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ABSTRACT 

A simple and efficient solvent-free method was developed for the acetylation of alcohols, phenols and amines in excel-
lent yields employing glycerol-based sulfonic acid (SO3H) functionalized carbon catalyst under environmentally benign 
reaction conditions. The salient features of this protocol are the short reaction time, ease of product isolation and reus-
ability of the carbon catalyst. 
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1. Introduction 

In recent years, the search for environmentally benign 
chemical processes or methodologies has received much 
attention [1-4]. Heterogenization of homogeneous cata- 
lysts has been an interesting area of research from an 
industrial point of view; this combines the advantages of 
homogeneous catalysts (high activity, selectivity, etc.) 
with the engineering advantages of heterogeneous cata- 
lysts (easy catalyst separation, long catalytic life, easy 
catalyst regeneration, thermal stability, and recyclability) 
[5-9]. Application of solid acids in organic transforma- 
tions is important, because solid acids have many ad- 
vantages such as simplicity in handling, decreased reac- 
tor and plant corrosion problems, and more environmen- 
tally safe disposal [5-13]. Protection of functional groups 
plays an important role in the synthesis of complex or- 
ganic molecules such as natural products. The protection 
of alcohols, phenols and amines is an important and fre- 
quently utilized transformation in synthetic organic 
chemistry [14]. Among the various protecting groups 
used for the hydroxyl and amine groups, acetyl is one of 
the most common groups due to its facile introduction 
and its stability in the acid reaction conditions and also 
easy deprotection using mild alkaline hydrolysis [15]. 
The most commonly used reagent combinations for this 
reaction are acetic anhydride or acetyl chloride in the  

presence of Et3N and pyridine as catalysts [16-18]. 4-(Di- 
methylamino) pyridine (DMAP) is known to cause re- 
markable rate acceleration in the reaction [19]. A variety 
of catalysts such as silica gel supported sulphuric acid 
[20,21], Ammonium acetate in acetic acid [22], Zinc dust 
[23], ZnCl2 [24], CoCl2 [25], Sc(OTf)3 [26], TaCl5 [27], 
Montmorillonit K10 [28], HY Zeolite [29], In(OTf)3 [30], 
Cu(OTf)2 [31], Yittria-Zirconia based Lewis acid [32], 
InCl3/Mont. K 10 [33], Manganese (III) bis(2-hydroxyanil) 
acetylacetonato complex [34], Silica sulfate [35],  
p-MeC6H4SO2NBr2 [36], DBDMH or TCCA [37],  
H6P2W18O62·24H2O [38], La(NO3)3·6H2O [39], Ionic li- 
quid based on morpholin [40], Borated zirconia [41], 
2,4,6-Triacyloxy-l,3,5-triazine (TAT) [42], Sodium do- 
decyl sulfate (SDS) [43] and DMAP. saccharin [44] are 
also known to catalyze the acetylation of alcohols, phe- 
nols and amines. However, most of these methods suffer 
from at least one of the following disadvantages like vig- 
orous reaction conditions, high cost and toxicity of the 
reagent, tedious work-up procedures, unsatisfactory yields, 
and instability and hygroscopic nature of the reagent.  

Carbon-based solid acid catalysts [45-48] have gained 
importance due to their significant advantages over ho- 
mogeneous liquid phase mineral acids, such as increased 
activity and selectivity, longer catalyst life, negligible 
equipment corrosion, ease of product separation, and 
reusability. We, recently developed a simple and fast  
method for the preparation of a similar sulphonic acid *Corresponding author. 
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functionalized polycyclic aromatic carbon catalyst from 
bioglycerol (biodiesel by-product) and also from glyc- 
erol-pitch (waste from fat splitting industry) by in situ 
partial carbonization and sulfonation [49,50]. Such cata- 
lysts have been shown to be inexpensive, highly stable, 
robust, recyclable, and easily produced from naturally 
available bioglycerol, and are demonstrated to be effec- 
tive for the esterification of fatty acids to its methyl es- 
ters [49], THP protection and deprotection of alcohols 
and phenols [50], and also for the synthesis of highly 
substituted imidazoles [51], 3,4-dihydropyrimidin-2-(1H)- 
ones [52], amides from aldehydes [53], and spirooxin- 
dole derivatives [54]. In continuation of our efforts to- 
wards exploring the applications of the glycerol-based 
carbon catalyst, here we report a simple and an efficient 
methodology for the acetylation of alcohols, phenols and 
amines with acetic anhydride at 65C under solvent-free 
conditions in excellent yields (Scheme 1).  

