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ABSTRACT 

I consider, in a Quantum Field Theory theoretical approach, the effects of an electromagnetic field on the components 
of the total angular momentum of an elementary fermion system, assuming the “minimal” form of the relative inter- 
action. When the electromagnetic field can be treated as a classical one, these effects are particularly simple to be 
computed and exhibit a number of very general characteristic features in the case of a constant magnetic field. A 
qualitative possible analogy with similar features of an elementary organic system is finally proposed. 
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1. Introduction 

The motivation of this paper comes from a very recent 
medical Conference held in Trieste on February 15th, 
studying the relationship between stem cells and cancer 
[1], and from several explanations that I received from 
the two main speakers of the Conference, M. Biava and F. 
Burigana. In particular it was stressed that the Confer- 
ence organizing association, AMEC [2], is at the moment 
supporting studies to activate the stem cells with electro- 
magnetic fields. Previously, I had already found on a 
book [3] an article by P. Girdinio [4] with title: “An in- 
troduction to electromagnetic fields and their biological 
effects”. Without entering the medical details of the pa- 
per, that are beyond my very limited knowledge, I will 
quote the two following sentences: 

1. “In recent years a widespread discussion about the 
possibility of negative effects of electromagnetic fields 
on human health has been going on.” 

2. “All authors agree on the fact that the magnetic 
component of the field alone is responsible of health ef- 
fects. This is due to the fact that the electric component 
of the field is strongly diminished by the shielding effect 
of natural and artificial obstacles [...]”  

More recently, I also found the following statements of 
C. Ventura [5,6]: 

1. “Embryonic stem cells of mice. under the action of 
a low frequency magnetic field, are differentiated [...]” 

2. “Embryonic stem cells of mice have been exposed 
to a new medical instrument, REAC, which has been 

built to utilize the beneficial effects of electromagnetic 
fields on the human body.” 

My conclusion is that it appears in medicine that a 
magnetic field alone will have effects, either positive or 
negative, on the elementary components of the known 
existing human organism. 

The aim of this paper is to show that a similar situation 
appears in physics, i.e. that a magnetic field alone has 
effects on the elementary components of the known 
existing stable matter. In particular, I will concentrate on 
an elementary one fermion state, chosen to be the state of 
one electron. The treatment that I will give will be based 
on the relativistic quantum field theory description, and 
all my notations will follow those of a book written by M. 
Peskin and E. Schroeder [7]. In this theoretical frame- 
work, I will show that there exists one physical property 
of the electron, i.e. its angular momentum (to be defined 
in the next Section), that will be modified in a predictable 
way by the presence of a magnetic field alone. The or- 
ganisation of the paper will be the following: in the next 
Section 2, I will define the main features of the angular 
momentum for a free electron state. The specific inter- 
action with a magnetic field (“minimal” interaction) will 
be discussed in Section 3, and its effects will be derived. 
In Section 4, a short and very personal proposal of a pos- 
sible analogy between the modifications of an elementary 
matter component and those of an elementary organic 
component that would be produced by the same magnetic 
field will be exposed. 
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2. The Angular Momentum of a Free One 
Fermion System in Relativistic Quantum 
Field Theory 

The relevant starting quantity of the approach will be a 
conventional four-components spinor field. To simplify 
the notations, since spinors are known to obey Fermi- 
Dirac statistics, I will call this field a fermion field, and 
define it as  x  0 1 2 3, , , , where x x x xx  is the 
conventional controvariant space-time four-vector. In the 
quantum approach, the field is an operator. Following the 
Peskin-Schroeder notations, I will write for  x  and 
for its “complex” associated field  x  the following 
Fourier expansions  
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 is the fermion mass. The quantities s s s sa a b bp p p p

†

  

are operators with a precise meaning:  and b  are 
creators, a and b are destructors. In particular, defining 
the vacuum ket 

†a

0  as the state of minimum energy, 
sap  and sbp  applied to the vacuum annihilate it,  

0 0 0s sa b 
†

. On the contrary, in the chosen con-  

vention, sap  and †sbp  applied to the vacuum generate a  

one particle fermion   and antifermion †a  †b

E

 state  

of momentum , energy p p  and electric charge of 
opposite sign, that will be called e for an electron state 
and  for a positron state, with the conventional 
choice of negative e. The index  will be related 
to the spin component along some direction (e.g. the z 
axis for simplicity) of the state. The quantities  

 e
1, 2s 

       , , ,u vp pu vp p  are column and row 4-com-  

ponents functions of given four-momentum  ,Ep p ,  

whose expression is given in ref. [7]. The field  x
0

 is 
equal to  † x  , where 0  is one of the four  

 0 1 3, , 2 ,     matrices that are also listed in [7],  

† x  is the row four-dimensional vector containing 
the complex conjugate components of the column vector 
 x

 

, and I hope that this brief and essential exposition 
may be sufficient for the purposes of this paper. 

