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ABSTRACT

In this paper, we derive optimality conditions for a nondifferentiable multiobjective programming problem containing a
certain square root of a quadratic form in each component of the objective function in the presence of equality and in-
equality constraints. As an application of Karush-Kuhn-Tucker type optimality conditions, a Mond-Weir type dual to
this problem is formulated and various duality results are established under generalized invexity assumptions. Finally, a
special caseis deduced from our result.
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Nondifferentiable Multiobjective Programming Problems with Equality and Inequality

1. Introduction

A number of researchers have discussed optimality and
duality for a class of nondifferentiable problem contain-
ing the square root of a positive semi-definite quadratic
form. Mond [1] presented Wolfe type duality while
Chandra et al. [2] investigated Mond-Weir type duality
for this class of problems. Later, Zhang and Mond [3]
validated various duality results for the problem under
generalized invexity conditions, it is observed that the
popularity of this kind of problems seems to originate
from the fact that, even through the objective functions,
and/or constraint function are non-smooth, a simple and
elegant representation for the dua to this type of prob-
lems may be obtained. Obviously non-smooth mathe-
matical programming with more general type functions
by means of generalized sub differentials. However, the
square root of positive semi-definite quadratic form is
one of some of a nondifferentiable function for which
sub differentials can be explicitly be written.
Multiobjective optimization problems have been ap-
plied in various field of science, where optimal decisions
need to be taken in the presence of trade-offs between
two or more conflicting objectives. Researchers study
multiobjective optimization problems from different
viewpoints and, then there exist different goals when
setting and solving them. The goal may be finding a rep-
resentation set of Pareto optimal solutions, and/or quali-
fying the trade-offs in satisfying the different objectives,
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and/or finding a single solution that satisfies the prefer-
ences of a human decisions making. Motivated with these
observations, there has been an increasing interest in
studying optimality and duality for nondifferentiable mul-
tiobjective programming problems. Duality results for
nondifferentiable multiobjective programming problems
with square root term appearing in each component of
the vector objective derived by Lal et al. [4]. In nondif-
ferentiable multiobjective programming problems, having
a support function in each component of the vector ob-
jective, further devel opments for duality results are found
inKimet al. [5] and Yang et al. [6].

In this paper, we obtain optimality conditions for a
class of nondifferentiable multiobjective programming
problems with equality and inequality involving a square
root terms in each component of the objective. For this
class of problems, Mond-Weir type dua is formulated
and usual duality results are obtained. In the end a special
case is generated.

2. Related Pre-Requisites and Expression of
the Problem

In[1], the following problem is considered:
Problem (EP): Minimize  (x)+ (x Bx)""

subjectto g(x)<0
h(x) =0
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where

1) f:R" >R, g:R">R"and h:R" >R’ are
continuously differentiable.

2) Bisan n x n symmetric positive semi definite ma-
trix.

The following generalized Schwartz inequality [7] will
be needed in the present analysis:

x" Bw < (xTBx )3/2 (WTBW )
The equality in the above holds if, for A >0,
Bx=ABw.

Y2

The function ¢(x)= (xTBx)l/2 , being convex and
everywhere finite, has a subdifferentia in the sense of
2
convex analysis. The subdifferential of (xTBx)j/ is
given by
6<xTBx)1/2
= {Bw|xTBw :(xTB)c)]/2 ,wherewe R", and w' Bw< 1}
We also require the Mangasarian-Fromovitz constraint
qualification which is described as the following:

Let x € Q bethe set of feasible solution of the problem
(EP), that is,

Qz{xeR"

g(x)S O,h(x):O}

and by A(x), the set of inequality active constraint
indices, thet is,
4(x)={/lg,(¥)=0},
where X € Q. We say the Mangasarian-Fromovitz con-
straint qualification holds at x € Q when the equaity
constraint gradients VA (X),Vh,(x),--,Vh,(X) are
linearly independent and there exist a vector d € R"
such that
Vh(X)d =0 and Vg, (x)d <0, foral j e A(X).

