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ABSTRACT 

The groundwater system is often polluted by different sources of contamination where the sources are difficult to detect. 
The presence of contamination in groundwater poses significant challenges to its delineation and quantification. The 
remediation of a contaminated site requires an optimal decision making system to identify the pollutant source charac- 
teristics accurately and efficiently. The source characteristics are generally identified using contaminant concentration 
measurements from arbitrary or planned monitoring locations. To effectively characterize the sources of pollution, the 
monitoring locations should be selected appropriately. An efficient monitoring network will result in satisfactory char- 
acterization of contaminant sources. On the other hand, an appropriate design of monitoring network requires reliable 
source characteristics. A coupled iterative sequential source identification and dynamic monitoring network design, 
improves substantially the accuracy of source identification model. This paper reviews different source identification 
and monitoring network design methods in groundwater contaminant sites. Further, the models for sequential integra- 
tion of these two models are presented. The effective integration of source identification and dedicated monitoring net- 
work design models, distributed sources, parameter uncertainty, and pollutant geo-chemistry are some of the issues 
which need to be addressed in efficient, accurate and widely applicable methodologies for identification of unknown 
pollutant sources in contaminated aquifers. 
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1. Introduction 

Groundwater is the major potable, agricultural and in- 
dustrial source of water. In 2003, it was estimated that 
groundwater possess approximately 50% of potable wa- 
ter supplies, 40% of industrial water demand, and 20% of 
water used for irrigation [1]. To ensure the water security, 
the sustainability of groundwater resources is vital. Due 
to industrial revolution together with the lack of appre- 
ciation of chemicals and their potential impact on the 
land and water bodies, groundwater is subjected to vari- 
ous sources of contamination. The presence of contami- 
nation in groundwater poses significant challenges to its 
delineation and quantification. Leakage from chemical 
and petrochemical distribution infrastructures, e.g. pipe-  

lines and waste water collection systems such as septic 
tanks and urban sewage channels and pipelines are few 
real life examples of unknown subsurface contamination. 
Further, products of mining activities and industrial 
complexes, which are stored on or underground without 
any provision to control the seepage of contamination 
into the ground, have been two of the most challenging 
and difficult problems associated with contamination 
management during the past 100 years. 

The contamination in underground water may remain 
undetected for significant period of time. The first signs 
of the presence of contaminate underground water may 
be detected from the water extracted from current extrac- 
tion wells. Change in the surface water quality, like riv- 
ers or lakes, possibly stems from presence of contamina-  
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tion in underground water. Awareness of groundwater 
pollution has grown in last two decades. The spread of 
pollution in underground water raised the necessity to 
develop efficient techniques for remediation of contami- 
nated aquifer. The effectiveness of a remediation strategy 
depends on how efficiently the contamination source 
characteristics are identified. Accurate identification of 
the contaminant sources and reconstructing their release 
history plays an important role in modelling of subsur- 
face flow and transport processes, and help to reduce the 
long-term remedial costs. 

Accurate and efficient characterization of unknown 
contamination sources in the groundwater system is the 
critical first step in the process of controlling and re- 
mediation of subsurface pollution. This problem is more 
complex for subsurface pollution, as pollution of sur- 
face water bodies are relatively easier to detect. Some of 
the available methodologies for groundwater pollu- 
tion source identification are reviewed here. However, it 
needs to be emphasised that often the efficiency of source 
identification depends on the availability and reliability 
of concentration field measurements, and hydro-geo- 
logic information. Therefore a designed monitoring net- 
work for collection of field geochemical measurements 
can help to improve the efficiency of source identifica- 
tion. The iterative use of source identification models,  

and a sequentially design monitoring network for source 
identification can be integrated in an efficient source 
characterization methodology. This aspect is also re- 
viewed here. 

The pollutant source characteristics which need to be 
identified include: 
 The spatial locations of sources. 
 The activity duration of sources which identifies 

when the sources became active 
 The injection rate of the pollutant sources which spe- 

cifies the contaminant flux released from each source 
as a function of time.  

The identification of unknown pollutant sources and 
the propagation of contaminants in underground water 
are mostly inferred from the available concentration 
measurements at the site. Figure 1 shows a polluted aq- 
uifer. In this figure the location of two active pollutant 
sources, the propagation of contaminant in aquifer as 
well as available monitoring locations, are shown. In 
Figures 1(a) and (b), the contours show the contaminate 
concentration values after 250 and 900 days after start of 
source activity. 

Mainly source identification includes a forward simu- 
lation problem, like groundwater flow and pollutant 
transport model, which is used to estimate phenomena or 

 
Contaminant 
concentration 

Contaminant Source 

Monitoring Location 

(mg/l) 
8.77 
8.18 
7.59 
7.00 
8.42 
5.83 
5.24 
4.65 
4.07 
3.48 
2.89 
2.30 
1.71 
1.12 
0.54 

 
(a)                                                      (b) 

Figure 1. Contaminant aquifer: (a) After 250 days of source activation; (b) After 900 days of source activation.  
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predict future scenario. The estimated values are then 
compared with observed values. Effective selection of 
observation points plays a critical role in source identifi- 
cation model. An improper monitoring network will re- 
sult in waste of time and money for site data collection, 
and may result in misleading optimal source identifica- 
tion results. This is because multiple source characteristic 
scenarios might fit the observed data which do not ade- 
quately defining the actual contaminant characteristics. 

Figure 1 also shows the monitoring network. In this 
figure, the monitoring locations were selected arbitrary 
without having any prior information about the sources 
of contamination. It can be seen that many of selected 
locations do not adequately catch the pollutant plume. 
Furthermore, the temporal schedule of collecting data is 
very important. The monitoring wells which are located 
far from the active sources are also useful in later times, 
as these capture later part of the pollutant plume. How- 
ever, the ones which are located near active sources play 
important role in capturing the plume soon after the 
source activities begin. Also, any concentration meas- 
urement location is of little use when the contaminate 
plume is not captured at that monitoring location. Selec- 
tion of an appropriate monitoring network, and an im- 
plementation of effective monitoring schedule to obtain 
information about the sources of contamination and 
propagation of the pollutant plume, are vital for efficient 
and accurate source identification. 

