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ABSTRACT 

The laws of formation of the impulse of electromagnetic radiation in dielectric environment for conditions self-induced 
transparency are considered. The insufficiency of the description of such impulse with the help of the equations Max-
well-Bloch is shown. The way of connection of an average number filling and energy of the impulse taking into account 
energy saturation of environment are offered. The calculation of an electrical component of the impulse is submitted. 
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1. Introduction 

Distribution of electromagnetic field momentum in di-
electrics is conditioned by the interaction of field’s con-
tent with atoms and molecules of substance. In [1] the 
forming of electric component of momentum in dielec-
trics at low intensity of electromagnetic field momentum 
is concerned. This research paper is devoted to the basic 
phenomenological laws, which characterize the forming 
of electric and magnetic components of high-intensity 
impulse. 

The description of momentum distribution with the 
dissipation of power is an exceptionally complex prob-
lem. However, in the majority of practically important 
cases the loss of impulse power in the medium can be 
disregarded. From this point of view the most trivial is 
the description of momentum at self-induced transpar-
ency (SIT). The phenomenon of SIT can occur in the 
rarefied gas (n < 1018 atoms/cm3) for short laser impulses 
(t < 10-9 s) in the condition of momentum power suffi-
cient for shift to the raised state of all atoms in the area of 
momentum influence [2]. In this case, the reversed dis-
persion of electromagnetic radiation is absent, the dissi-
pation characteristics of system “impulse-medium” van-
ish and it turns into the conservative state. The electro-
magnetic momentum gains permanent, solitary state. The 
symmetry and stability of impulse can simplify its 

mathematical description. 
Up to recent period the mathematical description of 

such electromagnetic solitary, on the basis of semi-clas-
sical system of Maxwell-Bloch equations [3], from our 
perspective, are in unsatisfactory condition. The Max-
well-Bloch equations were written in 1946, long before 
the laser creation and discovery of the SIT phenomenon 
in 1965. 

The physical basis of these equations, except Max-
well’s equations are, firstly, the second law of Newton 
for the nuclear electron and secondly, proportionality of 
the average data N of atoms in the field of impulse influ-
ence to the volumetric density of electromagnetic wave 
power w, i.d. N ~ w. The value N provides with the 
measure of inversion in system of atom-radiators by 
raised atoms [2]. The procedure of electromagnetic mo-
mentum description, including wave equation, further 
frequently passes through the field exertion’s devision to 
the low envelope amplitude and the wave of filling. Such 
course is typical of processes, submitted to the Schrödinger’s 
nonlinear equations. However the description of enve-
lope amplitude, described on the basis of the Maxwell- 
Bloch theory is based on the Sin-Gordon’s equation [3], 
which do not contains wave of filling in its solving. Such 
course is unlimited and internally contradicting. The 
reason of the limitation of the Maxwell-Bloch equation 
usage for the SIT description would be analyzed further. 
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We believe that the consideration of the SIT process 
should be done on the basis of consecutive procedure of 
the Schrödinger’s nonlinear equation. However, the preva-
lent Schrödinger's nonlinear equation with cube nonlin-
earity, which can produce the solitary wave with filling is 
inappropriate for the SIT description. The reason is that 
the solitary solving of Schrödinger’s nonlinear equation 
with cube nonlinearity is related to the momentum, in 
which the phase rate of wave of filling is less then the 
rate of the impulse itself [4]. For the SIT momentum the 
inversed correlation of rates is typical [5]. 

The aim of this research paper is to formulate the 
equation and its solution for the electric and magnetic 
consistent parts of impulse—the soliton in the case of 
self-induced transparency. 

2. Coordination of the Electromagnetic 
Impulse with the Substance 

Firstly, consider the one-dimensional task the electric 
part of electromagnetic field momentum with the dielec-
tric substance, which posses a certain numerical concen-
tration n of centrosymmetrical atoms-oscillators. For the 
certainty of the analysis we suggest the atom to be one- 
electronic. It is also agreed, that no micro current or free 
charge are present in the medium. The peculiarities of 
interaction between magnetic aspect of momentum and 
the atoms will be considered later. 

We accept that there takes place the interaction of 
quantum of electromagnetic radiation with nuclear elec-
trons, thus quantum is absorbed by the electrons. By 
gaining the energy of quantum the electrons shift to the 
advanced power levels. Further, by means of resonate 
shift of electrons back, appears the quantum radiation 
forward. The considered medium lacks non-radiating 
shift of electrons, i.d. the power of quantum is not trans-
fered to the atom. 