The following theorems (Theorem 2.1 and Theorem
2.2) give Fritz John and Karush-Kuhn-Tucker type opti-
mality conditions using the concept of sub differential
obtained by Husain and Srivastav [8] using the concept
of subdifferential:

Theorem 2.1 (Fritz John Optimality Conditions): If
X is an optimal solution of (EP), then there exist La-
grange multipliers re R, yeR", zeR”, weR"
such that

(VS (¥)+Bw)+Vy g(¥)+Vz"h(¥)=0

¥ Bw= (ETB‘)?)]/Z

y'g(¥)=0

Copyright © 2013 SciRes.

I. HUSAIN, V. K. JAIN

w! Bw<1
(r,y)z 0

(r,y,z) #0.

If Mangasarian-Fromovitz constrain qualification
(MFCQ) holds at x , then the above theorem reduces to
the following theorem giving Karush-Kuhn-Tucker op-
timality conditions:

Theorem 2.2 (Karush-Kuhn-Tucker optimality con-
ditions): If x isan optima solution of (EP) and MFCQ
holds at x, then there exist y e R", zeR”, weR"
such that

Vf (X)+Bw+Vy'g(X)+Vz'h(x)=0
% Bw=(¥"Bx)
w! Bw<1
y'g(x)=0
y> 0.

The following conventions for inequalities will be
used in the subseguent analysis: If a,be R", then

azbjaizbi,i:LZ,m,n
azb=a>b and a=b
a>b=a,>b;,i=12,---,n.
Consider the following multiobjective programming
problem containing sguare root of a certain quadratic

form in each component of the objective.
(VEP): Minimize

(fl(x) +(xTle)1/2 S (x)+(xTka)1/2)
Subject to
g(x)<0 D
h(x) =0 2

wheref, g and i arethe same asin (EP).
Let Q= {x eR" g(x)io,h(x) = 0}
Definition 2.1 A point x € Q is said to be an effi-
cient solution of (EP) if thereexistsno x e Q such that
£ (x)+ (¥ Bx)" < £ (®)+ (7 BF)"

forsome reK ={12,--,k} and

£ (3)+(xBx)” <1 () + (' BF)

for ieK =K-r.
The following results relate an efficient solution of
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(EP) of k-scalar objective programming problems.

Lemma 2.2 (Chankong and Haimes [9]): A point
x € Q isan efficient solution of (EP) if andonly if X is
an optimal solution of (EP.) foreach re X .

(EP.): Minimize f, (x)+(xTB,x)]/2

subjectto g(x)<

r

S () (" Bx) < () (FBE) L iek

We recall the following definitions of generalized in-
vexity which will be used to derive various duality re-
sults.

Definitions 2.2: 1) A function ¢:R" — Ris said to
be quasi-invex with respect to a vector function
n=n(xu), if

#(x)<@(u)=n" (x,u)Vp(u)<0

2) A function ¢ is said to be pseudo-invex with re-

spect to avector functions = 7(x,u), if

n' (x,u)V¢(u)2 03¢(x) 2¢(u)¢

3) ¢ is said to be the strictly pseudoinvex with re-
spectto 7 if x#u,

n" (x,u)V¢(u)2 O:>¢(x)>¢(u).
Equivaently, if
¢(x)£¢(u) =n" (x,u)V¢(u)< 0.

3. Optimality Conditions

In this section, the optimality conditions for the problem
(EP) are obtained.

Theorem 3.1 (Fritz John Type Optimality Condi-
tions): If x bean efficient solution of (EP), then there ex-
ig A eR,forieK ,yeR",ze R” and we R" suchthat

ﬁz,. (Vﬁ () + Bif) +Vy  g(¥)+Vz"h(x) =0

T Bw, =()?TB[>?)M, ek
w'Bw, <1 ieK
»'g(®)=0
(4,) 20
(4,y,2)#0

Proof: Since x is an efficient solution of (EP), by
Lemma 2.1X is an optimal solution of (EP.) for each
reK and hence in particular of (EPF,). Therefore by
Theorem 2.1 there exist A, eR,forieK,yeR",
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zeR?and we R" such that
k
DA (Vf (%)+ BX)+Vy g (%)+Vz"h(¥) =0
i=1
Y Bw, = (;—CTB,.;?)M ek
»'g(¥)=0
wl.TB,w,.il, iek
(,11,,1 ,...’,1/(,;);0
(A os =, 2, 7,2) %0

The theorem follows.