An efficient monitoring network will result in satis- 
factory characterization of contaminant sources. On the 
other hand, an appropriate design of monitoring network 
requires reliable source characteristics. A coupled itera- 
tive sequential source identification and dynamic moni- 
toring network design, can improve substantially the ac- 
curacy of source identification model [2]. 

In the absence of an efficient monitoring network, 
preferably designed to improve the source identification 
process, errors in the available concentration data per- 
taining to the contaminated site will impose uncertainty 
to the mathematical and numerical methods for solving 
the source identification problem. In addition to this 
source of uncertainty, lack of hydro-geological parameter 
information results in uncertain groundwater and solute 
transport modelling. The most important first step in en- 
suring the long term environmental sustainability of 
groundwater resources is the effective control of ground- 
water contamination. The most important first step in 
subsurface control and remediation is an accurate identi- 
fication of unknown sources. 

This study aims to present a comprehensive review of 
previous published researches on the contaminant source 
identification models. In this framework, first the main 
issues needed to be considered and addressed in this area 

are presented. It is followed by a review of source identi- 
fication and monitoring network design methodologies. 
An integration of source identification and monitoring 
network design is discussed in the next section. Lastly, 
some of the issues which need future attention in this 
area are presented. 

2. Main Issues 

The pollutant source identification problem can be 
treated as an inverse problem. The main objective of ex- 
isting methodologies of source identification is to mini- 
mize the difference between the observed values and 
simulated values of contaminant concentration at de- 
signed monitoring locations. The contaminant concentra- 
tions are simulated using estimated source characteristics. 
In general, an inverse problem is considered well posed 
if following conditions are satisfied [3]: 
 A solution exists, 
 The solution is unique, and 
 The solution is stable. 

Since the propagation of contaminant started from one 
or more sources, thus there exists a solution for the in- 
verse source identification model. However, unlike for- 
ward modelling, it may not have unique solution and 
may lack of stability. Therefore the ground water pollut- 
ant source characterization is often considered an ill- 
posed inverse problem. 

In general, an inverse modelling of any physical sys- 
tem requires great computational effort. Availability of 
adequate field measurement and parameter values are 
critical to the inverse source identification procedure. 
However, acquiring data is a very cost and time consum- 
ing task. Thus the unknown groundwater pollution 
source identification is often characterized by very little 
information and is considered complex or not sufficiently 
known. Nonlinearity in underground flow and pollutant 
transport governing equations, increase the complexity of 
this problem. Solving the finite difference form of flow 
and transport equations, the aquifer should be discretised. 
To guarantee the stability of utilized numerical methods, 
fine discretisation is required, which will result in huge 
number of cells especially in real aquifers. This also in- 
creases the computational complexity of source identifi- 
cation problem. 

The source identification model requires an accurate 
flow and transport model to estimate the contaminant 
concentration distribution in aquifer. The lack of pa- 
rameter information results in uncertain groundwater and 
solute transport model. These uncertainties arise from a) 
human and machine imprecision in measurements; b) 
spatial variability of soil hydraulic properties as well as 
errors at un-sampled locations; c) use of parameter val- 
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ues measured in the laboratory for field conditions; d) 
“soft” quality information about the parameters based on 
subjective interpretation or expert judgment [4]. The so- 
lution of source identification model is highly sensitive 
to measurement errors either in the observation data or 
model parameters [5]. 

Mostly the only initial available information is the 
contaminant concentration in one or more arbitrary loca- 
tion of affected wells, and possibly some guesses about 
the location of sources. In some of the cases the con- 
taminant source location is obvious from the available 
preliminary data. For the study areas in which extensive 
record of industrial activities, release or storage of pol- 
lutants are available, it may be possible to infer other 
characteristics of sources, like the start time of activation 
or release history. However, in most of the real life 
groundwater contamination cases there is not such com- 
prehensive information available. The sources may be 
undetected for long period of time, or the pollutants are 
not accessible at extraction wells for an unknown period 
of time since the start of source activities. In such situa- 
tions the source identification model should specify the 
source location, start time and release flux. The resulting 
number of variables requiring estimation makes the 
source identification model even more complex than be- 
fore. In this situation the source characterization has to 
be undertaken by using measured information from a set 
of monitoring wells. The high degree of dependency on 
data collected from monitoring locations indicates the 
importance of an efficient monitoring network design 
model. A properly chosen monitoring network increases 
the accuracy of source identification model and decreases 
the total data collection costs. Figure 2 shows the errors 
in estimating the characteristics of contamination sources 
with and without incorporating measurement data from a 
designed monitoring network [2]. The feed-back data set 
shows the results when the integration of source identify- 
cation and monitoring network design were utilized. As 
shown in Figure 2, the integration of a monitoring net- 
work and the source identification procedure, in general, 
results in increased efficiency of estimation. 

The monitoring wells are selected based on the pol- 
lutant source characteristics, and the estimation transport 
of contamination. Therefore, the source identification 
 

 

Figure 2. Error in estimation of source fluxes [2]. 

and monitoring network design should be addressed in a 
sequential manner [2]. In this framework, a real time 
monitoring network can be utilized to increase the accu- 
racy of the source identification model. 

3. Identification of Pollutant Source 
Characteristics 

Identifying or characterizing unknown pollutant sources 
consist of answering three important questions regarding 
the contaminant sources. 
 When was the contaminant released from the source? 

