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ABSTRACT 

Brain ideal midline estimation is vital in medical image processing, especially in analyzing the severity of a brain injury 
in clinical environments. We propose an automated computer-aided ideal midline estimation system with a two-step 
process. First, a CT Slice Selection Algorithm (SSA) can automatically select an appropriate subset of slices from a 
large number of raw CT images using the skull’s anatomical features. Next, an ideal midline detection is implemented 
on the selected subset of slices. An exhaustive symmetric position search is performed based on the anatomical features 
in the detection. In order to enhance the accuracy of the detection, a global rotation assumption is applied to determine 
the ideal midline by fully considering the connection between slices. Experimental results of the multi-stage algorithm 
were assessed on 3313 CT slices of 70 patients. The accuracy of the proposed system is 96.9%, which makes it viable 
for use under clinical settings. 
 
Keywords: Ideal Midline; Slice Selection; Exhaustive Symmetric Search; Global Rotation 

1. Introduction 

Human brain has two hemispheres with an approximate 
bilateral symmetry distinguished by the ideal midline 
(IML), which is the longitudinal fissure marked by the 
falx cerebri in the mid-sagittal plane [1,2]. The com- 
puter-aided estimation of IML has attracted a great deal 
of attention in the recent two decades [1,3,4]. The inter- 
hemispheric fissure line segments have been widely used 
to detect the ideal midline on MRI images which usually 
has a high visibility on the fissure line [5,6]. In the case 
of brain CT slices, longitudinal fissure cannot be used as 
a primary index for detection due to the low-to-zero visi- 
bility of the fissure which can seriously affect the accu-
racy of detecting the Mid-Sagittal Plane (MSP) or IML. 
Moreover, some pathological symptoms, such as a tumor, 
may curve the fissure and completely change the direc- 
tion of the fissure. To avoid the above limitation, skull 
symmetry has been included as another important ana- 

tomical feature in MSP/IML detection [6,7]. G. Ruppert 
et al. extracted the MSP based on bilateral symmetry 
maximization [6]. W. Chen et al. combined bone sym- 
metry and direct detection of the anatomical features in 
CT images in IML detection [8]. This method works ef- 
fectively and accurately on a single CT slice but lacks 
connection or comparison with the detection results from 
other CT slices of the same patient. For a computer aided 
medical image processing system to detect IML, the ca- 
pability of automatically selecting relevant CT slices is 
essential. Although dozens of CT images can be acquired 
from a patient’s brain scan, only those slices depicting 
clear anatomical features and limited inherent noise are 
used in the IML quantification. Currently in clinical prac- 
tice, the process of selecting appropriate images for IML 
diagnosis is performed manually by physicians [7,8]. 
From our research, we did not find any existing auto- 
mated method that is in implementation to perform this 
task. 

In this work, we propose a two-step algorithm for the *Corresponding author. 
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automated IML detection. As the first step, a CT Slice 
Selection Algorithm (SSA) is proposed, wherein the al- 
gorithm finds an appropriate subset of slices from a large 
number of raw CT images. In the second step, brain IML 
is detected accurately and effectively by considering both 
anatomical features and the connections among CT slices. 
A database of 3133 CT slices of 70 patients with TBI 
cases yields highly desirable accuracy and efficiency 
when tested with the proposed method. 

2. Methodology 

The flowchart of the ideal midline (IML) detection sy- 
stem is shown in Figure 1. The two steps, CT Slice Se- 
lection Algorithm (SSA) and Ideal midline detection 
(IML detection) comprise the core of the system. SSA is 
used to greatly reduce the slice number while the IML 
detection is aimed to accurately detect the IML position 
and rotation angle. The following subsection 2.1 and 2.2 
will describe the details of each step. 

