbers. Then 

 2 2 1u v        

and 

 2 1uv    . 

Hence 

        
 

2

2 2 2 21
1 1 2 1

2
1

: .
2

u

E

         



        



E

 

  is increasing on the interval  Since 
   2, 1 2    21 2   , for , we have 

 

  
     

2

22 2

1 2

1 ,

E

E

G G





 





   

  

   

 

 

where 

  21
1 1 .

2
G        

:F  

       

 

Now we define a function  by 

22 21 .F G G           

We note that F  is continuous on  and is even. 
Since 


 0 0F   and F  is decreasing on  0,  for 

1 2 1 ,   

   0 3 1F F      

for  . Hence  

 2 1 3 1
.

2 2 2
u F      

Therefore, 

3 1
.

2 2
u    

  Re i ,

 

And this shows that     , for all    
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     0 3 1F F       with 21 2   

 Re 0 
. By Lemma 2.1, we get  

p z  in  and this shows that the inequality 
(5) holds and the proof of Theorem 2.2 is completed.  

Theorem 2.3. Let f A 1,    and  

  Re  f z z  .       (6) 

Then 

   2 1
.

3 3
z2Re

f z

z


     
  

      (7) 

Proof. We put 

22 1

3 3
  

1

 

and note that    for 1  . And let 

   1

1
p z

f z

z



 

  
 

 


 

and 

   , 1r s r 1 .s        

And, we put 

     i , 1 i 1         : i ,u v   

u v

e : ,

 

where  and  are real numbers. As in the proof of 
Theorem 2.2, we can get 

       , : : Rp z zp z z w w          

by (6). And 

        
 

22 21
1 1

2
1

: .
2

u

E

2 22 1      



      



   

E

 

Since   is decreasing on the interval  

  2 2, 1  , for  21 2   

 

, we have 

   
    

2

22 2

1 2

1 ,

E E

G G

 

 

 

   



 

 

 
 

where 

    21 1 .
1

2
G     

:F  

 

    

Now we define a function  by 

      22 21 .F G G           

We note that 

 

for  . Hence  

 

F  is continuous on  and is even. 
Since  and 


0 0F   F  is increasing on  0,  for 

1  , 

2 1 3 1
.

2 2 2
u F      

Therefore, 

3 1
.

2 2
u    

  Re i ,

 

And this shows that     , for all    

 21 2    with . By Lemma 2.1, we get   

  Re 0p z   in  and this shows that the inequality 
(7) holds and the proof of Theorem 2.3 is completed. 

By combining Theorem 2.2 and 2.3, we can get the 
following Theorem. 

Theorem 2.4. Let   and   be real numbers such 
that 1 2 1   and let    f  be a function in the 
class  ,T  . Then 

   2 22 1 2 1
Re .

3 3 3 3

f z
z

z
 

       
  

  

3. Coefficient Problems Involving Functions  
in  T ,

 ,T

 
In the present section, we will solve some coefficient 
problems involving functions in the class   . And 
our first result on the coefficient estimates involves the 
function class  ,T  

 
1

n
n

n

q z B z




 



 and the following Lemma will 
be needed. 

Lemma 3.1. (see Rogosinski [6]) Let 

 

be analytic and univalent in  and suppose that q z


 
1

n
n

n

p z A z




 



 
maps  onto a convex domain. If  

 

is analytic in  and satisfies the following subordina- 
tion: 

     .p z q z z   

Then 

 1 .nA B n   

Theorem 3.2. Let   and   be real numbers such 
that 0 1  

   
1

,n
n

n

f z z a z T

. If the function  

 




   , 

then 
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  1
12 2n

B
a n

n
    2,3, ,B n         (8) 

where 1B  is given by 

 
1

2

π
B

 


1
sin π .


 

 
  

   

 

Proof. Let us define 

q z f z                  (9) 

and 

 
1

2πi

1 e
og

π 1

z
p z

z


  



 
  

    
 

 

1 i l .        (10) 

Then, the subordination (2) can be written as follows: 

   .z z
 p z



1
1 n

nn
B z




 

q z p            (11) 

Note that the function  defined by (10) is con-
vex in  and has the form 

 p z , 

where 

 .B n
 

  
 



1

1 ,n
n

n

A z




 

1
2 πi

i 1 e
π

n

n n


   


   

If we let 

 q z  

then by Lemma 3.1, we see that the subordination (11) 
implies that 

 1 ,n nA B  

where 

 
1

2

π
B

 


1
sin π .


 

 
  

 

 

Now, the equality (9) implies that  2f z q z 
n

. 
And if  is even, the coefficient of  in both sides 
lead to 

nz

 2 2 12 ,n nA A 1 2 12 2n n nna A A A     

which is the sum of 2n  terms. Hence, 

 

  

1 2 1

2 2

1 1 1

1 1

2 2

2 2 2

2 2 ,

n n nn a A A A

B B B

B n B

  2 2 12 n nA A   

   

  







n

 

 



which leads to the inequality (8). If  is odd, 

    
2

1 2 1 1 2 3 2 1 22 ,n n n n n nna A A A A A A          

 which is the sum of 1 2n   terms in the bracket. 
Hence, we get 

      

 
  

2

1 2 1 1 2 3 2 1 2

2 2 2

1 1 1 1

1 1

2

2

2 2 ,

n

n n n n n

n a

A A A A A A

B B B B

B n B

        

    

  




 

which leads to the inequality (8). Therefore, the proof of 
Theorem 3.2 is completed. 