(Release history). 
 Where is the contamination source? (Source location). 
 At what concentration was the contaminant released 

from the source? (Source magnitude). 
The contaminant transport process consists of three 

main phenomena of dispersion, advection and chemical 
reactions. The contaminant transport model represents an 
irreversible process. This makes an inverse modelling 
contamination transport an ill-posed problem. Ill-posed 
problems exhibit discontinuous dependence on data and 
high sensitivity to measurement errors. This problem is 
considered ill-posed since its solution does not satisfy 
following conditions: existence, uniqueness and stability. 
In the plume history problem, conditions of existence are 
assumed to be satisfied, since the plume had to be gener- 
ated from somewhere. But the two remaining conditions 
are not satisfied [5]. 

The first approaches used to treat contaminant trans- 
port problems were stochastic ones. Gelhar [6] intro- 
duced new stochastic subsurface hydrology techniques. 
He examined the basic stochastic methods to treat flow 
and contaminant transport in naturally heterogeneous 
permeable earth materials. Using techniques that will 
overcome the problems of non-uniqueness and instability, 
new approaches which aim to solve the differential equa- 
tions as inverse problem, were introduced. The random 
walk particle method [7,8], the quasi-reversibility tech- 
nique [9], the minimum relative entropy method [10], the 
Bayesian theory and geostatistical techniques [11] and 
Genetic Algorithm (GA) [12,13], are some of these 
methods. Atmadja and Bagtzoglou [14] gives an over- 
view on application of various inverse modelling tech- 
niques in pollution source identification problems. 

Wagner [15] developed an inverse model for simulta- 
neous parameter estimation and contaminant source 
characterization. A distributed source term was included 
as a parameter in a coupled two-dimensional groundwa- 
ter flow and contaminant transport model. The source 
characteristics and model parameters were found using 
nonlinear maximum likelihood estimation. This model 
was able to consider both temporal and spatial contami- 
nant release history. This model was found to be effec- 
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tive in numerical examples with exact knowledge of the 
model parameter zonation and a simple contaminant re- 
lease history. 

Due to similarity between heat and mass transport 
models and flow and contaminant transport ones, hydro- 
dynamics can be used to overcome ill-posed problems in 
source identification models. Skaggs and Kabala [16] 
using the Tikhonov Regularization (TR), changed the 
ill-posed problem of contaminant source identification to 
a well-posed minimization problem. Using a one dimen- 
sional homogenous system the method evaluation was 
done incorporating error free and erroneous data. To 
generate erroneous data, a normal distributed random 
term was added to concentration observation values and 
aquifer parameters. Their results demonstrated that the 
accuracy of plume concentration is dependent on the 
accuracy of characterization of current plume and the 
extent to which plume was dissipated. Liu and Ball [17] 
tested [16]’s method at a low permeability site at Dover 
Air Force Base, Delaware. Skaggs and Kabala [9] ap- 
plied more computationally efficient and easier to use 
method called Quasi-Reversibility (QR) to the previous 
problem. However, the results showed that the advan- 
tages of QR method come at the expense of accuracy. 
Skaggs and Kabala [18] used Monte Carlo numerical 
simulation to determine the ability of recovering various 
test functions by their proposed method. 

An inverse problem approach was applied to the same 
problem as Skaggs and Kabala [16] by Woodbury and 
Ulrych [10]. They used a statistical inference method 
called Minimum Relative Entropy (MRE). Neupauer et 
al. [19] evaluated the relative effectiveness of TR and 
MRE methods in reconstructing the release history of 
conservative contaminant in one-dimensional domain. 
Snodgrass and Kitanidis [11] developed a probabilistic 
method for source release history estimation that com- 
bines the Bayesian theory with geostatistical techniques. 

Aquifers are mostly non-homogenous and the model 
parameter values are not easily measured at every point. 
The inverse modelling techniques which can address the 
problem of non-homogeneity in the porous media pa- 
rameters, such as probabilistic and geostatistic ap- 
proaches, require solving the inverse governing stochas- 
tic equations. The requirement for extensive computa- 
tional resources limits the applicability of these methods 
to simplified one-dimensional or simple two-dimensional 
problems. 

Due to the ill-posed nature of inverted transport equa- 
tion, a different approach for identification of source 
characteristics as simulation-optimization has been util- 
ized. It couples the forward time contaminant simulation 
model with the optimization techniques. This approach 
avoids the problem of non-uniqueness and stability asso- 

ciated with formally solving the inverse problem. How- 
ever, the iterative nature of simulation model usually 
requires increased computational effort. Many techniques 
are proposed in literature based on a coupled simula- 
tion-optimization. Some of the representatives are dis- 
cussed below. 

3.1. Response Matrix 

The response matrix approach utilized unit responses of 
system in the form of a response matrix. Assuming the 
subsequent to be a linear system, a groundwater flow and 
transport model is used to obtain the unit responses. In a 
source identification model the influence of a solute in- 
jection rate on the spatial and temporal distribution of 
solute concentration would be considered. All these unit 
responses are assembled together to form a response ma- 
trix. Gorelick et al. [20] used the response matrix ap- 
proach in the identification of pollution source models 
using linear programming optimization model. The aqui- 
fer parameters and coefficient of zero order production 
were estimated by Wagner and Gorelick [21]. They con- 
sidered the advection and dispersion transport processes 
in a one-dimensional aquifer. Their solutions show that 
by using response matrix, the results are highly sensitive 
to the measurement errors.  

Datta et al. [22] developed an expert system using sta- 
tistical pattern recognition technique and stochastic dy- 
namic programming to identify groundwater pollution 
source. They simulate flow and transport process using 
the response matrix approach. 

The two limitations of the response matrix approach 
are that it is based on the premise that the superposition 
principle is approximately valid in terms of flow and 
contaminant transport in the aquifer. Another disadvan- 
tage is that the aquifer parameters need to be known and 
the simulation model needs to be used to generate the 
response matrix prior to run the source identification 
model [23]. 