2.1. CT Slice Selection Algorithm 

With head CT scan in the clinical environment, dozens of 
raw images can easily be acquired for one patient. How- 
ever, not all images are ideal for IML detection. As 
shown in Figure 2, there are 42 raw CT images obtained 
from one patient’s CT scan. Some images taken from the 
lower section of the head contains too much noise from 
other organs, such as the eye and nose in slice No.15. 
Some images capture a small intracranial area because 
the scan position is too close to the calvaria, as seen in 
slice No.36. Some images capture integrated skull con- 
tours and large intracranial area but lack good convexity 
there rendering them improper for IML detection, such as 
slice No.19. From the viewpoint of anatomical features, 
the ideal CT slices usually contain larger intracranial area, 
integrated skull bone contour and good convexity of the 
skull, such as No.22 through No.30 in Figure 2. There- 
fore, CT slice selection should ideally be based on the 
above mentioned features. 

To effectively select a few appropriate CT slices from 
a large number of CT scan images acquired for each pa- 
tient, the CT Slice Selection Algorithm (SSA) was de- 
signed. As the flowchart shows in Figure 3, this algo- 
rithm analyzes every slice by examining multiple anat- 
omic features. Each as aspect of the flowchart has been 
described in the following sections. 

2.1.1. Skull Detection 
As the first step in SSA algorithm, the skull detection is 
firstly implemented on every raw CT slice as shown in 
Figure 4. In this step the raw CT images are treated as a 
raw matrix I with m rows and n columns (Equation (1)). 

 ,  1, , ani j  d 1, ,I I i m     j n       (1) 

where Ii,j represents the intensity of the pixel at the ith 
row and jth column. Using a threshold method, the pos- 
sible bone pixels can be extracted from the raw matrix to 
build up a new binary matrix B as shown in Figure 4(b). 
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where the pixels with their original intensity Ii,j is larger 
than the threshold of T. In this study, based on experi- 
mentation, the value for T is set to 250, which lies within 
the common rage for bone intensity within CT images.) 
(See Equation (3)). 

 (3) 
where Bi,j is the element at ith row and jth column in the 
new binary matrix B. Then those possible bone pixels 
constitute a certain number of connected regions C1, C2, 
···, CP by means of the connected component algorithm 
(CCA) [9]. We choose the ath connected region Ca (1 ≤ a 
≤ p) which contains the largest number of elements as the 
candidate skull as shown in Equation (4). 

       (4) 

where Ck (k = 1, ···, p) is the kth connected region and 
f(Ck) is the number of elements in region Ck. Next, all the 
other connected regions from the image are removed 
except for the candidate skull. However, some small 
holes still possibly exist in the candidate skull Ca as 
shown in Figure 4(c). To remove those small holes in 
bone, the binary matrix is copied and inverted to form a 
new matrix, called the inverted matrix M (Equations (5) 
and (6), 
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where Mi,j is the converted intensity of the pixel at the ith 
row and the jth column in the inverted matrix M. Using 
the connected component algorithm (CCA) again, q 
pieces connected regions (D1, D2, ···, Dq) are obtained 
from the inverted matrix M. Using the identified region 
seach of the component of Dk. Lk (k = 1, 2, ···, q) is used 
to represent the pixels within the matrix for each com- 
ponent of Dk. 
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Figure 1. Flowchart of the two-step system for ideal midline (IML) detection. 
 

 

Figure 2. The raw CT slices from one patient’s head CT scan (42 small images on left side). 
Four of the slices (No.15, No.19, No.27, and No.36) are amplified on the right side. 

 

 

Figure 3. Flowchart of CT Slice Selection Algorithm (SSA). 
 

 
(a)                           (b)                               (c)                           (d) 

Figure 4. Skull detection process on CT slice No.19. (a) Raw CT slice, (b) the detected bones B by the threshold method, (c) 
he candidate skull bone Ca after removing small bone chips and (d) the detected skull. t
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After finding each of the components which does not- 

be

 1,2, ,

long to the skull, the area of these components is 
computed. Using the computed areas, only those con- 
nected regions with an area less than a set threshold S is 
considered as a hole within the bone structure of the 
original scan. For this study based on the relative sizes of 
the objects found in brain CT scans, S has been set to 200 
pixels which is a fair estimate of possible hole size. Once 
these holes have been identified inside the candidate 
skull structure, they are filled with bone intensity (equal 
to 1 in binary the matrix). This helps unify the overall 
identified bone structure by covering all the holes. A 
subset of the inverted matrices which are identified as 
holes within the bone structure is given as Hk (k = 1, 2, ···, 
q) to express the bone hole regions. 
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ts in
is a zero m × n matrix. Then, we can obtain the final de- 
tected skull  by combining the candidate skull matrix (J 
− M) with all whitened small holes matrices Lk as shown 
in Equations (7), (8) and Figure 4(d). 
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in Equation (6), 
J is the matrix with every element equal to one. Thus, (J 
− M) represents the candidate skull corresponding to the 
connected region Ca. 