The definition of the total angular momentum of a 
fermion field x  is given by the fundamental Noe- 
ther’s theorem [8]. This defines the considered three 

components observable, denoted with a vector notation  

 1 2 3, ,J J JJ

i

, as the set of those 3 “charges” that are  

conserved in time as a consequence of the “rotational 
invariance” of the system, i.e. of the fact that there exists 
a symmetry of the laws of motion under the three space 
rotations. Calling J  the conserved component of the 
total angular momentum associated with the i-th space 
rotations  (with the convention that one can define 

23 31  and 12 ), one finds after con- 
ventional standard manipulations that. quite generally, 
each component of the total angular momentum of a free 
fermion system can be written as a sum of two essen- 
tially different terms, i.e.: 

iR
1 2,R R R R  3R R

J  L S

3d

                 (3) 
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i ,where   is the “derivative vector”, i x       
denotes the “vector product” and, using the standard 
notation  i i , 1, 2,3 ,lm
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L  and   . The two terms where lm S  are the 
conventional orbital angular momentum and spin an- 
gular momentum components of the total angular mo- 
mentum of the fermion field. Note that for a fermion 
field it is only the sum of the two quantities that remain 
constant in time, while this is not necessarily always true 
for the two separate components. In order to fix the cho- 
sen convention, I will consider the mean values of the 
angular momentum components when the field system is 
a one particle fermion state of three-momentum 0  and 
“spin” index 0

k
s . In the Peskin-Schroeder normalization 

this state, that I will call 0
0
sk , is defined as: 

0 0

0 0

†
0 2 0s sE a k kk             (6) 

 0
0

su k   
0

2 2
0E m k kwhere . From the rules that fix 

and the   matrices, one obtains in a straightforward 
way the requested mean values. The definition of mean 
value implies the calculation of quantities of the kind  

0 0

0 0 0 0

0 0

,
0 0

s s

s s s


k

k J k
J

k k
           (7) 

where the (in principle, infinite) norm of the state 
appears in the denominator (to cancel an analogous term 
in the numerator) and the J  operator in the numerator 
must be written as the conventional “normal product” of 
J , to avoid the presence of fictitious infinities. For 
simplicity, I will fix the direction of , e.g. along the 0k
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chosen z axis, so that 0 0 0,0, zkk . After a number of 
simple calculations one then finds for the components of 
the spin of the state: 

0 0
12 ,s

S
k

3 1

2
S             (8) 

23 31 0S S 

1s

              (9) 

and in (8) the positive sign corresponds to 0  , the 
negative one to 0 . As one sees, the chosen nor- 
malization reproduces the standard results that fix the 
components of the spin for the chosen state. 

2s 

In the case of the orbital momentum, a similar cal- 
culation produces the results 

0

3 0.L 
k

k

               (10) 

For the two remaining components, the mean values 
do not have a physical meaning for the chosen free state 
of fixed momentum. In practice, they are infinite, given 
the fact that the particle has no space limits. A realistic 
calculation should be done using an initial “wave-packet” 
state, but for the purposes of this paper it will be suf- 
ficient to consider a state of vanishing 0 . Then, also the 
remaining components of the orbital momentum mean 
values vanish, i.e.: 

1 2 0.L L 
0 0

          (11) 

Equations (8)-(11) provide the information that I will 
use, for the case of a free quantum one fermion state. 
Although they might describe the angular momentum of 
an arbitrary fermion (e.g. lepton or quark), I will consider 
them from now on for the specific case of a one electron 
system. In the next Section 3, I will consider the modi- 
fications of the derived angular momentum expressions 
that are produced by an interaction of the fermion system 
with an electromagnetic field. 

