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ABSTRACT 

Using the vortex filament model with the full Biot-Savart law, we show that non-straight bundles of quantized vortex 
lines in HeII are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex 
stretching in superfluid turbulence in many cases. We show that, during the bundle reconnection process, Kelvin waves 
of large amplitude are generated, in agreement with previous work and with the finding that helicity is produced by 
nearly singular vortex interactions in classical Euler flows. The reconnection events lead to changes in velocities, radius, 
number of points and total length. The existence of reconnections was confirmed by other authors using the model of 
nonlinear Schrödinger equation (NLSE). Our results are agreed with the finding of other authors and extension to our 
numerical experiments. 
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1. Introduction 

It has been realised that the disordered motion of a tangle 
of quantized vortices play an important part in the 
behavior of superfluids. The flow is generally turbulent 
for high-velocity or high Reynolds number flows. 
Although turbulence has been studied intensely in many 
fields, it is still not yet well understood because it is a 
complicated dynamical phenomenon with strong non- 
linearity [1]. Vortices are not well-defined for a typical 
classical fluid, and the relationship between vortices and 
turbulence remains indistinct. The liquid state of 4He 
exists in two phases: Helium I and Helium II [2]. The 
boundary between these phases is called the lambda line, 
which occurs at the critical temperature T = Tλ = 2.1768 
K [3]. Characteristic phenomena of superfluidity were 
discovered by Kapitza et al. in 1930s. Superfluid heluim 
4He is described by the two-fluid model, where the 
system consists of a viscous normal fluid has density n  
and an inviscid superfluid has density s  with two 
independent velocity vn and sv . The superfluid velocity  

field is given by s

A

r v e , where A  is some constant  

determined by assuming that the action of a single 
helium atom in the fluid to be quantized in units of ,  h

Planck’s constant,  is the distance from the vortex axis 
and 

r

e  is the unit vector in the tangential direction [4,5]. 
The circulation of the vortices is quantized as 

d ,    1, 2,3,sC
l nk n     v       (1) 

where  is a path around the axis of the vortex and the 
constant  is called the quantum of circulation 

C
k
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and  is the mass of a 4He atom. The constant m A  is 
given by 

.
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             (3) 

From Equation (1), it follows that the superfluid ve- 
locity field around the vortex is  

.
2s

n

r 





v e                   (4) 

A quantived vortex is different from a vortex in a 
classical fluid where the circulation is quantized, which 
is contrary to a classical vortex that can have any value 
of circulation [6]. 

The dynamics of quantized vortices can be described 
by the Gross-Pitaevski (GP) model [7], *Corresponding author. 
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where   is the order parameter filed,  is an 
external potential, 

 V r
g  is a coupling constant, and  is 

the mass of each particle. This description is most ap- 
plicable in the limit of , where the normal fluid 
is absent. This model can also be used to explain phe- 
nomena related to vortex cores, such as nucleation and 
reconnection. However, the GP model is applicable to 
Bose-Einstein condensation of a dilute atomic Bose gas. 
It is, however, not applicable quantitatively to super- 
fluid 4He, which is not a weakly interacting Bose system. 
For more details, we refer to Refs. [8-10]. 

m

0 KT 

The second formulation for studying the dynamics of 
quantized vortices is called the vortex filament model. 
The aim of this work is to use this model under the full 
Biot-Savart law to make numrical simulations to examine 
the dynamics of inviscid vortex filaments, specifically 
what happens at vortex including reconnection events. 
This model was pioneered by Schwarz [11,12], where the 
vortex lines are numerically discretized by a large, va- 
riable number of points depends on the local radius of 
curvature. We will briefly describe this model in the next 
section. 