Thus, the absorption of electromagnetic radiation in 
the case of its power dissipation in the substance, owing 
to SIT, is disregarded. There appears the atomic syprara-
diation of quantum. Thus, the forefront of momentum 
passes the power on to the atomic electrons of the me-
dium, forming its back front. 

The probabilities of quantum’s absorption and radia-
tion by the electrons in the unity of time, with a large 
quantity of quantum in the impulse, according to Einstein, 
can be referred to as the approximately identical [6]. For 
the separate interaction of the with the electron this very 
probability is the same and is proportional to the cube of 
the fine-structure constan t~(1/137)3 [7]. Consider a ran-
dom quantity—the number of interactions of quantum 
with atomic electrons in the momentum. In accordance 
with the Poisson law of distribution, the probability of 

that will not be swallowed up any quantum atomic’s 
electrons (will not take place any interaction), at rather 
low probability of separate interaction, is equal an expo-
nent from the mathematical expectation of a random 
variable—an average quantity of interactions  of quan-
tums and electrons in impulse, taken with the minus 

 expp   . Therefore, as it will be explained further, 
it is possible that the intensity of non-absorbed power of 
impulse by the atomic electrons of the medium in it fore-
front is determined by the exponential Bouguer law [3] 
(in German tradition—Beer law) 

0 exp( )I I l               (1) 
where —index of electromagnetic wave and substance 
interaction, l—length of interaction layer, I0—intensity 
of incident wave. Thus, the intensity of atomic electron’s 
power recoil into impulse on its back front could be de-
scribed with the help of the Bouguer law with the nega-
tive index of absorption [8]. 

The index of interaction is n  , where —effec-
tive section of atom-oscillator interaction with the wave. 
Hence, 

eff eff
eff

V V
l nl nV nV M MN

V V
     

    
(2)

 
where Veff—the effective volume of interaction. In defy-
ing (2) the right part of the formula is multiplied and di-
vided by the geometric volume V, in which there is M of 
particles interacting with the radiation. The ratio  

effV
N

V
 . The ratio of effective volume of interaction to  

the geometric volume characterizes the medium possibil-
ity of electromagnetic radiation’s interaction with the 
atom. Hence, by exponential function in the Bouguer law 
(1) the mathematical expectation of random variable is 
supposed, which subdues to the Poisson law distribu-
tion—average variable of atoms interacting with the elec-
tromagnetic radiation in the area of impulse influence 

NM  . 
Taking into account that the wave intensity is 

2

2
~

E
I

H

 
  
 

 we shall have 

0

0

exp
2

EE
l

H H

                 
         (3) 

where 0E , 0H —the amplitudes of electric and mag-
netic fields’ strength of the impulse on longitudinal coor-
dinate X = 0. 

In the formula (3) and further the upper variables in 
parentheses are referred to electric field, and lower to the 
magnetic field of impulse. 
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By the ratio (2) it is possible to find  

0 0

2 2
ln ln

E H
N

М E М H
             (4) 

The formula (4) demands some further consideration. 
If E < E0, that reflects the process of wave absorption by 
atomic electrons N > 0 and classical consideration of 
electromagnetic wave interaction with the atom is quite 
admissible. The case when E > E0 reflects the process of 
wave over-radiation. Thus, N < 0 and variable N can not 
be considered as the probability of electromagnetic wave 
interaction with the atom. In this case we speak about the 
quantum-mechanical character of the process of interac-
tion between the quantum and the bi-level power system 
of the atom, provided that the power transition’s radia-
tion is reversed. Variable N in this case possess the no-
tion of united average of filling by atom (–1 < N < 1). 
Due to the use of the average of filling to raise the atom 
and bend of its magnetic moment in the magnetic field of 
the impulse, the existence of bi-level quantum system by 
magnetic quantum numbers. Thus, the variable N pro-
vides with the measure of inversion of the system of 
atom-radiators by the raised atoms [2] as well as the 
measure of inversion of the magnetic moment of the 
atom’s system by magnetic quantum numbers. If N = –1 
all the atoms occur in the basic condition [3]. 