3. Interaction with an Electromagnetic Field 

In a quantum field theory approach, the interaction 
between a fermion field and an electromagnetic one is 
fixed by the “historical” prescription, derived from the 
analogy with the classical physics description of the in- 
teraction between a charged particle and a classical elec- 
tromagnetic field. In the field theory description, the so 
called “minimal” interaction is obtained by replacing the 

usual derivative 
x 


 


 iD eA x  

 by the “covariant” deriva-  

tive 

              (12) 

where A  is the electromagnetic vector potential and e 
is the fermion charge. From the replacement (12) the 
expression of the electromagnetic interaction, and of its 

effects on the various fermion observables, can be easily 
obtained, as I will show with an explicit example. 

One might ask the question of why should the replace- 
ment of Equation (12) be considered as the unique one. 
In my opinion, there exists a deep reason that motivates 
the procedure. In an extended treatment of the Electro- 
weak Interactions based on the Standard Model approach, 
the request is advanced that the theoretical description 
has a symmetry under local gauge transformations of the 
fermion and electroweak fields. This invariance of the 
theory is met if the replacement Equation (12) is applied 
(including the new weak fields). But in order that the 
formalism can maintain contact with reality (providing 
masses to the W and Z bosons), a Higgs mechanism must 
be introduced, together with a proper real scalar particle: 
the Higgs boson. The fact that the latter one has been 
finally discovered at LHC seems (to me) to justify the 
fact that the “minimal” prescription Equation (12) is ac- 
cepted to describe the electromagnetic interaction of a 
fermion field. To derive the modifications of the various 
fermion observables, i.e. the effects of the electromag- 
netic interaction Equation (12) on the fermion system, is 
now straightforward. Particularly simple is the case of 
the fermion orbital angular momentum L . Starting from 
its free expression Equation (4) one simply replaces the 
components i  of   by their covariant generaliza- 
tions 

 i i i .ieA x   



            (13) 

This replacement generates the new expression of the 
orbital angular momentum L , that I shall write finally 
as:  

L A  L L                 (14) 

L  is simply  where the electromagnetic effect on 

3d
A

A
V

e x  L      † x x x   x A    (15) 

As one sees, only the space components  
  , 1, 2,3A x i 

V

i , are involved in the effect. Note that the 
integration will now be performed only in that space 
volume A  where these components are not vanishing, 
which will be fixed by the proper specific choice of the 
electromagnetic field, to be decided by the circumstances 
which one wants to investigate. In this paper, the circum- 
stance that I want to study is one in which an elementary 
fermion system, described by a quantum field  x , is 
suddenly hit by an intense electromagnetic field, artifi- 
cially produced by some proper experimental apparatus. 
To describe this interaction, I will follow the ancient 
Dirac’s treatment of this situation (see e.g. the discussion 
found in [9]), and treat the electromagnetic field as a 
classical one, retaining however the same “minimal” 
form (12) of the covariant derivative. This will lead to 
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the same expression Equation (15) of the orbital momen- 
tum variation, where now A  is the classical vector po- 
tential, related to the classical electric and magnetic 
fields by the Maxwell equations. To avoid confusion, I 
will call this variation 

3d
A

e x  †
c L    cx x x   x A



    (16) 

where c xA

 0,0, 

 is a classical quantity, fixed as I said 
from chosen circumstances to be investigated. A parti- 
cular simple and realistic case is that of a constant mag- 
netic field . Fixing the z axis as the field direction, we 
shall write  



              (17) 

In this situation we know that 
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2
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i.e. 
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with 

1 21
=

2
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2 11

2
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The effects of the electromagnetic interaction on L  
are therefore completely provided by the magnetic field. 
Its explicit expressions are:  

1 3
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V
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dcA
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2 3de
V

L x 



2

cA
     † 2 3x x x x          (23) 

3 3d
V

L x


       
2 2† 1 2

2

e cA
x x x x    

V



 (24) 

and the integration is performed in the volume occupied 
by the magnetic field. This requires a more precise state- 
ment: the magnetic field is assumed to be constant (and 
given by Equation (17)) inside a finite volume  , and 
vanishing outside. As a consequence, only the values of 
the fermion field inside this finite volume will be affect- 
ing the orbital angular momentum charge, as one might 
have imagined. Equations (22)-(24) describe the com- 
plete effect of the considered  field. The next rele- 
vant aim is that of computing, for a realistic elementary 
quantum fermion system, the mean value of these effects. 
Before moving to this calculation, one may stress a 
number of features of Equations (22)-(24) that appear to 
be rather general. In particular: 

