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ABSTRACT 

A simple formula, using the quantum numbers of solar system planets and some quantized extra-solar planets, to esti-
mate the periods, is done. The quantum numbers, calculated by other authors, have been used to find the orbital periods 
of solar system planets and some extra-solar planets. Observed periods have been used to compare them with the esti-
mated periods from the given formula. It is found that the given relation is applicable perfectly for the solar system 
planets. Some extra-solar planets, of stars having approximately the same mass as the sun, are chosen to apply the same 
relation. The differences between the observed and calculated periods for the extra-solar systems have been calculated 
and tabulated. It is found that the percentage errors between the predicted values and the corresponding observed values 
for extra-planetary systems are controlled by the star’s mass and its quantum number. The percentage error decreases by 
increasing the quantum number, for quantum numbers over 4. When the quantum number is less than or equal 4, it is 
found that the percentage error decreases by decreasing the quantum number. 
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1. Introduction 

The main idea of quantization starts by the discovery of 
the electron spin. Millikan and Einstein show that in the 
photoelectric effect, light is absorbed in quanta, each car-
rying energy 4πsv. Planck said that oscillators do not 
emit light continuously but in quanta with energies as 
given by Einstein equation. Also he mentioned that light 
quantum sometimes behaves as waves and other times as 
a corpuscle, De Broglie recognized that the nature seems 
to have a symmetries performance and since the light 
behaves in dualistic manner, then particles should also 
behave at time by the same way. Particle waves should 
also exist with wavelength equal to 4π× (the ratio be-
tween the spin of the particle to its momentum). Heisen-
berg showed that the simultaneous observation of conju-
gate quantities always involves an error equal to 2 S of 
electron. 

Schrӧdinger solved this problem by setting a partial 
differential equation which leads for negative energies to 
discrete eigenvalues, that is by substitution in the Hamil-
tonian with a new variable S = K lnψ where K = 2 Se. 
Reference [1] suggested a formula to compute the quan- 

tum number of the solar system planets. He concluded 
that the results obtained by the given formula for the 
quantum number are completely random. Nottale in a 
series of papers started at 1993, in the frame work of the 
theory of Scale-Relativity, quantized the period of solar 
system planets and semi-major axes of extra solar planet. 
Reference [2] put a formula for the effective quantum 
number n. References [3,4] suggested that the periodic 
motion of celestial bodies can be described by tuned ac-
tion discretization for periodic motions on the atomic 
scale, in order to take into account the gravitational field 
instead of the electrostatic one to calculate a few me-
chanical quantities related to the periodic motions of ce-
lestial objects. In the following section, we are going to 
give brief notes about these different methods of quanti-
zation of orbits of celestial objects. In Section 3 a new 
formula for quantized periods is given and used to calcu-
late the periods of solar system planets and some of ex-
tra-solar planets. The differences between observed and 
calculated periods are represented in Table 1 for planets 
of solar system and in Table 2 for extra-solar planets 
under consideration. In Section 4 concluding remarks are 
given. 
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Table 1. Comparison between calculated periods and observed periods of solar planetary system. 

Planet N   AF    
Obs

yrs
P   

N

yrs
P   

AF

yrs
P   1 yrs

P   2 yrs
P  

Mercury 3.01 3 0.2408 0.2420 0.2396 −0.001 0.001 

Venus 4.11 4 0.6152 0.6160 0.5680 −0.001 0.047 

Earth 4.83 5 1.0000 0.9998 1.0109 0.002 0.011 

Mars 5.96 6 1.8809 1.8785 1.9171 0.002 −0.032 

Jupiter 11.02 11 11.862 11.8747 11.813 0.013 0.049 

Saturn 14.92 15 29.458 29.4702 29.954 0.012 −0.496 

Uranus 21.15 21 84.010 83.9474 82.195 0.062 1.815 

Neptune 26.48 26 164.79 164.7517 155.99 0.038 8.800 

N* means quantum number as defined by [2]; AF** means quantum number as defined by [3]; ΔP1 = PeriodNottale − PeriodObserved; ΔP2 = PeriodAgnese and Festa − 
PeriodObserved. 

 
Table 2. Comparison Between calculated periods and observed periods of solar planetary system. 

Star  M M  n  dayobsP   dayestP  %P  

HD 283750 0.73 1 1.790 2.365 32 

εAndrom 1.02 1 4.611 3.312 28 

Peg 1.05 1 4.229 3.409 19 

tau Bootis 1.30 1 3.313 4.213 27 

HD 98230 1.30 1 3.980 4.213 23 

Cancer 0.90 2 14.648 23.376 60 

ρCrB 1.05 2 39.645 27.224 −31 

Virgo 0.90 3 116.600 78.754 32 

HD 114762 1.20 3 84.050 105.00 −24 

HD 112758 0.79 4 103.220 163.86 −57 

HD 140913 1.05 4 147.940 217.78 48 

BD-04 782 0.67 5 240.920 271.43 −12.7 

HD 110833 0.73 5 270.040 295.73 10 

HD 217580 0.70 6 454.660 490.02 7.7 

HD 18445 0.73 6 554.670 511.03 7.8 

Cyg B 1.05 6 804.00 735.04 8.5 

αTau 1.20 6 654.000 840.04 28 

HD 29587 0.98 7 1157.843 1089.4 6 

Uma 1.05 7 1088.445 1167.2 7.2 

n means quantum number as defined by Agnese & Festa (1998) [3]; Pest means, periods as they are estimated from relation (13); Pobs means observed periods. 

