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ABSTRACT 

In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer ) ap- 
proximating subdivision schemes, which have smaller support and higher smoothness, comparing to binary and ternary 
schemes. The proposed algorithm has been derived from uniform B-spline basis function using the Cox-de Boor recur- 
sion formula. In order to determine the convergence and smoothness of the proposed schemes, the Laurent polynomial 
method has been used. 

1m 

 
Keywords: Cox-De Boor Recursion Formula; Quaternary; Approximating Subdivision Schemes; Convergence and 

Smoothness 

1. Introduction 

Until a few years ago all the work in the area of univa- 
riate subdivision was limited to consider just binary 
(Chaikin [1]; Dyn et al. [2,3]; Siddiqi and Younis [4]; 
Beccari et al. [5]) and ternary (Hassan and Dodgson [6]; 
Hassan et al. [7]; Ko et al. [8]; Mustafa et al. [9]) sce- 
narios. In recent time, some proposals of quaternary sub- 
division schemes have introduced new interest in the era 
of subdivision, showing the possibility of treating refine- 
ment schemes with arity other than two or three. 

Since subdivision schemes propose efficient iterative 
algorithms to produce the smooth curves and surfaces 
from a discrete set of control points by subdividing them 
according to some refining rules, recursively. These re- 
fining rules are very helpful and useful for the creation of 
smooth curves and surfaces in computational geometry 
and geometric designing due to their wide range of appli- 
cations in many areas like engineering, medical science 
and image processing etc. 

In this article an algorithm has been introduced to 
produce the quaternary point (for any integer ) 
approximating subdivision schemes. This algorithm has 
been developed using the Cox-de Boor recursion formula, 
in the form of uniform B-spline blending functions to 
produce piecewise polynomials of order  over the 
interval 

-m 1m 

p
 0,1t  (for detail, see Section 2). 

The quaternary subdivision scheme can be defined in 
terms of a mask consisting of a finite set of non-zero 
coefficients  :ia i Z a  as follows  

1
4 , .k k

i i j j
j Z

f a f i Z


    

The formal definitions and the notion for the conver- 
gence analysis of the quaternary subdivision scheme are 
as follows: 

The quaternary convergent subdivision scheme  
with the corresponding mask  necessarily sa- 
tisfies  

S
 :ia i Z 

4 4 1 4 2 4 3 1.j j j j
j Z j Z j Z j Z

a a a a  
   

        

It follows that the symbol of a convergent subdivision 

scheme satisfies the conditions 
π

4e
ni

0a
 

  
 

 and  1 4a  , 

for 1,2,3n  . 
Introducing a symbol called the Laurent polynomial  

  ,i
i

i Z

a z a z


   

of a mask  :ia i Z  with finite support. In view of 
Dyn [3], the sufficient and necessary conditions for a 
uniform convergent scheme are defined as follows. 

A subdivision scheme  is uniform convergent if S
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and only if there is an integer , such that  1L 

1

1

4

L

S
 
 
 

1,


  

subdivision  with symbol  is related to S with 1S  1a z

symbol , where  a z    
3

1 2 3

4

1

z
a z a z

z z z


  
 and 

satisfying the property  
1

1d d , 1, 2,k kf S f k  ,  

where  0 :k k k
if S f f i Z    and 

    1d d 4 :k k k k k
i ii

.f f f f i   Z  The norm S


 

of a subdivision scheme  with a mask  is 
defined by  

S  ,ia i Z

4 4 1 4 2 4 3max , , ,i i i i
i i i i

S a a a  

 


a

   


 

and 

 
4

1
max : 0,1, , 4 1 ,

4
L

L
L LS b
 







       
   

   

where  

       , 1
, 1, 2, ,

4
m L L

mL
b z a z m L   ,  

where  

     
3 3

12 3 2 3

4 4

1 1

m

m m

z z
a z a z a z

z z z z z z

   
            

 

and 

     1
4

0

.
jL

L
m m

j

a z a z




  