1. The effect is proportional to the intensity of the 
magnetic field, and to the electric charge e. 

2. The effect depends strongly on the shape of the 
chosen volume where H is different from zero. 

3. The effects on the L  components are given by 
integrals of the positive quantity † 

1,2L
3L 3L

 multiplied by 
different weight functions, that can assume either posi- 
tive or negative values for , but always positive val- 
ues for . Thus   will certainly have the sign of 

. Also, an inversion of direction of H will change the 
sign of the effect (but not its size). This last property will 
be true also for the two remaining components .  

e

1,2L
To compute the effect on the spin components is less 

immediate, because Equation (5) does not contain, in the 
integral, derivatives of the field to which the minimal 
procedure of Equation (12) can be applied. A possible 
approximated approach can be followed, and I will show 
it now. The starting idea is to provide a parametrization 
of the effect of an introduced electromagnetic field on the 
fermion fields    x x ,  . With this purpose, I re- 
write the Dirac equations for free   and   in the 
following way:  

   1
ix x

m


               (25)  

    1
ix x

m


      

 

       (26) 

Introducing an electromagnetic field will be described 
by the accepted “minimal” modification of Equation (12). 
In this way, Equations (25) and (26) will become: 

   1
ix x e A x

m
 

               (27)  

      1
i x e x A

m
 x             (28)  

      0A

A

One can see Equations (27) and (28) as describing the 
shift on the fields due to the introduction of the electro- 
magnetic field. I will write them in the following way: 

x x x             (29) 

     0A

Ax x x    

 

        (30) 

where 

 A

e
x A x

m


               (31) 

    .A

e
x A

m
x               (32) 

In the following part of this section, I will be limited to 
a “lowest order” approximation in the calculation of the 
electromagnetic effects. 

Given the smallness of the electric charge e which 
appears in the interaction, I will only consider the lowest 
order terms in e in any relevant quantity. This means that 
I will write Equations (31) and (32) as: 
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    0A
x A x




A

e

m
           (33) 

    0A

A

e
.x x A

m


            (34) 

I can now compute the effects on A  on the spin an- 
gular momentum replecing in (5) the fermion fields with 
the expressions (29), (30). In this way I would obtain 
four terms. One of them would correspond to the 0A   
situation. In the next three quanities, one would be of 
order  (coming from 2e A A   ), and I will neglect it. 
Therefore, to the lowest order in the electric charge e, I 
will obtain: 

  



03

0 0

d  
2

A

A lm

lm

e
S x x

m

A A 
 



    



   0Alm x  

 

 


 (35) 

Equation (35) is valid for a general electromagnetic 
field  A x

S

 1, 2,3iA i 

 . For the practical purposes of this paper I 
will now consider, as I did previously, a classical elec- 
tromagnetic field by which the fermion system is sup- 
posed to be irradiated, and denote the effect of Equation 
(35) as c lmA

. One notices at this point that, in the 
expression of the shift, in addition to the contribution of 
the space components , there appears also 
a new contribution from 0A , that was not present for the 
orbital angular momentum. To avoid this separate beha- 
viours I will follow the allowed procedure [10] of work- 
ing in a gauge where 0A  is zero. With this choice, after 
a number of straightforward steps that use the definitions 
and the properties of the   matrices, I am led to the 
final expression:  

3i
dcA lm

e
S x

m


          0 0† A Am l

l mx A A x        

(36) 
which can be formally written as:  

3dcA

e
x

m
  S        0A

x x 
0† i

A cx    A  (37) 

showing an impressive analogy with the corresponding 
expression for L , Equation (16), with the simple corre- 
spondence ix  . In particular, we can choose again 
the configuration of a constant magnetic field, already 
fixed by Equation (17), with the direction of the z axis. In 
this case, we shall obtain:  

1 3
e

Vm

S x 


     0 0† 1 3i
A A

x x x  
2

dcA
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2 3 d
Vm
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

        † 0 02 3iA A

2

c eA
  x x x       (39) 