2.1.2. Closed Skull Ins
Followed by the skull detection
algorithm is the closed skull inspection. This process 
aims to remove the slices with either unclosed skull or 
with the skull containing too many separated regions. 
The non-integrated skull affects the following IML iden- 
tification since symmetry value calculation through the 
exhaustive symmetric position search process is sensitive 
to the skull contour. 

We define a new measure, called skull closing level F, 
using the number of zero matrices among all hole matri- 
ces Hk (k = 1, 2, ···, q). 
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Equation (9), O is a zero m × n matrix, and thus g(Hk) is 
a binary state-variable used to express whether Hk is a 
zero matrix. When Hk is a zero matrix, it means that the 
kth connected-converted region D  belongs neither to the 

those zero matrices Hk should be the regions separated by 
the detected skull  as the black regions either inside or 
outside the detected skull shown in the bottom three fig- 
ures of Figure 5. 

If the computed skull closing level F is equal to 2, it 
implies that the skull is integrated and ideal for the fol- 
lowing steps of detection, such as slice No.27 shown in 
Figure 5. However, if F is not equal to 2, it means that 
the image cannot be used in the detection of the ideal 
midline due to an inappropriate scan position, such as the 
slices No.41 and No.15 in Figure 5. The skull closing 
level measure can quantitatively evaluate the integrity of 
the skull in head CT images. After closed skull inspect- 
tion, all images with F  2 are removed from the slice 
subset. 

2.1.3. Intracranial Area Detection 
Based on clinical experience, the ideal CT slice for IML 
detectio
the slices No.22 - 30 in Figure 2. He
area of the inner region surrounded by the detected skull, 
namely the intracranial pixels, is calculated and sorted 
for all remaining slices in the subset. 

In the subset of images acquired after the closed skull 
detection step, every CT image should contain only two 
black regions which are separated by

ne of them is the intracranial region which contains the 
mass center of the skull and the other is the region out- 
side of the skull. In order to calculate the intracranial area, 
the intracranial region has to be distinguished from re- 
gion outside of the skull. This can be achieved using the 
coordinate of the skull’s mass center. 

Generally, the image moment mpq of the order p + q of  
 

 

Figure 5. Closed skull inspection. The upper three images 
are the raw CT images (Slice No.41, No.27, and No. 15) 
while the bottom three images show the detected skull. The 
black regions either inside or outside of the detected skull 
are the above mentioned Hk with zero matrix. Skull closing 
level of the three slices equals 1, 2, and 3, respectively. 
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the digital image  can be defined as below, 
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The intracranial area of every slice in the subset is 
calculated and sorted in descending order. The first  
slices with larger intracranial area a
following inspection. This number o
de

re selected out for the 
f  is a variable that 

pends on the number of slices for one patient or physi-
cian’s requirement. 
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where γ is a default number of selected slices and η is the 
selected percentage of the whole num er of slices b  . 
After experimenting with va
25% were finally chosen fo

e for IML detec- 
tion is generally a good convexity for the intracranial 

cranial regions of the slices 

 extract the contour of the intracranial 
re

rious valu
r this study.

es, γ = 10 and η = 
 

2.1.4. Convexity Inspection 
According to practical experience, another important 
characteristic of an ideal head CT imag

region. For instance, the intra
No.19 - 20 which are not ideal for IML detection both 
have integrated skull and larger intracranial area but 
show partially concavity. In contrast, intracranial regions 
of slices 26 through 28 have good convexity (see Figure 
2). In addition, the concave shape of the intracranial re- 
gion could affect the accuracy of the exhaustive symmet- 
ric position search, which is performed in the subsequent 
IML detection. 