2. Experimental Details 

All chemicals and reagents were procured from suppliers 
and used without further purification. The isolated prod- 
ucts were characterized by chromatographic and spectral 
studies (GC, GC-MS, FT-IR and 1H NMR). The spectra 
were compared with those of standard esters. The NMR 
spectrums of product were obtained using Bruker AC- 
300 MHz spectrometer with TMS as the internal stan- 
dard. 

2.1. General Experimental Procedure for the  
Preparation of Glycerol-Based  
Carbon-SO3H Catalyst  

Carbon-SO3H catalyst was prepared as reported [49] by 
heating a mixture of glycerol (10 g) and concentrated 
sulfuric acid (30 g) from ambient temperature to 210C - 
220C for 20 min, to facilitate in situ partial carboniza- 
tion and sulfonation. The reaction mixture was allowed 
to remain at that temperature for about 5 min (until 
foaming ceased) to obtain the carbon material. The solid 
material was cooled to ambient temperature and washed 
with hot water under agitation until the wash water 
showed a neutral pH value. The partially crystalline 
product was filtered and dried in an oven at 120ºC for 2 h 
until it was moisture free to obtain the glycerol-based 
carbon acid catalyst (4.67 g). 

2.2. General Experimental Procedure for the  
Catalytic Acetylation of Alcohols, Phenols  
and Amines 

To a stirred mixture of the alcohol/amine (1 mmol) and 
Ac2O (2 mmol), carbon catalyst (15 wt% of substrate) 
was added and stirring continued at 65C for 30 to 120  

ROH / RNH2
Solvent free, 65 °C

+

SO3H
SO3HHO3S

Ac2O ROAc / RNHAc+CH3COOH

 

Scheme 1. Acetylation of alcohols, phenols and amines em- 
ploying carbon-SO3H catalyst. 
 
min. The progress of the reaction was monitored by TLC. 
After completion of the reaction, ethyl acetate (3 × 5 mL) 
was added to the reaction mixture and the catalyst was 
separated by filtration. The organic phase was washed 
with saturated NaHCO3 solution (15 mL), dried over 
anhydrous Na2SO4 and concentrated under reduced pres- 
sure in a rotary evaporator to afford the crude product. 
The final product was purified by silica gel column 
chromatography using hexane/ethyl acetate as eluting 
solvents. The yield was calculated as mmol of purified 
product with respect to mmol of initial alcohol/amine. 
The reaction times and yields of the products are pre-
sented in Tables 1 and 2. All the purified products were 
characterized by GC, IR and 1H NMR studies and the 
data is in comparison with authentic samples. 

1-Octyl acetate (Entry 1, Table 1), 1H NMR (300 
MHz, CDCl3) δ 0.88 (t, 3H), 1.20-1.43 (m, 10H), 
1-65-1.78 (m, 2H), 2.04 (s, 3H), 4.05 (t, 2H). IR (cm−1): 
2928, 2858, 1742, 1238 1039. GC-MS m/z: 172 [M]+. 

1-Decyl acetate (Entry 2, Table 1), 1H NMR (300 
MHz, CDCl3) δ 0.88 (t, 3H), 1.20 -1.45 (m, 30H), 2.0 (m, 
2H), 2.04 (s, 3H), 4.05 (t, 2H). IR (cm−1): 2925, 2854, 
1741, 1239. GC-MS m/z: 200[M]+. 

1-Octadecyl acetate (Entry 3, Table 1), 1H NMR (300 
MHz, CDCl3) δ 0.89 (t, 3H), 1.20 -1.45 (m, 30H), 2.0 (m, 
2H), 2.04 (s, 3H), 4.05 (t, 2H). IR (cm−1): 2928, 2858, 
1742, 1238, 1039. GC-MS m/z: 312 [M]+. 

2-Ethyl-1-hexyl acetate (Entry 4, Table 1), 1H NMR 
(300 MHz, CDCl3) δ 0.9 (t, 6H), 1.2-1.4 (m, 7H), 2.1 (s, 
3H); 3.9 (t, 2H). IR (cm−1): 3020, 2962, 1726, 1215, 763. 
GC-MS m/z 172 [M]+. 