3 3d
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2

c eA
x x x x      



 

(40) 

Equations (38)-(40) exhibit a few general properties 
that are quite similar to those for cA

L  listed after (22)- 
(24). In particular, the effect is again proportional to  
and e, and depends strongly on the shape of V . It 
should be observed that the introduction of the con- 
sidered magnetic field produces automatically effects on 



L  and S  that have the same dependence on , so 
that given the form of the considered  one can com- 
pute immediately both. As a unique and extremely sim- 
plified example of the previous equations on a fermionic 
state, I have considered for pure illustration the case of 
the one fermion state defined by Equation (6). In fact, in 
the derived Equations (22)-(24) and (38)-(40) the fields 




† ,   that appear in the integral must be considered, 
at lowest order, as free  0A   fermion fields, so that 
the expansions (1), (2) are still valid. The calculation of 
the mean values can therefore be performed as in Section 
2, and its main features can be summarized as follows. 
For L , I derive the expressions: 

   0 0
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0 0 d  

2
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s s
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V

e
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    
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k k





   

            (42) 

where, in the chosen convention [4]:  

0 0

0

† 2 2
0 0 02 2s su u E m  kk k k

3L 1,2L

.      (43) 

We see that the effect will be certainly not vanishing 
for , while for  the effect depends strongly on 
the choice of V , and might be made vanishing in 
principle. In the case of S , the main result is that for the 
chosen state 

A
 will be always vanishing since 3

c S
† 1,2 0u u  . For the remaining components we shall have 

to perform a more realistic calculation which goes be- 
yond the case of a simple 0  state. Note that the quan- 
tity 

k
   † 3ix x  

3L
3S

 is always real, as one expects, since 
the imaginary constant multiplies an extra imaginary 
term. 

Although the choice of the fermion state is simply a 
very special illustration of the expected realistic effects, 
one expects that a constant magnetic field will certainly 
produce an effect on , i.e. the quantity that was vani- 
shing for a free fermion state, and might not affect , 
i.e. the only spin quantity that was not vanishing for the 
same free state. For the remaining L  and S  compo- 
nents, a more specific calculation must be performed, 
which also inserts the experimentally used values of the 
magnetic field and the shape of this volume where it is 
located. This calculation, which is beyond the purposes 
of this preliminary paper, is now being performed in 
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collaboration with a group that includes medical col- 
leagues [11]. 

4. Conclusions 

This paper has tried to show the fact that a magnetic field 
alone would affect two characteristic properties, i.e. the 
values of the orbital and spin angular momentum, of an 
elementary component of the existing known matter, 
taken to be a one electron state. The computed effects are 
simple and, in principle, calculable. In an extremely sim- 
plified case for the one electron system, a few properties 
have been found that show that the effects on the sepa- 
rate components of the angular momentum are essen- 
tially correlated. Also, the effects are apparently concen- 
trated on those components of the two angular momenta 
that would be mostly depressed in the absence of the 
field. These features are reasonably general and deserve a 
more specific investigation in the case of a realistic fer- 
mion system. 

From a certain point of view, this paper represents in 
my opinion a first effort to enter in communication with 
the fascinating ideas that medicine has very recently de- 
veloped, that I tried to summarize in the Introduction. In 
particular, I am thinking of the effects that have been 
seen of a magnetic field on the elementary component of 
the human cells, the nucleus. These act on the two com- 
ponents of the nucleus, the DNA and the “epigenomic” 
one, in a way that is being deeply investigated at the 
moment, and modify both [12]. In my extremely personal 
view, I like to consider the electron spin, i.e. a totally 
intrinsic property that it has independently of the sur- 
rounding environment, as the analogue of the nucleus 
DNA. The electron orbital angular momentum might 
then correspond to the nucleus epigenoma, and the cor- 
relations of the effects of a magnetic field on the two 
components of the angular momentum might find an ana- 
logy with what happens in the case of the cell nucleus. 
This might provide a simple and useful information. 
Whether this personal idea (that is in fact a personal hope) 

might be realistically confirmed will be verified in a near 
future by the collaboration that I mentioned in the paper 
with a group of medical doctors. The results of this 
collaboration might appear soon and, as one old Italian 
statement says: “If they are roses, they will bloom”. 
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