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ABSTRACT 

This article deals with the computational study of the nonlinear Galerkin method, which is the extension of commonly 
known Faedo-Galerkin method. The weak formulation of the method is derived and applied to the particular Scott- 
Wang-Showalter reaction-diffusion model concerning the problem of combustion of hydrocarbon gases. The proof of 
convergence of the method based on the method of compactness is introduced. Presented results of numerical simula-
tions are composed of the computational study, where the nonlinear Galerkin method and Faedo-Galerkin method are 
compared for the problem with analytical solution and the numerical results of the Scott-Wang-Showalter model in 
1D. 
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1. Introduction 

It is well known that many problems often occur when 
one tries to approximate the complex dynamics of reac-
tion-diffusion equations. Especially the error estimate of 
common methods grows exponentially in time. One pos-
sible approach to overcome this problem, known as the 
Nonlinear Galerkin method is suggested by Marion and 
Temam in [1]. It is also discussed in [2] and [3]. In this 
paper we discuss this method and its properties, and ap-
ply it to the solution of particular reaction-diffusion model 
and perform a computational study when the method is 
compared with the commonly known Faedo-Galerkin 
method. 

Consider a system of reaction-diffusion equations  
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and the space   1
0 , ; dH a bV   as a Hilbert space 
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Let ini H . Then the weak solution of the problem 
(1)-(2) on time interval  0,T  is a mapping  

 ,T V: 0  such that it satisfies the following equa- 
tions for each V : 
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2. Nonlinear Galerkin Method 

The nonlinear Galerkin method proposed by Marion and 
Temam in [1] is an extension of the classical Faedo- 
Galerkin method, which is extensively discussed in [4], 
[2] or [3]. Generally there are two main goals we would 
like to achieve by using the nonlinear Galerkin method: 

  To increase the accuracy of the approximation re-
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garding the computational time of the Faedo-Galerkin 
method; 

 To decrease computational time regarding to the pre-
cision of the approximation of the Faedo-Galerkin 
method. 

Analogically to the Faedo-Galerkin method, we search 
the approximate solution on some finite-dimensional 
subspace of . Consider a differential equation for the 
unknown function 

V
2 0, ;L T H  in the following 

form: 

 d

dt
                  (6) 

with the initial condition 

  ini0 ,   

where the mapping  is written as  
   A F      for some linear operator A . The 

H  is a separable Hilbert space with the orthonormal 
basis  composed of eigenvectors of the op- 
erator 

 1 2, ,  
2
xx  satisfying the homogeneous Dirichlet 

boundary conditition in  ,a b
P
. 

Then we denote symbols  and  as projectors 
to the subspaces 

m mQ
 1 2span ,P , ,m m  H   and 

 mP


H , respectively. Thus mP H  is a finite-dimen-  
sional subspace of H  generated by first m basis func- 
tions and P m H  is its orthogonal complement. 

Then, the solution  t  of Equation (6) can be writ-
ten as 
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where 

       , .m m m mp t P t q t Q t    

Substituting the decomposition (7) to (6) and applying 
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Discretization in the nonlinear Galerkin method is 
based on the two following steps:  

1) Replacing the right hand side  by the first order 
Taylor expansion: 


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where  is the Jacobian matrix of . One suggested 
approach is that the remainder in the Taylor expansion 
satisfies these following properties (see [1,2,5]): 

 
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0, 0.

dm mq t q t
t

   

This simplification is implied by a particular nonlinear 
Galerkin method we are using. Then, the second equation 
of the system (8) can be written as 

       .m m m m mQ p t Q p t q t    

2) Replacing the  mP


H  by some finite-dimensional 
subspace, since we can only operate on some finite- 
dimensional subspace MP H  for M m  instead of the 
whole H  during the numerical computation. Then the 

mQ H  is replaced by  M mP P H  and instead of func- 
tion  m m tq Q  , we consider the function 

     .m M mz t P P t    

The equations for the nonlinear Galerkin method can 
be finally written as the following: 
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The degree of approximation is determined by the pa-
rameters m and M. We interpret the function  as an 
approximation of solution of (6) in the space 

mp
H  and 

m  as a correction term which modifies  for large 
values of time t. 
z mp

The weak formulation of (10) is obtained easily by 
multiplicating (10) by basis function j  for  