To qualitatively measure and evaluate the convexity of 
the intracranial region, we define a new measure Λ, 
called the intracranial convex measure. As shown in 
Figure 6(c), we

gion. Then we can scan those pixels row by row. We 
define the far left and far right junctions (the blue points) 
of the ith row line (the upper red dash line) and the in- 
tracranial contour (the black curve) as points LPi and RPi 
in Figure 6(c). We use the function ξ(i,j) to describe the 

out-of-intracranial-region pixels between LPi and RPi on 
the ith row as the green bold line shown in Figure 6(c). 
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where R represents the intracranial region. Then the 
number of the out-of-intracranial-region pixels on t
row φ(i) is given as below 

We define the intracranial convex measure Λ using the 
total number of the out-of-intracranial-region
all m rows of the image. 
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m
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Then, we can rotate the image by φ degree as shown in 
Figure 6(d). The intracra
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where Ψφ(i) the number of the out-of-intracranial-region 
pixels on the ith row in the imag

ting angles, the total 
 given as below. 
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Larger values of the total intracranial convex mea- 
sure ΛTotal represent increasingly worse convexity of

orted ΛTotal, 
set by 

moving the ones with worse convexity. Value of  can 
be decided by Equation (16). For the example under 
study, using γ = 6 and η = 15% around 6 slices were ob- 
tained for the slice subset after convexity inspection. 

With the implementation of the SSA algorithm on the 
raw slices, the number of slices greatly decreases. For  
 

 

Figure 6. Convexity inspection on slice No.19. (a) The raw 
slice, (b) the detected skull, (c) the calculation of the intrac- 
ranial convex measure using the intracranial contour, (d) 
the intracranial convex measure calculation on the image
rotated by angle φ. 
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nearly all the slices of the obtained SSA subset 
e ideal midline 

 midline detection is a 

0 0

ations (10) and (14), respectively. To find the ap- 
xhaustive symmet- 

 edge and the cur- 
re

instance, in the case of Figure 1, the slice number of this 
patient’s scans decreases from 42 to only 6. The reduc- 
tion in the number of slices effectively enhances the effi- 
ciency and saves computational time in the steps that 

C

follow. 

2.2. Ideal Midline Detection 

After the slice selection is performed using SSA alg- 
orithm, 
are considered to be appropriate for th
detection (IML detection). Ideal
two- step procedure, which includes the detection of the 
approximate ideal midline and subsequently refining the 
detected ideal midline, as shown in Figure 7. In the first 
step, the ideal midline can be approximated based on the 
skull symmetry, however including other features of the 
skull and the brain can help improve the accuracy of the- 
approximation. Thus, in the refined IML detection step, 
the bone protrusion on the upper part of the skull and the 
falx cerebri in the lower part are used to accurately detect 
the position of the ideal midline. To fully consider the 
connection among the slices in the subset, we utilize a 
global rotation assumption in both steps to determine the 
rotation angle of the skull. This method can further re- 
duce the detection error due to individual non-ideal im- 
age.  
 
2.2.1. Approximate IML Detection 
In the calculation of the SSA algorithm, the detected 
skull  and its mass center (x , y ) have been determined 

y Equb
proximate ideal midline, we use the e
ric position search algorithm which was developed for a 
prior work by our research group [8]. 

The row symmetry is defined as the difference in di- 

stance between each side of the skull
nt approximate midline. The CT image is rotated 

around the mass center of the skull. The symmetry cost 
Sθ of the image at the rotation angle θ is calculated as the 
sum of all row symmetry in the resulting image as shown 
in Equation (22). 

1 i ii 

m
S l r             (22) 

where m is the number of rows in th
rotation angle θ (−45˚ < θ < +45˚ as u

e image with the 
sed in this study) 

and measure li and ri are the distance between the edge of 
the skull on the left/right side and the current approxi-
mate midline at the ith row. More details can be found in 
[8]. Finally, the rotation angle θ with the minimum sym-
metry cost Sθ determines the rotation direction of the 
midline of the brain for each particular CT slice. 