We consider the dependence of the average of filling 
on the time N(t). If to accept the proportion of polariza-
tion of separate bi-level atom to the intensity of electric 
field in the impulse, then, in accordance with the Max-
well-Bloch equations, the average by atoms of consid-
ered volume, the filling number is proportional to the 
volumetric density of electromagnetic wave power N~w 
[3]. However such a monotonous dependence between 
these variables can not remain on the whole extent of the 
impulse. Firstly, by the high volumetric density of im-
pulse power w, typical of SIT, when the central part of 
impulse power is higher than any variable w, there exists 
energetic saturation of the medium. The average filling 
number thus N = 1, all the atoms are raised, Figure 1 
(curve 1—the dependence w of time, thicker curve 2 
—the considered dependence N of time). The violation of 
proportion N~w in the central part of impulse is the basic 
drawback of frequently used system of Maxwell-Bloch 
equations for the SIT description. 

Secondly, the period of variable N relaxation is not 
less than 1 ns [2] that is why the dependence N(t) can not 
repeat high-frequently oscillations on both frontsof the 
impulse. The dependence N~w could characterize the 
proportion of average filling number and envelope w  

 

Figure 1. Dependence of volumetric density of energy of 
electromagnetic radiation impulse w (curve 1) and average 
on atoms of number of filling N (curve 2) from time; 3 and 4 
—points of an excess of function w(t). 

 
(curve 1) in the impulse. However, in two points of the 
fold (3 and 4 in Figure 1) on the sites of increase and 
decrease if the envelope w the variable 2 2/ 0w t    
hence, also 2 2/ 0N t   . Besides, the dependence N(t) 
has the symmetrical character as at the SIT impulse be-
comes the conservative system (there is no reverse dis-
persion and dissipation of power) [2]. Therefore, it could 
be thoroughly concerned that on the whole extent of im-
pulse, except the points of curve’s N(t) fold, the condi-
tion remains 

2

2
0

N

t





                (5) 

while the dependence N(t) has the character as shown on 
the Figure 1, curve 2. It could be also highlighted the 
high generality of formula (5), which is possible for any 
piecewise linear function N(t). Thus, the points of func-
tion break are excluded, as the derivates undergo the 
break. 

3. Non-Linear Schrödinger Equation 

One-dimensional wave equation for electric and mag-
netic aspects of electromagnetic field for the considered 
problem is [2]. 

2 2 2
0

2 2 2 2 2

/1 1E E P

H H JX с t с t

 
 

          
                    

 

(6) 

where orY ZE E E E  , orY ZH H H H  , X and 
t—accordingly the coordinate alongside of which the 
impulse and the time are distributed, P—polarization of 
substance, J—its magnetization, 0  and 0 —electrical 
and magnetic constant, —relative static permittivity of 
substance, —relative magnetic permittivity, 

0 01/c   —speed of light in vacuum. 
We introduce the transformation of electric field in-

tensity be formula 
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   0

( , )
, exp

( , )

E X t
Ф X t i t

H X t


 
  

 
       (7) 

The function Ф(X, t) is less rapidly changing one in 
time then E(X, t) or H(X, t), 0—aspect of cyclic fre-
quency of high-frequent oscillations of the field. 

By substituting (7) and (6) we get (8). 
We estimate the relative variable of first and second 

items in the parenthesis of the left side (8). For this pur-
pose we would introduce the scales of variables time t 
and Ф 

* *
0,T t t Ф Ф Ф   

where the asterisk designates dimensionless parameters. 
For the time scale the duration (period) of impulse T 
should be logically chosen. The scale Ф0 is chosen from a 

condition that dimensionless second derivative 
2 *

*2

Ф

t




 

and the dimensionless function Ф* are in the same order. 
Hence, the first item in round brackets (8) is 

2 *
0
2 *2

Ф Ф

T t




, and the last one 2 *
0 0Ф Ф . Instead of impulse 

T period we introduce cyclic frequency of impulse 
2

T

  . By comparing these items, it is realized, that 

2 2 *
2 *0
0 02 *24

Ф Ф
Ф Ф

t








 as the cyclic frequency of im- 

pulse is far less than infrequences of field’s oscillations, 
especially when 2 2

0  . Similarly, it can be presented 
that the second item in the round brackets (8) is far more 
that the first one. 

Hence, by disregarding the small item in (8), we ob-
serve (9). 