2. Vortex Filament Model 

As we mentioned in the Introduction, the quantized vor- 
tex has quantized circulation and the vortex core is very 
thin. These properties allow a quantized vortex to be con- 
sidered as a vortex filament. In the vortex filament model 
a quantized vortex is represented as a filament passing 
through the fluid. In the case of superfluid 4He, the 
vortex core radius   is many orders of 
magnitude smaller than the average separation between 
vortices (typically,  to  cm in turbulence 
experiments), or any other scale of interest in the flow; it 
is therefore expedient to consider a superfluid vortex 
filament as a space curve 





810  cma 

310  10 4

 , ts s  of infinitesimal 
thickness in three dimensional space, where   is the arc 
length and t is the time. The vortex lines are numerically 
discretized by a large variable number of points i  

, which are called vortex points [13,14]. The 
governing equation of motion of the superfluid vortex 
lines is 
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where d d s s  is the unit tangent, n  is the normal 
fluid velocity, 

v
  and   are temperature-dependent 

friction coefficients, and the total velocity  of the vor- 
tex filament without dissipation is given by 
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where sv  is the background superfluid velocity field, 
 is a cutoff parameter corresponding to radius of the 

vortex filament, i  and 1i  are the lengths of the two 
adjacent line elements connected to the point  and 

a
 

s   
represents integration along the vortex line outside the 
region specified by i  and 1i  [5,15]. In the absence 
of normal fluid, vortex lines move with the local super- 
fluid velocity where the friction coefficients, 



  and 
 , will be equal to zero. And so, the equation of vortex 
motion will be  

0

d
.

dt


s
s                   (8) 

3. Numerical Results 

In our numerical experiments we use the model of 
Schwarz which is explained in detail in Ref. [16]. The 
filaments are discredited into a large variable number of 
points, N; this (Lagrangian) spatial discretization de- 
pends on the local radius of curvature: vortex points are 
removed in regions where filaments straighten and are 
added where the local radius of curvature becomes 
smaller. The time evolution is computed using a fourth 
order Runge-Kutta scheme with fixed time step t . The 
first and second derivatives in Equation (8) can be com- 
puted by using the central difference formula which is 
second order in space [17]. 

So, for a vortex configuration modeled by  vortex 
segments, we must solve a system of  coupled 
first order differential equations. 

N
3 N

Our simulations are performed in a cubic box of vo- 
lume 3 , where 0.707107 cm   (typically, we chose 

 or ) with periodic boundary con- 
ditions. In this work, we use the vortex filament model in 
which vortex reconnections are performed by the numeri- 
cal algorithm (rather than occurring as natural solution of 
the governing equation, as in the model of nonlinear 
Schrödinger equation (NLSE)) [18,19]. In our method, 
we firstly select these points which are candidates for a 
reconnection. This selection is based on the distance be- 
tween those points, where the reconnection between two 
lines can takes place only if they have different directions. 
For more details, we refer the reader to Refs. [20-22]. 

3 31cm  3 38 cm

By using the vortex filament method, we study the 
interaction of two non-straight vortex bundles (with si- 
nusoidally) each one of them contains a given number M 
of (initially) non-straight parallel vortex strands, set (ini- 
tially) at  (vortex with antivortex bundles). 180
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If two vortex strands become closer to each other than 
the local discretization along filaments, then, consistently 
with the orientation of the filaments, our numerical code 
reconnects the strands, provided that the total length is 
decreased [16]. As first, we set a single vortex with a 
single antivortex as shown in Figure 1, and we found 
that the two vortices trend to each other and the recon- 
nection between them takes place. These results are in 
agreement with the finding of Koplik and Levine [23], 
who used the NLSE model. 

In the case of bundles, the initial position of vortex 
strands within the same bundles is symmetric, and we 
found that the reconnection events are still possible in 
different values of M. When M = 3, we place three 
vortices at the corner of a equilateral triangle. The inter- 
action between the bundles makes them to bend in the 
direction of each other, until , the first recon- 
nection takes place. With the evolution, the second re- 
connection is found at , then they become free 
from each other at , and move away, see Fig- 
ure 2. 