1,2, ,j M  . Utilizing the orthogonal projection and 
orthonormality of basis functions i , we obtain the weak 
formulation of the nonlinear Galerkin method 
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for the indices 1, ,j m   and 1, ,J m   M . We 
endow these equations with the initial conditions 

    ini0 , , for 1, 2, , .m j m jp P j    m  

3. Application to the Scott-Wang-Showalter 
Model 

We show the application of the nonlinear Galerkin 
method on the particular reaction-diffusion system. It 
was experimentally discovered, that there arise patterns 
created by flames during the combustion of mixed com-
pounds of hydrocarbon gases. 

This phenomenon is described by the Sal’nikov model 
(see [4,6,7]), which generates the thermokinetic oscilla-
tions. The Sal’nikov’s work deals with the problem of 
the cool flames during the oxidation of hydrocarbon 
gases. 
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The scheme of the Sal’nikov’s thermokinetic oscilla-
tion is the following: 

, hP A A B   eat.  

In the first reaction, the compound P generates the re-
active compound A. In the second reaction, the com-
pound A decomposes to the inert product B during the 
emergence of heat. The detailed physical point of view is 
discussed in [6]. The system of reaction-diffusion equa-
tions for dimensionless concentration   of reaction 
intermediate A and dimensionless temperature   of 
reaction compounds is: 
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where the function f is defined as 
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The , ,Le    and the   are the parameters of the 
model,   is the dimensionless time. We complement 
these equation with the initial conditions 
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which are the stationary solutions of the (12). We convert 
the problem (12)-(14) into the homogeneous boundary 
conditions problem. By subtracting the boundary condi-
tions (15) from   and  we obtain the system 
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endowed with the homogeneous boundary conditions and 
with the following initial conditions 
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We consider the unknown functions   and   as 
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In this case, we consider , the domain 1, 2n d 
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. For the application of the non-  

linear Galerkin method, we use the orthonormal basis of 
H  composed of eigenvectors of the operator 2

xx : 
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We search the Galerkin approximation of   as the 
decomposition      m mp z    , where the ap- 
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The unknown combination coefficients   and   
for the 1, 2, , M   are given by the following 
system of differential-algebraic equations: 
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 (22) 
for 1, ,J m M   . 

Multiplicating the second equation of (22) by  , 
using simple algebraic manipulations and subtracting it 
from the first equation of (22), we obtain a linear relation 
between J  and J :  
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for 1, 2, ,J m m M    . The system (22) for correc-
tion (with dimension  2 M m ) can be reduced to a 
system with the dimension equal to  M m  for the 
unknown coefficients J : 
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0 0

0
, .

0

J
m J

M
I J

J I m
I m

M
J

I m
I m I

T p

J
Q p

l

C I Q p



 



 

 

   
   

  
       

        
      

    
         






 

The coefficients J  are then computed via the rela-
tion (23). 

4. Convergence 

We prove the convergence of the nonlinear Galerkin 
method applied to the Scott-Wang-Showalter model. 

The most important note is the existence of the invari-
ant region for the Scott-Wang-Showalter model. Its exis-
tence was proved in [7]. 

We introduce the following operator notation 

   
1 0

, ,
0

D A A Id G A F
Le

 
      
 

 ,    

where Id is the identical operator. The Jacobian matrix of 
the operator G is computed as  

   G A F Id C Q        

0

 . Considering the 
invariant region for the model, the operator G satisfies 
the Lipschitz condition with the constant  for 
each 

0
   and each solution with the initial condition 

inside te invariant region is bounded, i.e.  ,x K   , 
 ,x K   for some  and for each 0K   0,x l  

and each 0  . Then we have the following estimates 
for the right hand sides of the model 

    1,g f K      

       2

1
,g f K  


     

where 1 2 . Hence we can write the following 
important estimates for the operator : 

,K K  0
G

    22 20 , .
RR R

G q k G q u k u  1     (24) 

Then the equations for the nonlinear Galerkin method 
(11) are as follows 

         d
,

d m m m m mp Ap P G p z   


      

      
      

      
 

.

m M m m

M m m m

Az P P G p

P P G p z

 

 

  

  
        (25) 
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Problem (25) is the system of differential-algebraic 
equations solvable on  0, m ue to the theory of ODEs 
as the algebraic system for mz  is uniqu  solvable and 
smoothly depends on mp . The value o mT  depends on 

 quality of approximation. 