By accepting vector of polarization P or magnetizing J 
to be directly proportional, accordingly, to the electric 
and magnetic fields strength, we could derive the wave 
equation from (6), which is possible to any form of the 
wave. However, there exists a physical mechanism, which 
restricts the wave form. This mechanism is connected 
with the way of over-radiating of electromagnetic im-
pulse with the atomic electrons. This process is precisely 
considered further. 

We consider the strength of electric and magnetic 
fields of impulse as 

 
( , )( , )

exp
( , ) ( , )

E X tE X t
i rX t

H X t H X t


  
          

    (10) 

where r and  are constants, |E(X, t)| and |H(X, t)| are the 
modules of functions E(X, t) and H(X, t). 

Formulas (4) and (5) reflect the offered physical model 
of electric and magnetic field of impulse interaction with 
atoms in SIT. 

Hence, taking into account (4) and (5) there is 

2 2

0 0

2 2

ln ln

0

E H

E H

t t

 
 

 
         (11) 

By transforming (11) we have 
22

2

lnE E
E

tt

   
  

  
        (12) 

The similar ratio can be also referred to the function 
|H|. These ratios should not be regarded as the equations 
to define the module of electric and magnetic aspect of 
impulse. It is the approximate expression of the second 

derivative 
2

2

E

t




 or 

2

2

H

t




 for the considered physical 

model and reflects several non-linear effects of interac-
tion between electromagnetic radiation and substance. 
The approximate ratio (12) defines the connection of 
medium polarization P with the strength of impulse elec-
tric field (similarly to the magnetization J with the mag-
netic field strength), that would be considered further. 
The electromagnetic field impulse strengths should be 
estimated from the Equation (6) taking into account the 
ratio (12). 

In accordance with (10), 

 
( , ) ( , )

exp ( )
( , )( , )

E X t E X t
i rX t

H X tH X t


   
         

, 

hence, from (12) we estimate equation for the electro-
magnetic field impulse 

2

2
02

2

ln

2

E

EE E
i E

t tt
 

  
  
                 

   (13) 

 

2 2 2
02

0 0 02 2 2 2 2

/1 1
2 exp( )

PФ Ф Ф
i Ф i t

JtХ с t с t

 
  

 
          

                    
            (8)

2 2
02

0 0 02 2 2 2

/1 1
2 exp( )

PФ Ф
i Ф i t

JtХ с с t

 
  

 
                          

                 (9)
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The same ratio exists for the magnetic field also. Pass-
ing over to (13) to the function Ф(X,t) by formula (7) and 
by concerning 0P E  , where –relative dielectric 
permittivity of substance, we have (14). 

For the variable 
2

2

J

t




 by using J H , where  

—relative magnetic permittivity of substance, we get 
the ratio, similar to (14), except that the right part lacks 
0. 

The variables 0
0 0

0

exp( )
E

Ф i t
H


 

  
 

. By comparing 

(7) and (10) we state 
0

0

0

,
EE

Ф Ф const
H H

  
       

   
. 

By substituting (14) into (9). 
In the Equation (15) the variable  is meaningful to 

dielectric permittivity for electric and magnetic permit-
tivity for the magnetic aspects of electromagnetic field. 

The non-linear Schrödinger equation with complicated 
type of linearity is received. We introduce the signs: 

0    , 2 2 2 2
0 02


     


 

      
 

, 

where 1




 

  
 

–relative permittivities of the sub- 

stance. Hence, the Equation (15) will be 

2

2
02

2

ln
1/

2
1/

Ф

ФФ Ф
i c Ф Ф

t tХ


  



 
 

              
 

  (15) 

We shall find the solution to the non-linear Schrödinger 
Equation (16) as in [9] 

   *
0 expФ Ф f kX t i rX t            (17) 

where the type of the function  f kX t  is still un-
known. The variables k,  and *—constants. By mark-
ing kX t   , and substituting (17) in (16) and con-
cerning  0Ф Ф f   we get (18). 

If to permit that 2krс


 

 

  
 

 as there should not  

be any imaginary items in (18), this equation is trans-
formed to (19). 
We consider the solution of the Equation (19) by 

2
2

1 exp
4

C
f C

 
  

 
              (20) 

where C1 and C2—constants. By substituting (20) into 
(19) we get that the constant C1 could be the arbitrary  

variable, 2 2 2k с


 

 

 
 

. 