And now, we shall solve the Fekete-Szegö problem for 
 ,f T    and we will need the following Lemma: 

Lemma 3.3. (see Keogh and Merkers [7]) Let  
  2

1 21p z c z c z   


 be a function with positive 
real part in . Then, for any complex number  , 

 2
2 1 2max 1; 1 2 .c c     

Now, the following result holds for the coefficient of 
 ,f T  

0 1
. 

Theorem 3.4. Let     and let the function 
 z   n given by 

2 nn
z z a z

  
 be in the class ff

 ,T  . Then, for a complex number  , 

 2
3 2

1
2πi

4 1
sin π

3π

1 1
max 1; e ,

2 2

a a


 

  
 

 



  
    

 
        

   

where 

 i 1 3 .
2π

  
 

 q z

   

 

Proof. Let us consider a function  given by  

.q z f z                (12) 

 ,f TThen, since   , we have 

      ,q z p z z 

 

 

where 
1

2πi

1

1 e
1 i log

π 1

1 n
n

n

z
p z

z

B z


  







 
  

    
 

 

nB

 

 

with  is given by (3). Let 

  
  

1
2

1 21

1
1 .

1

p q z
h z h z h z

p q z
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 Then  is analytic and has positive real part in the 
open unit disk . We also have 

h


 
 

3

1
2πi

4 1
sin π

3π

1 1
max 1; e ,

2 2

b


 

  
 

 



  
   

 
1

1

h z
p

h z

 
   

.               (13) q z 

We find from the equations (12) and (13) that 

2 1 1

1

2
a B h  

and 

2 2 2 2
2 1 1 1

1
,

12
B h B h3 1 2 1 1

1 1 1

3 6 6
a B h B h    

which imply that 

 2 2
1 2 1 ,B h h 3 2

1

3
a a   

where 

2

12 2

B

B 1 1

1 1 3
.

4 4
B B     

Applying Lemma 3.3, we can obtain 

 

2 2
1 2 1

1; 1 2 .

B h h3 2

1

1

3
2

max
3

a a

B

 







 

 
         (14) 

And substituting 

1
2πi

i 1 e


 



 
  

 
1 π

B
 

            (15) 

and 

1
4πi

i 1 e


 



 
  

 

0 1

2 2π
B

 
            (16) 

in (14), we can obtain the result as asserted. 
Using Theorem 3.4, we can get the following result. 
Corollary 3.1. Let      and let the function 

f , given by 
2n  ,n

nf z a z
 

T


 be in the class 
 ,   . Also let the function 1f 

  1

, defined by 

  1f f z z f f z          (17) 

be the inverse of f . If 

 1
2

n
nn

f w w b w



  0 0

1
; ,

4
w r r

   
 

  (18) 

then 

 
2

2

π
b

 


1
sin π


 

 
  

 

and 

         
   

where  

 5
i

2π
   

2 2b a

. 

Proof. The relations (17) and (18) give 

 

2
3 2 32 .b a a 

 

and 

 

Thus, we can get the estimate for 2b  by 

 
2 2 1

2 1
sin π ,

π
b a B

  
 

  
     

2

 

immediately. Furthermore, an application of Theorem 3.4 
(with   ) gives the estimates for 3b

 ,f T

, hence the 
proof of Corollary 3.1 is completed. 

Finally, we shall estimate on some initial coefficients 
for the bi-univalent functions  .  

Theorem 3.5. For given   and   such that  
f  be given by  0 1   , let 

  2
n

nn
z z a z




   ,Tf  be in the class  . Then 

      2

2
sin 1 sin

π
a

 
 


         (19) 

and 

     3

2 7
sin 1 sin

π 3
a

 
 

    
 

      (20) 

with 
1

π


 





. 

 ,f TProof. If    ,f T, then    and 
 ,g T  

   1

2

.n
n

n

, where  

g z f z z b z






  

   

 

Hence 

   :z f zQ p zz   

   

 

and 

    ,:z g z zL p z    

 p z

 

 is given by (1). Let where 

  
  

1
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1 21
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and 
 

 
  
  

1

1

1

1

p L z
k z k

p L z






 


2

1 21 .z k z  

h k


 
 

 

Then  and  are analytic and have positive real 
part in . Also, we have 

 
1

1

h z
p

h z

 
   

 
 

Q z   

and 

 
1

.
1

k z
p

k z

 
   

L z   

By suitably comparing coefficient, we get 

2 1 1

1

2
a B h                   (21) 

2 2 2 2
2 1 1 1

1 1

6 12
B h B h3 1 2 1 1

1 1

3 6
a B h B h       (22) 

2 1 1

1

2
b B k                  (23) 

and 

2 2 2 2
2 1 1 1

1
,

12
B k B k

B B

1 1.h k

3 1 2 1 1

1 1 1

3 6 6
b B k B k      (24) 

where 1  and 2  are given by (15) and (16), respec- 
tively. Now, considering (21) and (23), we get 

 

 2
1 2 1 .h B B 

              (25) 

Also, from (22),(23),(24) and (25), we find that 

 2
2 1 2 24a B h k        (26) 

Therefore, we have 

 2 2

1 2 1h B B 2 1 2 2

1 2 1

4

4 4 .

a B h k

B B B

 

  
 

This gives the bound on 2  as asserted in (19). Now, 
further computations from (22), (24)-(26) lead to 

a

 2
3 1 2 2 1 2 1

1 7
5 .

12 12
a B h k h B B     

This equation, together with the well-known estimates 
[8]: 

,  and  1 2h  2 2h  2 2k 

lead us to the inequality (20). Therefore, the proof of 
Theorem 3.5 is completed. 
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