The paper is organized as follows, in Section 2 the 
algorithm to construct -point (for any integer ) 
quaternary schemes has been introduced. Three examples 
are considered to produce the masks of 2-point (corner 
cutting), 3-point and 4-point schemes in the same sec- 
tion. In Section 3, the polynomial reproduction property 
has been discussed. The conclusion is drawn in Section 
4. 

m 1m 

 

2. Construction of the Algorithm 

In this section, an algorithm has been constructed to pro- 
duce the quaternary -point approximating subdivision 
schemes using the uniform B-spline basis functions and 
the Cox-de Boor recursion relation. The Cox-de Boor re- 
cursion relation, in view of Buss [10], can be defined as 
follows: 

m

The recursion relation is the generalization to B-spline 
of degree  (or of order , i.e., ). For this, 
consider  to be a set of  non-decreasing real 
numbers in such a way that 0 1 2 lt t . The 
values i ’s, not necessarily uniformly spaced, are called 
knots of non-uniform spline and the set  is called knot 
vector. The uniform B-splines are just the special case of 
non-uniform B-splines in which the knots are equally 
spaced such that 1i i

k
T

n 1k n 

t  

T

1l 
t

t

t  t  is a constant for 0 1i n    
(i.e., it i ) . Note that the blending functions  ,i nN t  
of or- der  depend only on the knot positions and are 
de- fined by induction on  as follows. 

n
1n 

First, for 0,1, , 1,i l   let 

   1
,1

1, , ,

0,otherwise.
i i

i

t t t
N t   


 

Second for . Setting , 1n  1n k   , 1i kN t  is 
defined by the Cox-de Boor formula as,  

     1
0, 1 , 1,

1 1

.i i k
k i k

i k i i k i

t t t t
N t N t N t

t t t t
 

 
   

 
 

  i k    (1) 

The form of above recursive formulas for the blending 
function immediately implies that the functions  ,i nN t  
are piecewise polynomials of degree  and that the 
breaks between pieces occur at the knots . 

1n 
ti

In view of above recursion formula, the Uniform B- 
spline blending functions  of order  over the 
interval 

 0, pN t p
 0,1t , together with the properties [10], can 

be defined in Equation (2). 
The blending functions must satisfy the following 

properties:  
 The blending functions are translates of each other, 

that is,    0iN t N t i  . 
 The blending functions are a partition of unity, that is, 

  1i
i

N t  . 

   1N t0 i   for all t. 
 The functions  iN t  have continuous 1p   deriv- 

atives, that is, they are 1pC  -continuous.  

     0, 0, 1 0, 1 1 .
1 1p p p

t p t
N t N t N t

p p 


 
 



1

     (2) 

The masks , 0,1, 2, ,ia i m   of the proposed qua- 
ternary -point scheme can be calculated using the fol- 
lowing recurrence relation  

m

   0, 0,

7 5
,and ,

8 8

0,1,2, , 1,

i m i ma N m i b N m i

i m

         
  

 



   (3) 

where  0,mN t
1m

 is a uniform B-spline basis function of 
degree  . In the following, some examples are con- 
sidered to produce the masks of 2-point, 3-point and 
4-point quaternary approximating schemes after setting 
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2,3m   and 4, respectively, in recurrence relation (3). 
The 2-point scheme: To obtain the mask of quarter- 

nary 2-point scheme, set  in above relation (3). It 
may be noted that the linear uniform B-spline basis 
function  produces the mask of 2-point quarter- 
nary scheme (which is also called corner cutting scheme). 
Thus 2-point scheme (after adjusting the mask) to refine 
the control polygon is defined as follows:  

2m 

 0,2N t

1
4 1

1
4 1 1

1
4 2 1

1
4 3 1

1 7

8 8
3 5

8 8
5 3

8 8
7 1

8 8

k k k
i i i

k k k
i i i

k k
i i i

k k
i i i

f f f

f f f

k

k

f f f

f f f





 


 


 

  

  

 


 


           (4) 

Now, the convergence and smoothness of the proposed 
2-point scheme can be analyzed using the Laurent poly- 
nomial method introduced by Tang et al. [11]. 