1 2
argmin , ,...,

p p pi
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p S S S  

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e on the pth where θp is the rotation angle of the midlin
slice and S

pi  is the symmetry cost of the pth slice at 

 sl
e symmetric position search. How- 

ev

ngle of 
th

the rotation angle θpj. 
All 6 CT ices in the SSA subset are processed one at 

a time using exhaustiv
er, due to the non-uniform-thickness of the skull to 

serious deformation of the skull on one side after injury, 
it is hard to get an accurate position of the midline by 
processing only one slice. In this work, a global rotation 
assumption is used to decide the approximate ideal mid- 
line of all the CT images from one patient with full con- 
sideration of the connection among all the slices. 

In the global rotation assumption, we assume that all 
CT images of one patient have the same rotation a

e ideal midline due to the fixed posture of the patient 
during scanning. The rotation direction of the approxi- 

 

 

Figure 7. Flow chart of ideal midline detection. 



X. QI  ET  AL. 57

 
mate ideal midline is determined by the median value of 
the rotation angles of all 6 slices in the SSA subset as 
shown below. 

 1 2, ,median
p

a 
            (24) 

whe θ1, θ2, ···, θλ are the rotation angles of 
th termined by the exhaustive symmetric 
pos  is the number of slices in the SSA 

e approximate ideal midline of the 
lices. At the end of the approximate IML 
approximate ideal midline on each slice is 

ertical direction by rotating the skull by 

2.2.2. Refined Ideal Midline Detection 
Once the approximate midline is estimated and calibrated, 
brain anatomical features, such as the 

The falx cerebri is a strong arched fold 
that descends vertically in the longitudinal fissure be- 

e, the derivative of the curve is calculated in 
been chosen to 



re the angles 
e midlines de

ition search, 
subset, and θa

whole set of s
detection, the 

rated to the v
 angle. 

 is th

calib
a−θ

position of the falx 
, are used to refine cerebri and protrusion of skull bone

the detection. In the detection of the falx cerebri and pro-
trusion, we use the same algorithm from our previous 
work [8].  

of dura mater 

tween the left and right cerebral hemispheres (Figure 8). 
In this work, edge detection method and Hough trans- 
form are used to detect this anatomical feature quickly 
and accurately. On the other hand, a bone protrusion is 
located in the anterior section of the skull. As shown in 
Figure 8, the bone protrusion curves down to a minimum 
point which is considered to be the upper starting point 
of the falx cerebri. To locate the lowest point of the pro- 
trusion curv
a limited neighborhood area, which has 
be 10 - 15 pixels in this work. The local minima point a 
is determined by the following equation. 

     argmax 2ax x w x w x            (25) 

 

 

Figure 8. The falx cerebri and the bone protrusion. 

where the function ( )x  is the extracted curve of the 
interior bone edge and w is the neighborhood width. In 
fact, several small local minimal points may exist around 
the neighbor area of the protrusion due to the noise of the 
image or the irregularities of the skull. Using the maxi- 
mal second derivative of the curve as the point a, Equa- 
tion (25) is used to successfully extract the true protru- 
sion minimal point by avoiding the influence of noise. 
More details of the detection of the falx cerebri and the 
bone protrusion can be found in [8]. 

Using the detected falx cerebri and the bone protrusion, 
we can obtain the refined rotation angle θq of the midline 
on each slice. Again, the global rotation assumption is 
used to determine the refined ideal midline of the whole 
set of slices. Rather than using the median method in the 
approximate midline detection, the weighted aver ge 
method is used in this refine detection step. The rota on 

ed ideal midline of all the slices is 
given by 

a
ti

angle θf of the refin

1

1

q qq
f

qq





 












            (26) 

where θq is the refined rotation angle of the midline on 
the qth slice and μq is the weight of θq in the refined IML 
detection calculation. 

1

2

1  if the falx cerebri and protrusion are both detected

 if only the falx cerebri is detected 

 if only the falx cerebri is detected   

0  if neither falx cerebri and protrusion is detected 

q

v

v




 



(27). 

where the values of v1 and v2 are both in the range of 0 - 
1. We set v1 = 0.2 and v1 = 0.3 in this work. 

At the end of the refined IML detection, the idea i- 
dlin di- 
re

aracteristics of the skull and closely simulates the process 

l m
e on each slice is calibrated again to the vertical 

e skc- tion by rotating th ull by −θf angle. Therefore, in 
the two-step ideal midline detection, the ideal midline is 
centered by the mass center of the skull and rotated by an 
angle of −(θa + θf) from the original position in the slice. 