T  d
ely

f 
the

1) Operator A 
The operator A  has the same eigenfunctions as the 

operator A : 

   1 2 0
, .

0
 

   
        


 

  

The eigenvalues are1  
2

1 π
1

l
     
 




,  

 
2

2 π
1 Le

l
     
 




. The operator A  is (see [8]) posi-  

tive and self-adjoint. Hence we can define its square root 
A  as      , , ,

H HH
Au v Au Av u Av   for each 

.  , Domu v A
Now we introduce some useful relations between the 

operator norms which we use in the next part. For more 
detailed derivation see [4] 

22 2 2
2

H H H
,

H
Aq D q q D q         (26) 

2 2 2
,

HH H
Aq D q q            (27) 

 
2 2

min 1, ,
HH

Dq Le q          (28) 

 2 2min 1, .
2

H H
Dq Le q          (29) 

To prove the convergence of the nonlinear Galerkin 
method we process the particular sequences in Equation 
(25). 

2) Sequence    1m m
z





We multiply the second equation of (25) scalarly by 

mAz  

      
    

, ,

, .

m m M m m mH H

M m m m m H

Az Az P P G p Az

P P G p z Az

 

 
 

Using the Young inequality, we obtain 

   2 22 2

2

1

4
1

.
4

m m m mH H mH H

m H

Az G p Az G p z

Az

  


 

According to [1], the expression 
2

m H
Az  has its 

lower bound 
22 min

1m m mH H
Az Az   

and then we can write 

    2 2 2min
1 2 .m m m m mH HH

Az G p G p z     

Using estimates (24), we obtain 

 
  

2
2 0 1

2 2

2
.

1 min 1, 1 π

m H

m
H

k k z
Az

Le m




 
 

We use relations (27) and (28) on the left hand side of 
this inequality. Then we obtain the estimate for mz  
via the Poincaré inequality: 

    
  

22 2
0 12

2 2

2
2min 1, 1 .

1 min 1, 1 π

m H

m H

k k z
Le z

Le m


 

 
 

Hence 
2

0m H
z   for m  uniformly on the in-

terval 


 0, . 

3) Sequence   1m m
p




 

,A A  a Id  are linear operators. We suppose that ini-
tial condition   0 Dom Dom A A  . Using the 
Bessel inequality, we obtain following auxiliary esti-
mates 

 

 

 

ini ini

ini ini

ini ini

0 ,

0 ,

0 .

m m HHH

m m
H H

m m HHH

p P

Ap AP A

Ap AP A

 

 

 

 

 

 

H
   (30) 

We multiply the first equation of (25) scalarly by 

mAp  

    

d
,

d

, ,

m m
H

m m m m m mH
.

H

p Ap
t

Ap Ap P G p z Ap

 
 
 

   
 

Using the definition of the square root of operator A, 
we obtain 

  
2 2d

, .
d m m m m m mH HH

Ap Ap P G p z Ap
t

    

We use the Young inequality and (24) to estimate the 
left hand side and then we obtain the auxiliary estimate 

2 2 2
0

d
.

d m m HH
Ap Ap

t
  k         (31) 

4) Boundedness of  in   1m m
Ap



  2 0, ;L T H  

We integrate the Equation (31) over  0,T : 

   
2 2 2

0
0 0

d .
T T

m m HH
Ap Ap         k T  

Dropping the  
2

m
H

Ap T  and using(30) we obtain 

 
22 2

0 in
0

d .
T

m H i
H

Ap k T A      
1Denoting the  the largest one and the  the smallest one. max

min
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Hence the sequence 
m  1mAp



 is bounded in  

2 0, ;L T H  for each . 0T 

 Ap


5) Boundedness of 
1m m

 in  0, ;L T H  

We integrate the Equation (31) over  0,T : 

   
2 2 2

0
0 0

d .
T T

m m HH
Ap Ap         k T  

Dropping the integral of nonnegative function and 
using (30) we obtain 

 
2 2

2
0 in .m i

H H
Ap T k T A    

Hence the sequence  
1

m
m

Ap



 is bounded in  

0, ;L T H  for each . 0T 

6) Boundedness of    
1

0, ;m
m

A p L H





  

Using the relations (26) and (27) we get the inequality 

22
.