Theorem 2.1: The quaternary 2-point approximating 
subdivision scheme converges and has smoothness . 1C

Proof. To prove that the subdivision scheme  cor- 
responding to the symbol  is . So, the Laurent 
polynomial  for the mask of the scheme can be 
written as  

S
 a z 1C

 a z

  4 3 2

1 2 3

1 3 5 7

8 8 8 8
7 5 3 1

8 8 8 8

a z z z z z

z z z

     

   

1

       (5) 

The Laurent polynomial method is used to prove the 
smoothness of the scheme to be . Taking  1C

       , 1
, 1,2, ,

4
m L L

mL
b z a z m   ,L  

where 

   

 

2

12 3

2

2 3

4

1

4

1

m m

m

z
a z a z

z z z

z
a z

z z z



 
  

   

 
  

   

 

and 

     1
4

0

.
jL

L
m m

j

a z a z




  

With a choice of  and , it can be written 
as  

1m  1L 

     1,1
11

1 1 2 3

1

4
1 1

1
2 2

b z a z

z z z z



    

Since the norm of subdivision 1

1

4
S  is 

 

1

1,1
4

1

4

max : 0,1,2,3

1 1 1 1 1
max , , , 1,

4 4 4 4 4

S

b 








 
  

 
   
 





 

therefore 1

1

4
S  is contractive, by Theorem 3, and so  S

is convergent. 
In order to prove the scheme developed to be , 

consider 

1C
2m   and 1L  ; it can be written as 

     2,1 2 3
21

1
2 2

4
b z a z z z   .  

Since the norm of subdivision 2

1

4
S  is  

 2,1
2 4

1
max : 0,1,2,3

4

1 1 1
max 0,0, , 1,

2 2 2

S b 





 
  

 
   
 





 

therefore 2

1

4
S  is contractive. Consequently,  is con- 1S

vergent and 1S C . 
The 3-point scheme: To obtain the mask of quarter- 

nary univariate 3-point scheme, set  in recursion 
relation (3). The quadratic uniform B-spline basis func- 
tions 

3m 

 0,3N t  are obtained. The mask , 0,1, 2a ii   of 
the proposed quaternary 3-point scheme can be calcu- 
lated from these basis functions. The 3-point scheme 
(after adjusting the mask), to refine the control polygon, 
is defined as: 

1
4 1

1
4 1 1 1

1
4 2 1 1

1
4 3 1 1

49 39 1

128 64 128
25 47 9

128 64 128
9 47 25

128 64 128
1 39 49

128 64 128

k k k
i i i

k k k
i i i

k k k
i i i

k k k
i i i

f f f f

f f f f

1
k

i

k
i

k
i

k
i

f f f f

f f f f


 


 


 


 

   

   

  


  








      (6) 

Theorem 2.2: The quaternary 3-point approximating 
subdivision scheme converges and has smoothness . 2C

.

 
Proof. The smoothness of the above subdivision 

scheme can be calculated following the same procedure. 
The 4-point scheme: Now, a 4-point quaternary sch- 

eme is presented and masks of the scheme can be cal- 
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culated from the cubic basis function. After setting 
 in relation (3) the cubic B-spline basis functions 

 can be calculated. Thus, 4-point scheme is 
defined as follows  

4m 
 0,4N t

1
4 1 1

1
4 1 1 1 2

1
4 2 1 1 2

1
4 3 1

341 2003 725 1

3072 3072 3072 3072
125 1697 1223 27

3072 3072 3072 3072
27 1223 1697 125

3072 3072 3072 3072
1 725

3072 3072

k k k k
i i i i

k k k k
i i i i

k k k k
i i i i

k k
i i

f f f f

f f f f

f f f f

f f


 


  


  


 

   

   

   

 

2
k

i

k
i

k
i

f

f

f







1 2

2003 341

3072 3072
k k

i if f f 



k
i









 


 (7) 

Theorem 2.3: The quaternary 4-point approximating 
subdivision scheme converges and has smoothness . 3C

Proof. The smoothness of the above subdivision sch- 
eme can be calculated following the same procedure. 