 
2. Quantization of Macro Bodies 

Many authors made many trials to quantize macro-bodies. 
Reference [1] put the first idea for quantization of planets 
of solar system by new concept of understanding of 
Schrӧdinger equation. He put a formula for finding the 
quantization number of solar system. References [2,5-7], 
in the framework of scale-relativity theory, tried to quan-
tize the orbital periods of solar system planets and extra 
solar planet orbital semi-major axes. Reference [3,4] de- 
fined new structure constant in the framework of old 
quantum mechanics αg to discretize solar and 5 of extra  

solar planets. In what follows a short note about each of 
these methods will be given. 

2.1. Baranothy Quantization 

Reference [1] put a general form for constant K in 
Schrodinger equation as  

 2 k
xK s                 (1) 

where k is a small positive integer or zero and 
1

137
  .  

He put the following relation to find the quantum number 
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of planets of the solar system planets as  

orbital angular momentum

2 rotational spin
n          (2) 

   
2

1
2 cos

kt R
n

T r
        

  
        (3) 

where r and t are radius and period of rotation of the 
planet. T and R are the orbital period and distance from 
Sun.  2 I Mr   is the moment of inertia factor and 
  the inclination of the equator to the orbital plane. 

2.2. Nottale Quantization 

Nottale in a series of papers started at 1993, in the frame 
work of the theory of Scale-Relativity, quantized the pe-
riod of solar system planets and semi-major axes of ex-
tra-solarplanet. References [2,6] derived simple formulae 
to the motion of the solar planets. They found some rela-
tions between quantum numbers and speed quantization 
rule using a new gravitational constant. They calculated 
the quantum numbers of some extra-solar systems. Ref-
erence [2] put a simple formula for the effective quantum 
number n as  

1

3 144
4.83

P
n

M v
   
 

            (4) 

where M is the parent star mass in unit of solar mass and 
its uncertainty, the orbital period P in years, and a is the 
semi-major axis and  the average velocity in km/s. v

2.3. Agnese and Festa Quantization 

Reference [3] suggested that the periodic motion of ce-
lestial bodies can be described by tuned action discretiza-
tion. They expressed Planck’s constant as  

2

2π
e

e
h

c
                  (5) 

where e  is the fine structure constant and  is the 
product of proton charge times electron charge in H 
atom. 

2e

They put some formulae to the motion of the solar 
planets, these relations are  

2Major semi - axis : na n a           (6) 

3Period : nP n P                (7) 

Mean Speeds : .g
n

c
v

n


            (8) 

Where 
2 2 3 3

2π
,

Gm Gm
a P

c c 
  

   and Mercury3 .g

v

c
   

Also they defined the Boher radius for each planet as  

pM
r a

M
 



                (9) 

where pM  is the planet’s mass and M  is the mass of 
the sun. 

3. New Quantized Period Formula and  
Results 

It is clear from [2] that there is a clear relation between 
the quantum number and both of mass and period of the 
star, of the system. If we write Equation (4) in the 
following form  

3 3
1

  
4.83

P
c

       
   

M           (10) 

By using Equation (7) and keeping in mind that  

Mercury

NottaleAgnnese & Festa

3g

v

c c


       

  
, we have 

 
3 33 3

3Mercury Mercury1 1
3  3  

4.83 4.83

v v
P M

c c

             
      

.M  

Since 3 preceding Mercury  in the previous equation, is 
the quantum number of Mercury, then it can be general-
ized to be (n), and this equation takes the form  

v

 
33

3 Mercury1
  

4.83

v
P n M

c

     
   

.        (11) 

From Equations (11) and (7), considering that the mass 
of the star is taken in terms sun’s mass, we can write 

3

Mercuryv
P

c


 
  
 

              (12) 

By using, as it is given by [3], we conclude that  
3

Mercuryv

c



 






 is equal approximately to one. Now Equation  

(11) can be written in the simple form as:  

3 in yearsP n M            (13) 

where M is the mass of the system star in terms of sun’s 
mass, n is the quantum number and   is a coupling  

constant and equal to 
3

1

4.83


 


 . The value of the  

coupling constant   is equal approximately  1 112.7 . 
The simple form (13) can be used to calculate the 

orbital period of solar system or extra-solar planets. In 
what follows we are going to apply this relation on solar 
System and some extra-solar planets of some star of 
approximately have the same solar mass. The quantum 
numbers for the solar system planets, obtained by [2,3],  
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will be used in the Equation (13) to calculate the periods 
of these planets. The obtained periods, compared with 
the observed values and tabulated in Table 1. 