3.2. Embedded Optimization 

Using the embedded optimization approach the unknown 
pollution sources are identified and characterized based 
on the solution of the optimization model that embeds the 
discretised governing equations of the physical process 
of flow and transport as binding constraints. The main 
advantages of this approach are: first, it is possible to 
simultaneously estimate unknown pollution sources as 
well as flow and transport parameters. Second, this ap- 
proach can overcome the limitation of response matrix 
approach in considering highly nonlinear systems and 
third, conceptually it is possible to incorporate any com- 
plex equation governing flow and transport process 
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Chadalavada et al. [25] presented an overview on pollu- 
tion source identification optimization approaches, and 
discussed some of the relevant issues. 

through these binding constraints.  
Mahar and Datta [23] used a nonlinear optimization 

model embedding flow and transport models as con- 
straints to identify pollutant source characteristics as well 
as estimation of aquifer parameters. Finite difference 
discretization of flow and solute transport process gov- 
erning equations were incorporated as constraints. The 
embedding methods need high computer storage for large 
aquifers. Gorelick et al. [20] has concluded that numeri- 
cal difficulties are likely to arise for large-scale problems 
using embedding technique. 

Aral et al. [26] formulated a source identification 
model which minimized the residuals between the simu- 
lated and measured contaminant concentrations at obser- 
vation sites. To simplify the computational intensive 
process of implicitly embedding the partial differential 
flow and transport equations in a nonlinear optimization 
model, they used Progressive Genetic Algorithm (PGA). 
The PGA combines the groundwater simulation models 
with the GA optimization method, in an effort to transfer 
the implicit nonlinear optimization problem into a series 
of approximate optimization problems with explicit lin- 
earized constraints, which are easily solved by GA. PGA 
divides the optimization process into two stages: iteration 
and search stages. In the iteration stage, the groundwater 
simulation models are run to generate an approximate 
model in defined subdomain of aquifer. In the search 
stage, a GA is applied to search for the local optimal so- 
lution within the neighbourhood of the previous solution. 

3.3. Linked Simulation-Optimization 

To conduct unknown pollutant source characterization in 
large-scale aquifers and real areas, linked simulation- 
optimization methodology has been proposed. In this 
methodology the numerical models for simulation of the 
flow and transport process are externally linked to the 
optimization algorithm. This methodology enables the 
source identification model to be solved for fairly large 
study areas. Due to the nature of evolutionary optimiza- 
tion algorithms, utilizing this technique coupled with 
evolutionary algorithms is much simpler where using the 
linked simulation-optimization approaches. Using a linked 
simulation-optimization model may become very com- 
plex when classical optimization algorithms are utilized 
[24]. Figure 3 shows a schematic diagram of linked 
simulation-optimization source identification model.  

The final solution is obtained through the progressive 
iterative process. Results showed that their proposed 
method is an effective alternative tool for the solution of 
source identification in highly nonlinear optimization 
problems. They observed that the effect of measurement 
errors on identification of source locations is very small 
but it highly affects the accuracy of recovered release 
histories. 

 

 

Figure 3. Schematic representation of linked simulation-optimization model for source identification.   
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Singh and Datta [27] used GA for unknown source 

characterization in the case of different levels of data 
availability and concentration measurement errors. In this 
study the steady state flow equation and transient trans- 
port models were solved using finite difference and 
Method of Characteristic (MOC), respectively, externally 
to the GA model. The simulation model used potential 
pollution source characteristics as GA generations and 
simulates the resulting concentration measurement values 
at observation locations. The GA evolves through the 
generation toward optimum value. The objective function 
is designed to minimize the weighted sum of absolute 
differences between observed and simulated concentra- 
tions subject to upper and lower bonds for source fluxes. 
To test the efficiency of method using erroneous data, 
normal distributed random errors were added to perturb 
the simulated observed concentrations. The normally 
distributed error terms simulates the concentration meas- 
urement errors that generally occur in field measure- 
ments or laboratory tests. The distribution of errors was 
assumed to have a mean of zero and the varied standard 
deviation corresponding to level of risk. Results showed 
that the GA is able to take care of moderate level of er- 
rors but when more complex problem with multiple 
sources are active over a large area, the source identifica- 
tion error increases particularly with erroneous meas- 
urement data. 

To increase the computational efficiency of GA in 
identification of source characteristics Mahinthakumar 
and Sayeed [13,28] combined GA with local search ap- 
proaches. Results indicated that the hybrid optimization 
methods, combining an initial global heuristic approach 
with a subsequent gradient-based local search approach, 
are very effective in characterizing sources. 

Tabu Search (TS) in combination with Simulated An- 
nealing (SA) was utilized as a hybrid optimization algo- 
rithm, by Yeh et al. [29], to find the source characteris- 
tics in a three-dimensional model. In this source estima- 
tion process, the source location is selected by TS within 
the suspected area, and the candidate solutions for the 
release concentrations and release periods are generated 
by SA. By this method they used the merits of both op- 
timization techniques. 

He et al. [30] studied the design of petroleum con- 
taminated groundwater remediation under uncertainty 
using linked simulation-optimization technique. Their 
design model was applied to a site in Canada and dem- 
onstrates following advantages. 1) addressing the stochas- 
ticity of modelling parameters in the flow and transport 
simulation models; 2) providing a direct and rapid link 
between remediation strategies (pumping rates) and re- 
mediation performance (contaminant concentrations) 
through the created model; 3) reducing the computational 

cost in searching for optimal solutions; and 4) giving 
confidence levels for the obtained optimal strategies. 

Datta et al. [24,31] were able to combine linked simu- 
lation-optimization with classical nonlinear optimization. 
Datta et al. [31] were successful in simultaneously com- 
bining the identification of unknown pollution source and 
estimation of hydro-geological parameter values. Jha and 
Datta [32] used a linked simulation-optimization  based 
methodology using SA algorithm which is linked to the 
numerical models used to simulate flow (MODFLOW) 
[33] and transport processes (MT3DMS) [34]. MOD- 
FLOW uses the finite difference method which divides 
the ground water system into a grid of cells. This tool is 
able to solve flow equations in a heterogeneous and ani- 
sotropic medium to calculate potentiometric heads at 
cells. The MT3DMS transport model uses a mixed Eule- 
rian-Lagrangian approach to the solution of the three- 
dimensional advective-dispersive-reactive equation. The 
Lagrangian part of the method is employed to solve the 
advection term. The Eulerian part of the method, used for 
solving the dispersion and chemical reaction terms, util- 
ized a conventional block centre finite difference method 
[35]. 