Cyclohexyl acetate (Entry 5, Table 1), 1H NMR (300 
MHz, CDCl3) δ 1.25-1.85 (m, 10H), 2.00 (s, 3H), 4.65 
(m, 2H). IR (cm−1): 3020, 2940, 1721, 1256, 1215, 756. 
GC-MS m/z: 142 [M]+. 

2-Ethoxy ethyl acetate (Entry 6, Table 1), 1H NMR 
(300 MHz, CDCl3) δ 1.23 (t, 3H), 2.04 (s, 3H), 3.40 (m, 
2H), 3.58 (t, 2H), 4.51 (t, 2H). IR (cm−1): 3020, 2962, 
1726, 1215, 763. GC-MS m/z: 132 [M]+. 

Acetylated sun flower Sterols (Entry 7, Table 1), 1H 
NMR (300 MHz, CDCl3): δ 0.70 (s, 3H), 0.88 (d, 6H), 
0.94 (d, 3H), 1.04 (s, 3H), 2.05 (s, 3H), 4.64 (m, 1H), 
5.39 (d, 1H). IR (cm−1): 2940, 1730, 1262, 1038. GC-MS 
m/z: 396 [M]+. 

Benzyl acetate (Entry 8, Table 1), 1H NMR (300 MHz, 
CDCl3) δ 2.07 (s, 3H), 5.05 (s, 2H), 7.26 -7.36 (m, 5H). 
IR (cm−1): 3020, 1733, 1216, 756. GC-MS m/z: 150 
[M]+. 
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Phenyl acetate (Entry 9, Table 1), 1H NMR (300 MHz, 
CDCl3) δ 2.21 (s, 3H), 7.0-7.4 (m, 5H). IR (cm−1): 1763, 
1193, 748. GC-MS m/z: 136 [M]+. 

4-Methoxyphenyl acetate (Entry 10, Table 1), 1H 
NMR (300 MHz, CDCl3) δ 2.1 (s, 3H), 3.8 (s, 3H), 
6.70-7.0 (m, 4H). IR (cm−1): 3019, 2960, 1758, 1506, 
1217, 1193, 755. GC-MS m/z: 166 [M]+. 

4-Methylphenyl acetate (Entry 11, Table 1), 1H NMR 
(300 MHz, CDCl3) δ 2.01 (s, 3H), 2.25 (s, 3H), 6.92 (d, 
2H), 7.04 (d, 2H). IR (cm−1): 3027, 2953, 1738, 1160, 
754. GC-MS m/z: 150 [M]+. 

1-Naphthyl acetate (Entry 12, Table 1), 1H NMR (300 
MHz, CDCl3) δ 2.4 (s, 3H), 7.2-7.9 (m, 7H). IR (cm−1): 
3061, 2924, 1767, 1368, 1200, 773. GC-MS m/z: 186 
[M]+. 

4-Chlorophenyl acetate (Entry 13, Table 1), 1H NMR 
(300 MHz, CDCl3) δ 1.98 (s, 3H), 7.0 (d, 2H), 7.25 (d, 
2H); IR (cm−1): 1763, 1216, 1198, 756; GC-MS m/z: 170 
[M]+. 

2-Chlorophenyl acetate (Entry 14, Table 1), 1H NMR 
(300  MHz, CDCl3) δ 2.2 (s, 3H), 7.0 (d, 2H), 7.5 (d, 
2H). IR (cm−1): 1763, 1216, 756. GC-MS m/z: 170 [M]+. 

N-phenylacetamide (Entry 1, Table 2), 1H NMR (300 
MHz, CDCl3) δ 2.19 (s, 3H), 7.16-7.11 (m, 1H), 7.28 
(broad s, 1H), 7.36-7.30 (m, 2H), 7.55-7.52 (m, 2H). IR 
(cm−1): 3293, 1662, 1598, 1557, 1500, 1431, 1368, 1325, 
1262, 1040, 1012, 962, 906, 750. GC-MS m/z: 135 [M]+. 

N-(2-hydroxyphenyl)acetamide (Entry 2, Table 2), 1H 
NMR (300 MHz, CDCl3) δ 2.24 (s, 3H), 6.90 (m, 1H), 
7.02 (m, 2H), 7.42 (m, 1H), 8.80(s, 1H),9.11 (bs, 1H). IR 
(cm−1): 3403, 3150, 1658, 1587, 1539, 1446, 1397, 1287, 
1103, 1037, 891, 767. GC-MS m/z: 151[M]+. 