6.75 st 

s7.5t 
8.25 st 

A typical result for two bundles of five non-straight 
parallel vortex with sinusoidally strands each  5M  , 
where one of them against the other (vortex bundle with 
antivortex bundle), the radius of each bundle A = 
0.0155804 cm, the distance between the closest point 
between the two non-straight bundles  is shown 
in the upper-left panel of Figure 3. In this case, we place 
four vortices at the corner of a square lie on a circle and 
one vortex in the middle. We found, that vortex bundles 
with sinusoidally are structurally stable structures. To 
some extent they survive a time longer than their cha- 
racteristic time of rotation and travel a distance larger 

2D  A

 

  
(a)                           (b) 

  
(c)                            (d) 

Figure 1. Reconnection of single vortex and single anti- 
vortex (with sinusoidally) strands each when  0   . (a) 
t = 0 s; (b) t = 6.75 s; (c) t = 7.5 s; (d) t = 12.5 s. 

  
(a)                           (b) 

  
(c)                           (d) 

Figure 2. Reconnection of vortex bundle and antivortex 
bundle (with sinusoidally) strands each when  0    
and M = 3. (a) t = 0 s; (b) t = 6.75 s; (c) t = 7.5 s; (d) t = 8.25 
s. 
 

  
(a)                           (b) 

  
(c)                            (d) 

Figure 3. Reconnection of vortex bundle and antivortex 
bundle (with sinusoidally) strands each when  0    
and M = 5. (a) t = 0 s; (b) t = 6.75 s; (c) t = 8.25 s; (d) t = 10 s. 
 
than their size. Remarkably, vortex bundles survive re- 
connections with other bundles without disintegrating, 
but rather amplifying their vortex length, where the total 
length L increases by about  as appear in the upper- 
left panel of Figure 4. The successive evolution involves 
the reconnections of all strands, until, at time 

5%

10 st  , 
after which the two bundles separate from each other 
(lower-right panel of Figure 3) and move away in 
agreement with Koplik and Levine results [23]. It is clear 
that Kelvin waves are generated as result of a recon-  
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(a)                                                   (b) 

 
(c)                                                    (d) 

Figure 4. Corresponding to the evolution shown in Figure 3. (a) Total vortex length L versus time t; (b) Average inverse 
radius of curvature R1  versus time t; (c) Number of discretization points N versus time t; (d) Average velocity of vortex 

points v  versus time t. 

 
axes. The very known fourth order Runge-Kutta method 
was used for the time evolution. The reconnection and 
vortex stretching in superfluid turbulence is concerned. 
The existence of reconnections was proved by Koplik 
and Levine [23] using the model of nonlinear Schrod- 
inger equation in order to confirm Schwarzs insight that 
quantized vortices reconnect [11]. We found that the sin- 
gle vortex with single antivortex can be reconnect to- 
gether by using the vortex filament method as confirmed 
beforetime by Koplik and Levine [23]. A noteworthy fea- 
ture of the reconnection between two vortex lines is the 
ability of their reconnection can be takes place only when 
they have different directions. Our main finding was that 
non-straight bundles (with sinusoidally) of quantized 
vortex lines in He II are structurally robust and can re- 
connect with each other maintaining their identity. The 
interaction between two bundles makes them approach 
each other closely and then the reconnection occurs one 
by one after which the two bundles separate from each 
other. This is in agreement with our previous experi- 

nection, see Figure 3. The upper-right panel of Figure 4 
shows the average inverse radius of curvature, 1 R , 
obtained by computing s  at each discretization point 

 1,2, ,j s j   N  and then averaging over all discreti- 
zation points. As a result of the increase in  and the 
decrease of 

L
R , the number of discretization points 

(initially ) grows with time up to 1999N 2600N   
when we stop this particular calculation as shown in the 
lower-left panel of Figure 4. As shown in the lower-right 
panel of Figure 4 the decrease of R  causes the 
increase in the average velocity of vortex points. 

These calculations are performed in a cubic periodic 
box , ,x y z    , where 0.707107 cm  . 

4. Conclusion 

This work deals with the numerical simulation of the 
motion of inviscid vortex filaments under full Biot- 
Savart law. The calculations presented here were made 
when the periodic boundary conditions are applied in all  
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ments [2]. This leads to increasing in total length, veloc- 
ity and the number of vortex points and decreasing the 
average radius of curvature. 
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