Jha and Datta [36,37] proposed using Adaptive Simu- 
lated Annealing (ASA) to define the source locations, 
fluxes, and duration. They compared the source identify- 
cation solution results with those obtained by GA opti- 
mization algorithm. These approaches are both computa- 
tionally intensive. However, ASA converges faster to 
near optimal results. However, with very large number of 
simulations (iterations) it is possible the GA converges to 
a marginally better solution. To test the methodology 
with realistic assumptions they generated perturbed con- 
centration measurements by adding statistically gener- 
ated errors to simulated concentrations in the hypothetic- 
cal study area. Further homogeneous, non-uniform hy- 
draulic conductivity and porosity fields were considered. 
While the non-uniformity in the hydro-geologic parame- 
ters was incorporated in generating actual measurements, 
these uncertainties were not included in linked simula- 
tion-optimization model. The simulation model used the 
average value of hydraulic conductivity and porosity to 
reconstruct the release history. Results showed that the 
ASA is computationally more efficient even with moder- 
ate level of errors in estimated parameters and errors in 
concentration measurement. However, with increase in 
parameter uncertainty, the efficiency of the proposed 
method decreases. Also by considering different sets of 
monitoring networks, the contaminant concentration 
monitoring locations are shown to be critical in the effi- 
cient characterization of the unknown contaminant 
sources. 

There are other methods in literature for identification 
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of pollutant sources which cannot be categorized in the 
above system. Singh and Datta [38,39] used the feed 
forward multilayer Artificial Neural Network (ANN) to 
identify the unknown pollution sources and simultane- 
ously estimate the aquifer parameters. The proposed 
methodology was also tested in the often encountered 
scenario in which part of the concentration measurement 
data is missing [40]. In this framework the ANN was 
trained and tested to identify source characteristics based 
on simulated contaminant concentration measurements 
data at specified observation locations in the aquifer. 
These concentrations were simulated for a large set of 
randomly generated pollution source fluxes. The model 
was tested using perturbed measured concentration val- 
ues which showed satisfactory results with moderated 
level of uncertainty. As the number of potential sources 
increase, the complexity of the problem increases. This 
results in the comparatively high identification error par- 
ticularly with increase in measurement errors. The source 
identification errors are very large when large concentra- 
tion measurement errors are incorporated together with 
multiple source locations. 

The accuracy of the source identification model is de- 
pendent on how effectively the monitoring points char- 
acterise the contaminant plume. Therefore, finding an 
accurate and optimum set of source characteristics is 
possible with the help of optimum monitoring network 
design. A monitoring network could be designed with the 
specific objective of improving the efficiency of source 
identification. Attempts to design dedicated monitoring 
networks to provide essential concentration measure- 
ments are discussed below. 

4. Monitoring Network Design 

Monitoring of groundwater has received great attention 
in the recent past. Evaluation of remediation techniques 
and assessment of environmental compliance requires 
time consuming and costly data collection effort. Source 
characterization is almost impossible without well-de- 
fined monitoring locations which are able to characterize 
the plume with acceptable level of accuracy. 

Optimal design of monitoring network is necessary 
due to uncertainty in predicting the movement of plumes 
in the groundwater system, and budgetary limitations. 
Comprehensive review of monitoring network design is 
reported in Loaiciga et al. [41], ASCE Task Committee 
[42], US EPA [43] and Kollat et al. [44]. 

A dedicated monitoring network which aims to in- 
crease the efficiency of the source identification model 
was studied by various researchers. Different selected 
objectives and the utilized optimization methods are re- 
ported in literature. Some of different objectives consid- 
ered include: Maximizing detection possibility [45-47]; 

Minimizing the total number of monitoring wells [46,48]; 
Minimizing undetected concentrations [49-52]; Mini- 
mizing the contamination estimation variance [53-58]; 
Minimizing the uncertainty in terms of square root of 
estimation variance[59,60]; Variance reduction with Kal- 
man filter approach [61,62]; Minimizing the monitoring 
cost [51,59,60,63-65]; Minimizing the squared deviation 
of estimated concentration from actual [59,60,63]; Mini- 
mizing mass estimation error [60,64-66] and minimizing 
the error in locating plume centroid [64-66]. 

Some of different optimization algorithms used before 
include: Integer programming [52,67,68]; Mixed integer 
programming [50,51,58]; SA [55,69]; Simple GA [49, 
62-65,69], and Ant colony optimization [48]. 

Meyer et al. [46] used simulated annealing to solved 
the multi objective integer programming of optimal 
monitoring network design. The system uncertainty was 
incorporated using Monte Carlo simulation. The object- 
tives include: minimizing the number of monitoring 
wells; maximizing the detecting probability of a pollutant 
leakage; minimizing the expected area of pollution at the 
time of detection; and, minimizing the network cost. 

Datta and Dhiman [50] used a mixed-integer pro- 
gramming algorithm which was linked to flow and 
transport model using response matrix approach. To in- 
corporate the uncertainty in solute transport simulation, a 
random error was added to respond matrix elements. 
These random errors followed a uniform distribution 
where the variance is controlled by a degree of uncer- 
tainty. Higher level of uncertainty corresponds to larger 
variances. Solution of the chance-constrained optimiza- 
tion model defined the optimal monitoring network. 

A structured approach is required to design detection 
based groundwater monitoring configurations. Hudak [67] 
defined the configuration of monitoring wells for a solid 
water landfill in Tarrant County, Texas, USA. The objec- 
tive of investigation was to design a monitoring network 
which is able to minimize the un-detected contaminant 
plumes in the study area. 