 

 

2

2
02

0 0 0 0 02

ln

2 2 exp

Ф

ФP Ф
i Ф Ф i t

t tt
       

      
                        

              (14)

   

2

2
02 2 2

0 0 02

ln
1/

2 2
1/

Ф

ФФ Ф
i c Ф Ф

t tХ


     



 
 

                 
 

            (15)

22
2 2 2 * 2 2 2

2

1/ 1/ 1/ ln
2 2

1/ 1/ 1/

d f df d f
c k i krc f r c f

d dd

  
   

   
          

               
         

      (18)

22
2 2 * 2 2 2

2

1/ 1/ ln
2

1/ 1/

d f d f
c k f r c f

dd

 
  

  
      

         
     

                (19)
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The constant C2 could not depend upon the parameters 
of equation. It is accepted that C2 = –1. Then the fre-
quency and the wave number in (17), accordingly, are 

 2 2 2

*
2

1/
/ 2

1/
;

2

c r k

r
kc

 
  

 




   
    

        (21) 

The formulas (21) associate the frequency and the 
wave number of oscillations of function Ф(X,t) with the 
parameters of substance and electromagnetic field im-
pulse. 

The simplest ratios between the parameters are  

gained, when 0  . In this case 


 

 

  
 

, 

2
 


 

  
 

. From the equations in (21), and concerning 

2 2 2k с


 

 

 
 

 there is 

2

2 2 2

2
*

,

2

2 4 2
4

k
k

r
kc

 
  

 
 


  

  
  

 


   
   
     

 
 

    
 
 
 

    (22) 

By concerning that 2 2 22


  

 
 
 

 , we have 

*

2




 . This inequality is true, as for the rarefied gas 

(n < 1018 atoms/cm3) 


 
 
 

    and the frequency of  

wave filling of impulse  is far more than frequency of 
impulse envelope . 

Taking into account (10), (20) and the 
E

Ф
H

 
  

 
,  

we can find the laws of electromagnetic field strengths 
shifting by 

   
2

0

0

exp exp
4

E kX tE
i rX t

H H




   
        

      
  (23) 

It should be stressed, that though, the ratios for the 
electric aspect of impulse in [1] and (23) are similar to 
each other and feature the same phases of oscillations, 
that is possible on some distance from the over-radiating 
atom, the non-linear Schrödinger equations are differ in 

type of non-linearity. The reason of this lies in the fact 
that in [1] the impulse was considered with regard to low 
intensity, the one that does not lead to the energetic satu-
ration of medium, in which it is disseminated. 

For the estimation, like in [1] we have 4 12.1 10k m
c

    , 

5 12.1 10r m
c

    , 12 16.28 10 s   ,. 13 16.28 10 s   . 

For instance, the result of strength estimation of the 
electric filed impulse by the coordinate X, calculated with 
the MathCAD system by formula (23), is shown in Fig-
ure 2. 

Taking in to account the reciprocal orthogonality of 
planes of vectors’ envelopes of electric and magnetic 
fields impulse, we could gain the type of electromagnetic 
soliton, Figure 3. 

Figure 4 shows the envelopes of electric field impulse 
in the SIT, based on formula (23), curve 1, and by for-
mula (24), being the consequence of Maxwell-Bloch 
theory, curve 2. The impulse envelope of electric field 
strength in this theory is expressed as the first derivative 
of the Sin-Gordon equation solving and is (24). 
 

 

Figure 2. Calculation of the electric component of electro-

magnetic radiation impulse in dielectric. 
 

 

Figure 3. Intensity of electric and magnetic fields electro-
magnetic solitone in dielectric in conditions of the self-in-
duced transparency. 
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Figure 4. Comparison bending around of the electromag-
netic field impulse, received on the basis of the offered the-
ory, a curve 1, and the equations the Maxwell-Bloch, curve 
2. 

 
0

ch

E
E

kX t



              (24) 

Evidently, the first derivative of Sin-Gordon equation 
solving is similar to the soliton envelope in the non-linear 
Schrödinger equation with cube non-linearity solving 
(27). Curves 1 and 2 in Figure 4 are designed for the same 
parameters as the function in Figure 2. We can infer 
from Figure 4 that impulse, referred to formula (23), 

curve 1, is broader in its central part, but asymptotically 
shorter than impulse, inferred by the Maxwell-Bloch 
theory, curve 2. Evidently, it is bound with the energetic 
permittivity of medium in the central part of impulse. 
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