H H
Aq Aq  

The auxiliary relation (31) then leads to 

2 2
2
0

d
.

d m m
H H

Ap Ap


  k  

Using the Grönwall lemma for    
2

m
H

y Ap   , 
 and 1k  2

0A k  we obtain 

   2 2
2

ini 0e em
H H

Ap A k       
 1 .  

Hence the sequence  
1

m
m

Ap



 is bounded in  

 0, ;L  H . 

7) Sequence  
 
  1

d

d m
m

p



 

We multiply the first equation of (25) scalarly by 
d

d mp


: 

 

d d
,

d d

d
, ,

d

d d

m m
H

m m m m m .
H H

p p

Ap p G p z p

 

 

 
 
 

         
   

 

We use the Young inequality for 1   on the last 
term and estimate the middle term. 

 
2

2 21 d 1 d 1
.

2 d 2 d 2m m m m HH
H

p Ap G p z
 

    

Using the boundedness of the operator G (24) we 
obtain 

2
2

2
0

d d
.

d dm m
H

H

p Ap
 

 

We integrate this inequality over  0,T  and use the 
relations (30): 

 
2

2 2
2
0

0

d
d .

d

T

m m
H H

H

p Ap k T 


   A  

Hence the sequence 
1

d

d m
m

p






 
 
 

 is bounded in  

 2 0, ;L T H . 
9) Passage to the limit 
Considering the previous estimates (boundedness of 

mAp  and (27) particularly), we obtain the following 
properties 

   
   

1

1

is bounded in 0, ; ,

is bounded in 0, ; ,

m m

x m m

p L

p L

 


 




 

H

 H
 

whereas 

   
  2

0, ; 0, ; ,

0, ; 0, ; .

L L T

L L

 



 

  

H H

H H
 

Hence the sequence   1m m
p




nded in  is bou  2 0, ;L T V  

0 . This m  that we can choose a subse-
quence   1m m

p


for each T eans

 
, which ges weakly in  conver  2 0, ;L T V . 

Using the Aubi a (see [9]) fo  
fu

,

n Lemm r following
nction spaces: 

0 1, ,X X X  V H H  

we obtain that the Banach space 

   2 2d
0, ; 0, ;

dTW L T L T


 
   
 

V H   

with norm 

 
 

2
2

0, ,
0, ,

d

dTW L T
L T

 
V

H

    

is compactly embedded in  2 0, ;L T H . 


 is bounSince the sequence  p ded 
1m m

in  

 2

k  

0, ;L T V  and sequence 
1

d



d m
m

p
 


 
 

 is bounded in 

 2 0, ;L T H  for each , there exists a subsequence 0T 

 
1k

k
m m

p



, which converges strongly to the limit point p  

 2 0, ;L T H . Knowing that the sequence  p


in 
1m m 
 

con kly in verges wea  2 0, ;L T V , we obtai  
uniqueness of the limit th , ;T V . 

10) Sequence G p z

n from
at 2 0p L

 



1m m m

 

Since the operator  satisfies the Lipschitz condition, 
w

G
e can perform the following estimate 
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     

      

     

 

   

2

2

2 2 

0, ;

2

0

22

0

22

0, ;

22 22

0, ; 0, ;

d

d

0.

L T

T

m m H

T

m m H

m m L T

m mL T L T

G p z G p

p z t p

p z p

p p z

2

m mG p z G p

  

  

  

  

  

  







H

H

H H







 

Hence  strongly in

 

   m mG p z G p    2 0, ;L T H . 
 11) Existence ak solution

rt nd uniqueness of 
 and uniqueness of we

In this pa we prove the existence a  
th
Th

e weak solution of the Scott-Wang-Showalter model. 
e existence is proven via the strong convergence of the 

sequence   
1m m m

G p z



 . 

We multiply the first equation of (25) by j  for 
1, ,j m  . 

    

d

d
,

, , .

m j
H

m j m m jH H

p

Ap G p z



 

 
 

   



  

 

Multiplying the previous relation by the test function 
and integrating it over 

 

 1 0,C T  ,   0T    0,T  
we obtain 

   

       

    

0

0

d
, d

d

, d

, d .