It is clear from Table 1,that the estimated values for 
periods of solar system planets from relation (13), which 
depends on the quantum numbers, have a reasonable 
values with respect to the observed values. 

From Table 1, the periods obtained from Nottale’s 
quantum numbers are too near to the observed period, 
than Agnese & Festa quantum values. 

The main problem in Nottale’s values is that these 
quantum numbers are not whole numbers. One can says 
in general that the maximum difference between using 
Agnese & Festa quantum numbers in the relation (13) 
and the observed periods is not more than error 5%. It is 
noticed also that the values of error increase by increas-
ing the quantum number. 

In what follows we are going to use the relation (13) to 
find the periods of some extra-solar planets. These plan-
ets are chosen such that their stars are of the same sun’s 
mass or too near to it. A comparison between the esti-
mated and observed values will be given in Table 2. The 
percentage errors in each period to the observed one are 
given to clarify the trend of this error. 

It is noticed from Table 2 that, for short intervals pe-
riods, of few days, the difference between calculated and 
observed periods is in the range of 0.8 day to 1.3 day. 
Also when the quantum number becomes 6 or 7 this dif-
ference becomes less and the estimated value becomes 
more reasonable values. It is noticed also that the per-
centage errors in periods decreases increasing the star’s 
mass for the systems having the same quantum number. 
It is worth f mentioning that this trend will be reversed 
for quantum numbers greater than 5. As it is mentioned 
before, the error in periods of the solar system planets 
increases by increasing the quantum number. A different 
behavior appears, whenever the percentage error increases 
by increasing the quantum number till the quantum num-
ber becomes 4. For quantum numbers more than or equal 
5, the percentage error deceases by increasing the quan-
tum number until it reaches to the minimum value 6% for 
quantum number 7 and star’s mass 0.98 solar mass. 

4. Concluding Remarks 

The idea of quantization of macro-bodies in particularly 
in solar system planets was established by [1]. He ob-
tained quantum numbers for solar systems, but he noticed 
that the quantum numbers for solar system planets run-
ning randomly. References [2-7] represent trials to estab-
lish a set of relations to quantize the periods, orbital ve-
locities and radii of solar system planets. It is noticed 
from their calculations that the quantum numbers ob-
tained for solar system planets are not running in a sys-
tematic way and start from quantum number 3 and move  

successively to 6 for inner planets, whenever for exterior 
planets it starts from 11 for Jupiter and move randomly 
to be 26 for Neptune. This may lead to one of the fol-
lowing events: 

1) There are some minor or unseen bodies occupy the 
missed quantum numbers. 

Or 
2) There is another technique which may lead to 

successive quantum numbers. 
The quantization numbers mentioned by [2,3], have 

been used in the relation (13), to find the periods of the 
solar system planets. The obtained values are tabulated in 
Table 1. In the same table a comparison between the 
obtained values and the corresponding observed results is 
done. The difference between observed and calculated 
values obtained by using Nottale quantum numbers and 
Agnese & Festa quantum numbers, respectively are given 
in the seventh and eighth columns of Table 1. The dif-
ferences between observed and calculated periods when 
[2] quantum numbers are used, are less than that obtained 
by using [3] quantum numbers. But we prefer that of 
Agnese and Festa because it is more reasonable to con-
sider the quantum numbers to be whole numbers not 
fractional. In general the differences between the ob-
served and calculated values from Equation (13) are in 
the acceptable range. The quantum numbers given by [3], 
for some extra solar planets, have been used in the rela-
tion (13), to calculate the periods of some of these ex-
tra-solar planets. We choose the extra-planetary systems 
of Stars equal to the sun in mass from 0.70 to 1.3. The 
obtained results for periods are tabulated in Table 2. The 
percentage errors with respect to the observed values are 
listed in the last column of Table 2. It is noticed from 
Table 2 that, the percentage errors are related to star’s 
mass and the quantum number of the planet. When the 
quantum number of the extra-solar planet becomes 6 or 7, 
the percentage error becomes less and the estimated value 
for the period from the Equation (13), becomes more 
reasonable value when the star’s mass becomes too near 
to the solar mass. The percentage error for the extra-solar 
planets of quantum numbers less than or equal 5, in-
creases by decreasing the star’s mass and for smaller 
quantum numbers than five the error decreases by in-
creasing star’s mass. This may through a light on the 
value chosen for the parameter β and its relation with 
mass. It is expected that the value of this parameter will 
change due to the mass of the star of the extra-solar plan-
ets. In a future work the Equation (13), will be adapted, 
to be suitable to calculate the periods of extra-planetary 
systems of different stars masses. 
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