N-(3-hydroxyphenyl)acetamide (Entry 3, Table 2), 1H 
NMR (300 MHz, CDCl3) δ 2.10 (s, 3H), 6.54 (d, 1H), 
6.88 (d, 1H), 7.05 (t, 1H), 7.30 (s, 1H), 8.97(s, 1H), 9.30 
(bs, 1H). IR (cm−1): 3300, 3100, 1653, 1600, 1571, 1520, 
1441, 1380, 1254, 1110, 1050, 820, 760, 720. GC-MS 
m/z: 151[M]+. 

N-(4-hydroxyphenyl)acetamide (Entry 4, Table 2), 1H 
NMR (300 MHz, CDCl3) δ 2.03 (s, 3H),  7.00 (d, 1H), 
7.50 (d, 1H), 8.97(s, 1H), 9.40 (bs, 1H). IR (cm−1): 3326, 
3164, 1652, 1611, 1565, 1507, 1442, 1372, 1327, 1259, 
1228, 1173, 1108, 969, 837, 808, 715, 687. GC-MS m/z: 
151[M]+. 

N-benzylacetamide (Entry 5, Table 2), 1H NMR (300 
MHz, CDCl3) δ 7.36-7.29 (m, 5H), 6.06 (bs, 1H), 4.43 (d, 
2H), 2.03 (s, 3H). IR (cm−1): 3294, 1646, 1548, 1500, 
1283. GC-MS m/z: 149 [M]+. 

N-(pyridin-2-yl)acetamide (Entry 6, Table 2), 1H 
NMR (300 MHz, CDCl3) δ 2.19 (s, 3H), 7.03 (m,1H), 
7.60 (t, 1H), 8.18 (d, 1H), 8.26 (d, 1H), 8. 50 (bs, 1H). IR 
(cm−1): 3388, 2923, 1685, 1434, 1303, 744. GC-MS m/z: 
137 [M]+. 

3. Results & Discussion  

Acetylation of 1-octanol (1 mmol) with acetic anhydride 
(2 mmol) in presence of 15 wt% of carbon-SO3H catalyst 
was studied at 65°C to afford 1-octyl acetate in 96% yield 
in 30 min. However, the acetylation of 1-octanol with 
acetic anhydride at room temperature resulted <50% 
acetylated product even after 4 h. After the successful 
acetylation of 1-octanol with excellent yield to octyl 
acetate, the effect of catalyst loading for the acetylation 
of 1-octanol with acetic anhydride (1:2 mmol) to octyl 
acetate was studied by varying the catalyst dosage from 2 
to 20wt% of alcohol (Table 3). The reaction was found 
to be slow at room temperature and hence the reaction 
temperature was increased to 65C. At this temperature, 
with the increase of the catalyst loading from 2 to 15 
wt% of alcohol decreased the reaction time substantially 
from 120 min to 30 min with conversions ranging from 
65% to 96% (entries 1 - 4, Table 3). However, further 
increase of the catalyst loading to 20 wt% decreased the 
reaction time marginally from 30 min to 25 min with 
98% conversion. The reactions were monitored by GC  

 
Table 1. Acetylation of alcohols, phenols by employing car- 
bon-SO3H catalysta.  

Entry Alcohol Product 
Time 
(min)

Yield 
(%)b

1 
OH OAc  30 96 

2 OH OAc  30 96 

3 OH
( )14  

OAc
( )14  30 95 

4 OH

 
OAc

 30 95 

5 OH
 

OAc  30 96 

6 O
OH

 O
OAc

 45 95 

7 

R

HO

R

AcO  
60 95 

8 
OH

 
OAc

 45 92 

9 OH  
OAc

 30 91 

10 OHO  OAcO  60 93 

11 OH  OAc
 45 92 

12 OHCl  OAcCl  120 92 

13 
Cl

OH  

Cl

OAc  
120 75 

14 
OH

 

OAc

 
45 91 

aReaction conditions: Alcohol (1 mmol), Ac2O (2 mmol), catalyst (15 
wt%), 65°C; bGC yield. 
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Table 2. Acetylation of aromatic amines by employing car- 
bon-SO3H catalysta.  