T

m j
H

T

m m j H

T

m j
H

p t

G p z

Ap A

 
0

 

     

    



   

 
 







 



 

Integrating the left hand side per parts and passing to 
the limit we obtain 


 
 

        

        

ini

d
, 0

T

j H
 

0

0

, d
d

, , d .

j H

T

j jH H

p

G p Ap A

    


      



  
 




  

(32) 

Additionally, we consider . Then 

 

 0 0,C T 

    , , ,
d j j d

jH H
p Ap A  


    

H
G p (33) 

in sense of distributions. 
Now, we multiply the Equation (33) by  1 0,C T  , 
  0T   and integrate it over  0,T . Usi  ng integration

per parts we obtain 

         

        

0

d
0 ,

d

T

j jH H

T

    


0

0 , d

, , d .j jH H

p p

G p Ap A

 

      



  
 

(34) 

Subtracting (32) and (34) we get 

 

  00 , 0 for each ,j jH
p     

which means that   00p   . Hence  is the weak 
solution. 

To show the uniqueness, we suppose th e are two 
ons 

 p

er
different weak soluti   and  , which satisfy 

      

   

d
, , , ,

d

  
    ini

d
, , , ,

d
0 0 .

j j jH HH
A A G

A A G

  


  

  

 

  

j j jH HH


 

  

  

 

We denote    
, multiply it by 

. Then we subtract the previ-
ous equations  , j H

  and sum it over 
1, 2,j   . 

   

  
      

, ,

, , .

j jH Hj

j jH

d
, ,

d j jH H
j

Hj

A A

G G

 

 



 





 

  

 

Hence 

 
  

    
221 d

, .
2 d H HH

A G G


        

Finally, using the Young inequality for the last term 
and Lipschitz condition of operator , we obtain G

 2 2d 2 1 .
d H H

     

Choosing      2 2, 1y k 
H

     and  0A  , 
we use the Grönwall lemma: 

     22 2

0

exp 1 0 0.
H H




  


   

Hence   0t   for each 0  , which is the con- 
tradiction. 

5. titative 

er we deal with the error measurement and 
nlinear Galerkin method 
diffusion model. We are 

 Quan Analysis 

In this pap
computational time of the no
aplied to a particular reaction-
interested in the long-term behaviour in particular. It is 
clear that the accuracy and computational time of the 
nonlinear Galerkin method depends on the dimension of 
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the function subspace, where the approximation of the 
solutions is searched. Before the application on the Scott- 
Wang-Showalter model, we use the single one-dimen- 
sional reaction-diffusion equation with the known ana-
lytical solution  ,u u t x  as a benchmark for the 
method. Consider the equation 

method. The linear systems for correction are solved via 
Gauss elimination method since they are generally a sys-
tems with dense matrices. 

We plot the  norm of the difference between ana-
lytical solution and numerical approximation, i.e.  

2L

2analytical numerical L
u u  in specific time intervals. Time is 

measured in seconds. Additionally, Table 1 of computa-
tional complexity is included.    

2

2
,

u u
f u g t x

t x

 
  


          (35) 

for  0,1x  and init t  satis



fying the homogeneous 
Dirich ary con  and initial condition 

5.1. Simulation 1 
let bound dition

Consider equation 
 

ini
ini , ,

t t
u u t x


    

re f is a ar fu
 that u 

is the analytical so  of the pro
simulations we u er 

          (36) 

 
2

2
2 2

,
u u

u g t x
t x

 
  

 
 

whe nonline nction of u and g is a chosen 
function of time init t  and space  0,1x , such with initial condition  sin π sinu x t 

init t
 and with 

the analytical solution u in form 
ini

 , sin π sinu t x x t  . 
The time evolution of error is on the Figures 1 and 2. 

lution
se eith

blem (35)-(36). In all 
10m  , 0 (which is the M   

case of the commonly known Faedo-Galerkin method- 
see [4]) or m  5  in the Galerkin approxima-
tion. 

The explicit form of n 

5 , M
 
Table 1. Computational complexities for testing simula-
tions. 