The mass transport simulation model, was tested by 
Hudak [70] for seven contaminant detection-monitoring 
network under a 40 degree range of groundwater flow 
directions. The 40-m distance (lag) was measured in dif- 
ferent direction. In this way the monitoring networks 
were evaluated for detection efficiency, for a range of 
groundwater flow directions. Results of this study 
showed that centrally lagged groundwater monitoring 
networks perform most effectively in uncertain ground- 
water flow fields. 

Long-Term Monitoring (LTM) was studied by Reed 
and Minsker [60]. They demonstrated the use of high- 
order Pareto optimization. The designed LTM model was 
assumed to be used for assessment of effectiveness of 
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current remediation strategies. The high-order Pareto 
optimization scheme was used to balance four objectives: 
minimizing sampling costs; maximizing the accuracy of 
interpolated plume maps; maximizing the relative accu- 
racy of contaminant mass estimates; and, minimizing 
estimation accuracy. The utilized LTM method combined 
Quantile Kriging (QK) and nondominated sorted genetic 
algorithm-II (NSGA-II). In this study the estimation ac- 
curacy or local uncertainty was quantified using esti- 
mated standard deviation resulted from kriging interpola- 
tion at un-sampled points. Results aided in understanding 
and balancing the conflicting objective functions and 
reaching one single compromise solution. 

The interpolation techniques are widely used for moni- 
toring network design purpose. Mugunthan and Shoe- 
maker [69] identified the cost effective sampling design 
for LTM of groundwater remediation under multiple 
monitoring periods under uncertain flow conditions. The 
contaminant transport model simulated the plume migra- 
tion under many equally likely stochastic hydraulic con- 
ductivity fields selected by Monte Carlo method. In this 
study they compered three interpolation algorithms: In- 
verse Square Distance Weighting (ID), Ordinary Kriging 
(OrK) and QK. Their solution results show that OrK and 
ID performed almost equally well while QK consistently 
produced higher interpolation errors. Finally they chose 
ID over OrK because of the ease of implementation, and 
because of substantially lower computational time. A 
myopic heuristic algorithm that uses an error-reducing 
search neighbourhood was developed for optimization 
which showed better performance comparing to SA and 
GA. 

Dhar and Datta [51] proposed a chance-constrained 
single and multi-objective nonlinear optimization models 
which are capable of designing optimal time variant 
groundwater quality monitoring network. Both optimiza- 
tion models incorporated uncertainty in prediction or 
estimation of some of the aquifer parameters such as hy- 
draulic conductivity and dispersivity. Randomly gener- 
ated aquifer parameter values, assuming uniform distri- 
bution, were used to simulate different realizations of 
resulting pollutant plumes. The simulated pollutant plu- 
me realizations were subsequently utilized to obtain Cu- 
mulative Distribution Functions (CDFs) of actual con- 
centrations at different spatiotemporal locations assume- 
ing Gaussian distribution. The CDFs were incorporated 
as an approximated distribution function in the optimiza- 
tion model. These CDFs were used to define chance con- 
straints with associated reliabilities. They concluded that 
the results were sensitive to subjective selection of lower 
bound of reliability. By using higher reliability value, 
higher objective function values and different monitoring 
point configurations were produced. 

A detailed assessment of how increasing problem sizes 
(number of decision variables) affects the computational 
complexity of using evolutionary algorithms for LTM 
applications was studied by Kollat and Reed [71]. The 
transient flow and transport conditions were considered 
by Chadalavada and Datta [72]. They utilized two objec- 
tive functions to design an effective monitoring network 
for a transient flow and transport system. The first objec- 
tive function used minimizes the summation of all posi- 
tive deviations between simulated contaminant concen- 
trations and a specified low threshold. The second objec- 
tive function minimizes estimated variances of pollutant 
concentrations at various unmonitored locations. The 
developed optimization models were solved using GA. 
The variances of estimated concentrations at potential 
monitoring locations were computed using the geostatis- 
tical tool, kriging. The designed monitoring network 
were dynamic in nature, as it provides time varying net- 
work designs for different management periods, to ac- 
count for the transient pollutant plumes. Different reali- 
zations of pollutant plume were randomly generated by 
incorporating the uncertainty in both source and aquifer 
parameters.  

Dhar and Datta [73] presented a methodology based 
on a linear mixed-integer formulation incorporating OrK 
spatial interpolation technique for global optimal design 
of water quality monitoring. They used five different 
objective functions which incorporate: concentration 
estimation error, variance estimation error, mass estima- 
tion error, error is locating plume centroid, and spatial 
convergence of designed network. They concluded that 
different objective functions and constraints lead to to- 
tally different network results. Therefore, comparison of 
solution results obtained by using different methods 
should be interpreted with caution. 

Dhar and Datta [74] formulated a logic-based mixed- 
integer linear optimization model to develop a model 
solution for optimal design of groundwater monitoring 
network. In the developed methodology the monitoring 
redundancy reduction has been explicitly considered. 
This study used the Inverse Desistance Weighting (IDW) 
method for spatial interpolation to estimate the concen- 
tration at all unmonitored locations. Concerns about the 
global optimality of resulting solutions were addressed 
by converting the nonlinear optimization model to a lin- 
ear one. In this way, the proposed method not only pre- 
vents the solution being trapped in local optimums but 
also can easily consider large number of variables. 

An uncertainty-based optimization model was used by 
Chadalavada et al. [75] to design an optimal monitoring 
network to delineate groundwater contamination in a real 
aquifer in south Australia. The model located the moni- 
toring wells at the locations where the spatial estimation 
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variance is high. This means that the optimization model 
minimize the spatial concentration estimation variance 
where a monitoring well is not installed. Therefore the 
model minimizes the system uncertainty by locating 
monitoring wells where the uncertainty is high. The spa- 
tial concentration estimation variances at the interpolated 
locations were calculated using geostatistical Kriging 
method. The model randomly generates a finite number 
of contamination plume realizations using the uniform 
distribution with specific upper and lower bounds on 
source and hydrologic parameters. The performance of 
the developed network designs was evaluated by com- 
paring the contaminant mass estimation errors. Moreover, 
design of monitoring network dedicated to identify the 
possible location of contaminant sources was presented 
by Prakash and Datta [76]. Using the concentration gra- 
dient information from available monitoring locations, 
new monitoring networks were designed sequentially. 
They utilized combination of spatial interpolation tech- 
nique and SA optimization algorithms.  