In the following section the polynomial reproduction 
property has been discussed. 

3. Properties 

The polynomial reproduction property has its own impor- 
tance. As, the reproduction property of the polynomials 
up to certain degree  implies that the scheme has 

 approximation order. For this, polynomial repro- 
duction can be made from initial date which has been 
sampled from some polynomial function. In view of [12], 
the polynomial reproduction property of the proposed 
scheme can be obtained after having the parametrization 

d
1d 

  and definitions in the following manner. 
Definition 3.1: For quaternary subdivision scheme the 

parametrization  1 4a   the corresponding para- 
metric shift and attach the data k

if  for  to 
the parameter values  

, i Z k N 

1
0 0 0with .

4 4
k k k k
i k k

i
t t t t

            (8) 

Definition 3.2: A quaternary subdivision scheme 
reproduces polynomial of degree  if it is convergent 
and its continuous limit function (for any polynomial 

) is equal to  and initial data 

d

πdp p

 0 0 , .i if p t i Z   

Theorem 3.3: A convergent quaternary subdivision 
scheme reproduces polynomials of degree  with res- 
pect to the parametrization defined in (8) if and only if  

d

       
2 π1

4

0

1 4 and e 0

for 0,1, , and 1,2,3.

nik
k k

l

a l a

k d n






 
    

 
 





 

Proof. The induction over  can be performed to 
prove this theorem following [12]. 

d

In view of [12], the following proposition helps to find 

the necessary conditions defined in (9). 
Proposition 3.4: Let d N  and R  . Then a sub- 

division symbol  a z
1k

 satisfies  

     
0

1 4 for 0,1, ,k

l

a l k


    d       (9) 

if and only if    4 4b z a z z   satisfies 

     1 4 and 1 0 for 0,1, ,kb b k    d       (3) 

(  derivative of the symbol) which in turn is equiva- 
lent to require that 

thk
     1

1 4
d

b z z c z
    for some 

c(z). 
Proposition 3.5: Let a quaternary subdivision scheme 

that reproduces polynomial up to degree . Then the 
smoothed scheme  with the symbol 

d

bS

   
2 31

4

z z z
b z a z

  
  satisfies the conditions  

   
2 π

41 4 and e 0, 0,1, , 1
ni

kb b k
 

d     
 

  

and hence generates polynomial of degree 1d  , but it 
has only linear reproduction. 

Proof. Following [12], for some Laurent polynomial 

 b z  with   1
1

4d
b  , we have  

       
14

12 3 1
1

1

d
d z

a z z z z b z b z
z


  

       
 

and the fact    1b a 1 . Thus, the 1st  derivative of 
 b z  is  

     
2 3 21 1 2 3

4 4

z z z z z
b z a z a z

        

and correct parametric shift for  is  bS

     
1 1 3

1 1
4 4 8b a

b
a a  3

2


      

The  derivative of  is  2nd  b z

     

 

2 3 2

2

1 1 2

4 2

2 6 12

4

z z z z z
b z a z a z

z z
a z

     3  

 



 

which produces 

         1 1 3 2 1 4 1 12a a ab a a z a      8        

after simplification, it can be yielded that  

   1 4 1 5 0b bb       . 

Hence, it does not reproduce polynomials of degree 
. 1d 
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4. Conclusion 

A quaternary univariate point (for any integer ) 
approximating subdivision scheme has been developed 
which generates the smooth limiting curves. The con- 
struction of the quaternary scheme is associated with an 
algorithm of uniform B-spline basis functions developed 
from the Cox-de Boor recursion formula. The objective 
is to introduce the quaternary subdivision schemes, which 
have smaller support and higher smoothness, comparing 
to binary and ternary schemes. Moreover the polynomial 
reproduction property has also been discussed. 

-m 1m 
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