 ,g t xfunctio  for all dis-
cussed cases, equations for the nonlinear Galerkin ap-
proximation d scalar products can be eas-
ily de

Simulation 
Faedo-Galerkin 

method 
Nonlinear Galerkin 

method 

Simulation 1 1307.71 s 322.03 s 

Simulation 2 8345.08 s 1910.25 s 

Simulation 3 6269.52 s 2161.48 s 

and enumerate
rived or found in [4]. 

ial equ

 

The systems of ordinary different ations for ap-
proximation from the nonlinear Galerkin method are 
solved by means of time-adaptive Runge-Kutta-Merson 

 

 
(a)                                      (b)                                      (c) 

Figure 1. Time evolution of errors for the Faedo-Galerkin method. (a) Simulation 1; (b) Simulation 2; (c) Simulation 3. 
 

 
(a)                                      (b)                                      (c) 

Figure 2. Time evolution of errors for the nonlinear Galerkin method. (a) Simulation 1; (b) Simulation 2; (c) Simulation 3.  
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5.2. Simulation 2 

Consider equation 

 
2

3
2

,
u u

u u g t x
t x

 
   

 
 

   
ini

inisin π sin 2π sin
t t

u x x


    
lution equals to  

with initial condition t
and with analytical so
   , sin π sin 2π sinu t x x x t  

error is on the Figures 1 and 2. 
. The time evolution of 

5.3. Simulation 3 

Consider equation 

 
2

3
2

,
u u

u u g t x
t x

 
 


 


 

with initial condition  

   inisin 5π sin sin 2x t   

 error is on the Figures 1 and 2. 

tudies 

In this section we present the computational results for 
the Scott-Wang-Showalter model. Cons ering the ho-

dition problem (16)-(17), we 
ur of the model depending on 

various initial conditions and various sets of par eters. 
Additionally, deeper computational study can be found in 

ime evolution of 
function 

boundary condition problem 
nitial conditions 

ini
sin π

t t
u x


 

and with analytical solution equals to  

      , sin π sin 5π sin sin 2u t x x t   .  x

The time evolution of

6. Qualitative S

id
mogeneous boundary con
investigate the behavio

am

[4]. The following figures show the t
 . 

6.1. Simulation 4 

We solve the homogeneous 
(16)-(17) with the following i

 250 2.5
ini ini0, e x                (37) 

for  0,5 , 0x   . The parameters of the model are 
1.8, 0.0005, 1, 0.18Le       and the number of 

modes in the Galerkin approximation is 60m M  . 
The time evolution of the problem is on the Figure 3. 

6.2. Simulation 5 

eneous boundary condition problem 
 initial conditions 

     (38) 

We solve the homog
(16)-(17) with the following

 250 1.25e , < 2.5,
0,

x x


      
 2

ini ini
50 3.75e ,x x  2.5

for  0,5 , 0x   . The parameters of the model are  

 
(a) 

 
(b) 

 
(c) 

Figure 3. Simulation 4—time evolution of the functions Θ 
(blue line) and α (red line). (a) τ = 0.00614; (b) τ = 0.01814; 
(c) τ = 0.02214. 
 

2, 0.0005, 2.6, 0.18Le     
modes in the Galerkin approximat

 and the number of 
ion is 60m M  . 

The time evolution of the problem is on the Figure 4. 

7. Conclusion 

In this paper we applied inear Galerkin method to  nonl
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(a) 

 
(b) 

 
(c) 

Figure 4. Simulation 5—time evolution of the functions 
(blue line) and α (red line). (a) τ = 0.00511; (b) τ = 0.01311;
(c) τ = 0.02025. 
 
the particular system of reaction-diffusion equations in
one spatial dimension. As the investigated reaction-dif-
fusion system was chosen the Scott-Wang-Showalter 
model. We presented the system of differential-algebraic 

equations for the approximation of the weak solution, 
proof of existence and uniqueness of the weak solution 
and the proof of convergence of the nonlinear Galerkin 
method. We performed quantitative analysis among ana-
lytical solution and numerical approximations obtained 
via the nonlinear Galerkin method and the commonly 
known Faedo-Galerkin method. It indicates that the non- 
linear Galerkin method is more efficient since it con-
serves the similar level of accuracy with respect to the 
shorter computational time. 
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