Mostly the required information for monitoring net- 
work design models are inferred from multiple realize- 
tion of aquifer responses due to combination of various 
possible source characteristics. There are large number of 
possible source characteristics when no or limited infor- 
mation are available about source locations, activity pe- 
riods, and fluxes. Having information about source char- 
acteristics can increase the accuracy of monitoring net- 
work design and also decrease the computational effort 
for selection of efficient monitoring locations. Limited 
number of works has been reported in literature which 
considered the monitoring network design and source 
identification models as two coupled procedures which 
are integrated sequentially. 

5. Integration of Contaminant Source 
Characterization and Monitoring 
Network Design 

The identification of pollutant source characteristics is a 
complex problem. Figure 4 shows the generated plumes 
from different number and arrangement of sources. The 
complexity of the source identification problems grows 
when the number of sources and the overlapping in gen- 
erated plumes increase.  

Satisfactory characterization of contaminant sources is 
difficult without the aid of measurement data from effi- 
cient monitoring network. The location of contaminant 
concentration measurement sites would determine the 
efficiency of the unknown source identification process 
to a large extent. Design of suitable monitoring network 
to improve the efficiency of source identification requires 
having information about the sources and the distribution 
of contaminant plume corresponding to location and time.  

 

Figure 4. The concentration contour profile in different 
contaminant aquifers [76]. 
 
Therefore coupled and iterative sequential source identi- 
fication and dynamic monitoring network design frame- 
work is required. The coupled approach provides a frame- 
work for necessary sequential exchange of information 
between monitoring network and source identification 
methodology.  

A schematic diagram of sequential identification of 
sources and design of monitoring network is shown in 
Figure 5. The preliminary identification of unknown 
sources, based on limited concentration data from exist- 
ing arbitrary located wells, provides the initial rough es- 
timation of the source fluxes. These identified source 
fluxes are then utilized for designing an optimal moni- 
toring network for the first stage. The contaminant con- 
centration data collected from the new designed moni- 
toring network are utilized, as feedback information, to 
identify the source characteristics. Both the monitoring 
network and source identification process are repeated 
until satisfactory source characteristics are achieved. 

Mahar and Datta [52] presented a methodology com- 
bining an optimal ground-water quality monitoring net- 
work design and an optimal source identification model. 
In the first step, using nonlinear optimization model em- 
bedding the flow and transport simulation models as 
constraints, preliminary identification of sources based 
on arbitrary located monitoring network was done. 

In the next step, an integer programming formulation 
with the objective function minimizing the sum of con- 
centrations for each time period at all potential monitor- 
ing points where a monitoring well has not be installed, 
selected the monitoring wells in subsequent time periods. 
In the last step, simulated concentrations at new moni- 
toring wells were also perturbed to show the measurement    
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Figure 5. Schematic representations of the integrated source identification and monitoring network design models. 
 
errors. To consider the model and parameter uncertainty, 
the source fluxes were perturbed by adding a random er- 
ror with uniform distribution. Ten perturbations of source 
fluxes were generated and then the solute transport 
simulation model was solved for each perturbed set of 
fluxes to generate 10 different contamination plumes. 
The designed monitoring well locations were utilized for 
more accurate identification of source characteristics. 
Comparison of solution results shows that where there is 
no uncertainty in parameter or measurements, using data 
collected from an existing arbitrary monitoring network 
for source identification results in acceptable estimation 
of source fluxes, although properly designed monitoring 
network is preferable. In the presence of various uncer- 
tainties, existing monitoring network is not adequate and 
update or redesign is required. 

Datta et al. [77] proposed a methodology which is an 
improvement over the combined source identification 
and monitoring network design model presented by Ma- 
har and Datta [52]. Contrary to Mahar and Datta [52] 
using all perturbed plume realization for monitoring 
network design, they used the trimmed mean concentra- 
tion incorporated in the monitoring network design. Us- 
ing this method, the effect of extreme concentrations 
resulting from randomly generated fluxes can be mini- 
mized. These unacceptable or outlier concentrations at a 
potential monitoring network well location may be gen- 
erated due to randomly generated source fluxes lying in 
the tail regions of distribution. They demonstrated the 
potential applicability of the developed methodology for 
an illustrative area. 

Dokou and Pinder [78] addressed the issue of identi- 

fying and delineating of Dense Non-aqueous Phase Liq- 
uids (DNAPLs) at its sources. They proposed search 
strategy employs a series of mathematical tools, to pro- 
vide optimal water quality sampling locations that reduce 
the uncertainty in the modelled concentration field. At 
the same time, the source locations are delineated with 
more certainty. In this research the iterative process of 
source identification and monitoring network design was 
proposed aimed to combine water quality information 
(hard data) with expert knowledge (soft data) into the 
integrated method. They assumed the hydraulic conduc- 
tivity as an uncertain model parameter where other hy- 
drogeological parameters were assumed to be determi- 
nistic. The iterative proposed search algorithm contains 
following steps. 

1) Based upon available field information, approxi- 
mate source locations were assumed. Using fuzzy mem- 
bership functions, membership degree was assigned to 
each source location candidate considering how near they 
are to critical contaminant pollutants in domain. The 
Choquet integral, integrated the distance membership 
values and possibility of occurrence (assigned by expert 
judgment) for each candidate source. 