3. Results and Discussion 

3.1. Data 

This database contains 3133 axial CT scan slices ac- 
quired across 70 patients with cases of both mild and 
severe Traumatic Brain Injuries (TBI). All the available 
CT scans have been utilized in testing the system’s proc- 
esses and in the estimation of ideal midline. 

3.2. Experimental Results and Discussion 

This algorithm is primarily based on the anatomical ch- 
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m

ur method is only 2.1 pixels, which is much less than 
the ones reported in [1,8,10]. The above experimental 
results demonstrate the high reliability of the proposed 
system. 

4. Summary 

In this paper, we proposed a system to identify the ideal 
midline (IML) using CT scans of patients with head inju- 
ries. The proposed SSA algorithm is used to closely si- 
mulate the process of manual selection of CT slice by

ing 
 

th  
to 
ro mption fully considers the connection am- 
ong CT slices and thereb mpens s the erro ner- 
ated by  slice. The obtained results 

u syste  be impl ted 
in clin

CE  
[  Ruppert, L. Teverovskiyz, C. Yu, A. X. Falcao, 

L  N mmetr Based Method for 
l Plane Extraction in Neuroimages,” IEEE In-

ona sium edical Imaging, Chicago, 
 2011, pp. 285-288. 

[2] roder ad Computed To aphy Inte tation 

of manual CT slice selection and decision making in IML 
by physicians. 

In our dataset, all CT slices selected out by the SSA 
algorithm have been found to be acceptable for use in 
IML detection with the physician’s 
stance, the patient in Figure 1 has 42 
CT scan. With the implementation of the SSA algorithm, 

the IML detection step due to the 
features such as integrated skull, large intracranial area, 
and good convexity of the skull. The result of the IML 
detection is displayed in the lower images of Figure 9. 
We can see that the detected ideal midline is accurately 
located in the middle of the skull and that the skulls in 
each scan are calibrated correctly. 

m

confirming. For in- 
raw CT slices after 

only 6 slices were selected to be in the SSA subset as 
shown in the upper figures in Figure 9. All 6 slices are 
found to be ideal for 

In order to quantitatively easure the performance of 
the proposed system, the collaborating physician manu- 
ally estimated IML is used as the ground truth. With a 
strict definition of accuracy, which is an allowed error of 
three pixels in horizontal distance δ between the esti- 
mated IML and the ground truth, the accuracy of IML 
estimation in this system is 96.9%, which is higher than 
95% reported in [8]. In order to evaluate the result of the 
 

 

per fig-Figure 9. The results of the SSA algorithm (the up
ures) and the ideal midline detection (the lower figures). 
 

Table 1. Comparison on the accuracy of IML estimation. 

Method Our method Chen, [8] Ruppert, [1] Teverovskiy, [10]

Number of 
patients 

70 40 - - 

Number of CT 
slices 

420 (in SSA 
subset) 

391 23 23 

Image format JPEG JPEG Analyze 7.5 Analyze 7.5 

Image resolu-
tion 

512 × 512 512 × 512 - - 

Criterion for 
accuracy 

δ ≤ 3 δ ≤ 3 - - 

Accuracy 96.9% 95% - - 

Mean value of 
error δ 

2.1 2.9 2.9 3.5 

id-sagittal plane estimation, Ruppert et al. used an av- 
erage z-distance measure to indicate the displacement 
between the resulting plane and the ground truth plane 
inside one image [1]. Therefore, the average z-distance 
measure has the similar physical meaning as the error δin 
our method. The lesser the mean value of error δ, the 
closer the estimated IML is to the ground truth. As the 
comparison in Table 1, the mean value of the error δ in 
o

 
physicians. With the implementation of SSA, a vast re- 
duction can be achieved of the number of slices that is 

sed for the computation of IML detection steps. Havu
fewer and more appropriate slices effectively increases

e efficiency of the algorithm and also has the potential
save the cost and time required in practice. The global 
tation assu

y co ate r ge
 usin

show the poten
ical settin

g a single CT
tial for s
gs. 
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