Entry Amine Product Time (min)Yield (%)b

1 NH2 NHAc 30 97 

2 
NH2

 
NHAc

 30 95 

3 
OH

NH2 NHAc

OH

 
30 95 

4 
NH2

HO

 NHAc

HO

 
30 96 

5 NH2HO  NHAcHO  30 95 

6 
N NH2 N NHAc 

30 92 

aReaction conditions: Amine (1 mmol), Ac2O (2 mmol), catalyst (15 wt%); 
65°C; bGC yield. 
 
Table 3. Effect of carbon-SO3H catalyst loading on the 
acetylation of 1-octanola. 

Entry 
Catalyst loading 
(wt% of alcohol) 

Time (min) Yield (%)b 

1 2 120 65 

2 5 90 78 

3 10 60 90 

4 15 30 96 

5 20 25 98 

aReaction conditions: 1-Octanol (1 mmol), Ac2O (2 mmol), 65°C; bGC yield. 
 
using HP-1 capillary column. Based on this study, 15 
wt% of the carbon catalyst was found to be optimum for 
the acetylation of 1-octanol with 96% conversion at 65˚C 

in 30 min.  
In order to establish the effectiveness and the accept- 

ability of the method in a wider context of synthetic or- 
ganic chemistry, acetylation of various alcohols and phe- 
nols with electron donating and electron withdrawing 
groups were studied in presence of acetic anhydride un- 
der optimum conditions and the results are given in 
Table 1. The study revealed that primary and secondary 
alcohols (entries 1-5, Table 1) are acetylated with similar 
yields (95% - 96%) within 30 min, where as acetylation 
of ethoxy alcohol (entry 6, Table 1) and phytosterols 
(entry 7, Table 1) resulted the corresponding acetylated 
products in 95% yields in 45 and 60 min respectively. 
Acetylation of phenols was found to be slow when com- 
pared to aliphatic alcohols. Phenols with electron donat- 
ing and electron withdrawing groups (entries 9 - 12 and 
14, Table 1) were acetylated in 91% - 93% yields within 
45 - 60 min and similar observation was made in case of 
benzyl alcohol also (entry 8, Table 1). However acetyla- 
tion of 2-chlorophenol resulted 2-chlorophenyl acetate 

(75%, entry 13, Table 1) in less yields when compared to 
4-chlorophenyl acetate (92% yield, entry 12, Table 1) 
due to steric effect. 

In a similar fashion acetylation of aromatic amines 
also executed, and resulted the corresponding acylated 
products in good yields (92% - 97%, entries 1 - 6, Table 2) 
in 30 min. To examine the chemo selectivity of the pre-
sent method, bi-functional substrates containing -NH2 
and -OH groups were studied (entries 3-5, Table 2). Se- 
lective acetylation of the -NH2 group in the presence of 
the -OH group was observed at room temperature with 2 
equivalent of acetic anhydride to give corresponding N- 
acetate product, and no O-acetate product was observed 
under these conditions. This might be due to more nu- 
cleophilicity of amines than phenols. The present pro- 
tocol is excellent for the acetylation of alcohols (primary 
and secondary), phenols, amines, and bi-functional com- 
pounds containing -NH2 and -OH groups. 

To check the reusability of the carbon catalyst, benzyl 
alcohol was employed for the acetylation for five cycles 
under the optimum conditions (Figure 1). After each 
cycle the catalyst was recovered by filtration, washed 
with methanol, dried in oven at 120C for 1h and reused 
and the yields were found to be reduced marginally from 
92 to 89% after 5th cycle. 

4. Conclusion  

In conclusion, we have demonstrated a simple, efficient 
and eco-friendly protocol for the solvent-free acetylation 
of alcohols, phenols and amines with acetic anhydride 
employing a novel glycerol-based -SO3H functionalized 
carbon as a solid acid catalyst. The low cost and simple 
preparation of the catalyst, and the easy procedure and 
work-up indicate that this catalyst is very attractive for 
this type of reactions. The yields are very good, and in 
addition, the carbon-based solid acid catalyst can be re- 
covered by simple filtration for reuse without any pre- 
treatment. The carbon-based solid acid can be used in 
place of sulfuric acid in the synthesis of organic com- 
pounds.  
 

 

Figure 1. Recycling study of the carbon-SO3H catalyst for 
the acetylation of benzyl alcohol with acetic anhydride. 
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