2) To model the uncertainty in model parameter, dif- 
ferent realizations of hydraulic conductivity field were 
generated. The Monte Carlo probabilistic and Latin Hy- 
per Cube sampling techniques were utilized. 

3) To calculate the concentration plume statistics, 
Monte-Carlo technique was utilized. The concentration 
results for each realization and each nodal location were 
used to calculate the concentration mean (called compos- 
ite plume) and varience- covarience matrix. 
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4) Two factors were taken into account when deciding 
where to collect concentration sample: the reduction in 
the overall uncertainty resulting from taking a sample at 
a particular location (calculated using Kalman filter) and 
the distance of the sampling point from the source loca- 
tion). These two important features were combined using 
Choqute integral to produce a score for each potential 
sampling location. The location with the largest score 
was selected as the optimal sampling point. 

5) After a sample was taken at the optimal point, the 
Kalman filter was used again to update the concentration 
mean and variance-covariance matrix with the real data. 

6) Each individual plume was compared to the updated 
composite plume using a method that involves the use of 
fuzzy sets and their α-cuts. This strategy found the de- 
gree of similarity between the plumes by calculating a 
measure of common area between them. This degree of 
similarity was normalized and a new set of weight was 
assigned to each potential source location. 

7) This new weights were used to calculate the new 
composite plume and repeating steps 3 to 6. The process 
was repeated until convergence on an optimal source 
location was achieved. 

In this research the linear programming optimization 
method using response matrix simulation model selected 
the set of optimal source strengths. A two-dimensional 
homogenous hypothetical aquifer was studied to show 
the capability of proposed methodology. The results of 
sensitivity analysis concluded that the most important 
parameters include the type of α-cuts, used at the plume 
comparison step, and the pair of weights of importance, 
involved in the Choquet integral, used for the selection of 
the optimal water quality sampling location. The three- 
dimensional extension and field application of this 
method were tested by Dokou and Pinder [79]. 

Singh and Datta [80] proposed a Kriging linked SA 
model for the spatial and temporal estimation of con- 
taminant plume. The sequential simulation optimization 
model design the optimal monitoring network based on 
the objective function of minimizing the contaminant 
mass estimation error. The new selected monitoring 
wells generate feedback information for the SA optimi- 
zation model to estimate the pollutant concentration 
plume more accurately. 

6. Identification of Distributed Sources 
Characteristics 

In most of the reported researches, the point sources were 
considered. However, the distributed or non-point sources 
will also produce widespread and long-lasting contami- 
nation in groundwater. Some common distributed sources 
of contamination are as follow; 
 Contamination from agricultural chemical usage. 

 Contamination carried by recharge from rain or snow 
water in to the ground. 

 Contamination from large scale overland or under- 
ground waste dumps. 

Figure 6 shows an abounded mine site. The mining 
waste dums, tailing ponds and lakes formed from flood- 
ing of the open-cuts, are different distributed sources of 
contamination in this area. The contamination in these 
sites adversely affects the quality of surface water and 
groundwater in the area. The leakage from the distributed 
sites may affect all the groundwater resources in neigh- 
borhood area and changed them to unusable water. 
Therefore selecting of appropriate remediation strategy is 
necessary. 

The effectiveness of any remediation of contaminant 
groundwater is highly dependent on accurate characteri- 
zation of the contaminant sources. Information about the 
location and the start time of activation of distributed 
sources are mostly available. The source identification 
model should be able to estimate the contaminant fluxes 
released from distributed sources as a function of time. 

7. Future Directions and Conclusions 

Selection of appropriate remediation strategy for man- 
agement and control of aquifer contamination requires 
accurate and reliable source identification. Characteriza- 
tion of unknown pollutant sources remains a challenging 
problem due to the complex nature of real-life contami- 
nated aquifers. 

There are still areas which need further attention to in- 
crease the efficiency and applicability of source identify- 
cation models in real contaminated areas. 

 

 

Figure 6. Distributed sources of contamination in an aban-
doned mine site [81]. 
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In most of the study areas, the information available 
about geographic and hydro-geologic parameter values is 
sparse and inaccurate. The source identification model 
uses the simulation model to predict the contaminant 
concentration at monitoring locations, corresponding to 
each candidate source characteristics. The un-modelled 
uncertainty due to the presence of uncertainty about geo- 
graphic and hydro-geologic parameter values, reduce the 
accuracy of source identification model. Further methods 
should be utilized to consider this un-modelled uncer- 
tainty more systematically. Fuzzy logic is one of the 
methods which can be incorporated to model parameter 
uncertainty in source identification procedure. The au- 
thors of this article are already engaged in extending 
source identification methodologies to incorporate fuzzy 
logic. 

The feedback based iterative and sequential procedure 
of monitoring network design and source identification 
can effectively increase the efficiency of both models. 
Further studies considering real-life contaminant aqui- 
fers are required to refine such integrated methodologies. 
In recent years, a large number of contaminant aquifer 
sites have been identified for remediation in which the 
sources of contamination are distributed ones. The ap-
plication of source identification and monitoring network 
design models needs to be expanded to incorporate over-
land and underground distributed sources, such as those 
present in mining sites now abandoned after extraction. 

Many of the simulation models described in literature 
considered the transport of contamination result of ad- 
vection and dispersion. The reaction procedures domi- 
nate the transport process of many contaminants. The 
geo-chemistry of contaminants needs to be considered 
and adequately modelled in source identification and 
monitoring network design models. Incorporating the 
reaction terms in transport simulation model, increase the 
complexity of model. The temperature, humidity, and pH 
are some of the parameters which need to be considered 
by including the reaction term in simulation model. The 
development of a versatile and meaningful methodology 
for accurate and reliable characterization of groundwater 
pollution sources has become a reality, even in the pres- 
ence of usual parameter, modelling and measurement 
uncertainties. An integrated approach of optimal source 
identification and feedback of information from a se- 
quentially designed monitoring network have enhanced 
the capability for designing effective remediation strate- 
gies for sustainable use of groundwater aquifers. 
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