Theorem 3.2 (Kuhn-Tucker type necessary opti-
mality conditions): If x be an optima solution of
(VEP) and let for r e K, the constraints of (EP, )sat-
isty MECQ. Then there exist Ae R,y e R", zeR”
and we R" suchthat

Zklj/lf (V/, (%)+BX)+Vy g (%)+Vz"h(¥) =0
y'g(x)=0
x'Bw, = (;—CTB‘_)?)]/Z P=12-k
w/' Bw,<1
/1_30
yz_O.

Proof: Since x is an optima solution of (VEP), by
Lemma3.1, X isanoptimal solutionof (EP.) foreach
r. Asfor some r, the constraint of (EF,) satisfy MFCQ
a x , by Theorem 22 of their exist 0<A €R,
0<A eRieK, ,yeR",zeR”and we R" such that

(v, (f)+B,w,)+iz[ (V/,(%)+B.w,)
+VyTg(f)+VZTh()?5; 0,
yielding
Zk;,%,. (Vf: (%) + Bow, )+ Vy" g(x)+Vz"h(¥) =0
y'g(x)=0
T Bw, = (EB,.E)M ek
w'Bw<liek

4 >0,0<4 eR i€k,
y>0

From the above relation it is obvious that the theorem
follows.
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In Theorem 3.2, we assume MFCQ for some (EP.),
which implies2 > 0. In the following theorem, we as-
sume MFCQ for every (EP.) andobtaini > 0.

Theorem 3.3 (Kuhn-Tucker type optimality condi-

tions): If x be an efficient of (VEP) and let for

eachr e K , the congtraints of (EP, ) satisfy MECQ at x .

Then there exist A eR",yeR",ze R” andwe R" such
that

Zk:,zi (Vi (%) + Bow, )+ Vy" g(%)+Vz"h(¥X) =0

i=1
y'g(x)=0

(¥B%) =%"Bw,ick

RS )
T
w' Bw, <1

A>0

k
> =1
i=1

y>0

Proof: Since x isan efficient of (VEP) by Lemma 3.1,
X isanoptimal solution of (EP, ), by Kuhn-Tucker type
necessary optimality conditions, for eachr € K, there
exist v eR ,(ieKr),,u; eR ,(jeM), 6 €R,
(l € L) and we R" such that
V(%) +Bw, + . v (Vf;(¥)+Bw)
ieK,

m P
+2 uVg; (X)+2 6/ Vh(x)=0
j=1 =1

m

2 Mg, (xX)=0

J=1

1

vi >0,ieKk,
y<0
Summing overi e K , we get

i(v,l+v,.2 o) (VS (%) + Bw,)
i=1

(4 ] 4l Vg (3)
j=1

+zp:(5}+§f +-+ 3 Vh(X)=0
=1

m

Do (#d 442+ il g, (F) =0

J=1

where v; =1forie K
k m
v, (Vf: (f)'*’ Biwi)+ zfu,ivgi (f)
i=1 J=L
P
+Y 6/Vh(x)=0

=1
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k
where v, =1+ Zvl.’>0,ieK,,uj ez,uj'.zo,ieM
=1 -

rek, r

k
and 6, =) 6 leP={12-,p}
r=1

2. #;8;(¥)=0
J=

Dividing throughout the above relation and setting, by
k

2

i=1

k k
l[:v[/Zv[ ,ieK,yj:,uj/Zv[,

=1 i-1
k
jeM ,z, =6/ v ,1€{12:-,p}
i=1
We obtain,

iﬂ’i (sz (¥)+ Biwi)+iijgj (¥)+ iz,Vh()T) =0

Zijgj (x)=0
=1

or
Zkl:z, (Vf: (%)+B.X)+Vy'g(x)+Vz'h(xX)=0
y'g(¥)=0
A>0
f,@ =1
h y>0.

4. Mond-Weir Type Duality

We formulate the following differentiable multiobjective
dual nonlinear problem for (VEP):
(M-WED): Maximize

(o) By f, () o B

subject to
kl/li(Vfl. ()_c)+Bl.wl.)+VyTg(u)+VzTh(u):O ®))
y'g(u)>0 (4)
zTh(u)zO ®)
w/Bw,<1i=12-k (6)
2>0 ()
y>0 8

In the following, we shall use T" for the set of feasi-
ble solutions of (M-WED)
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Theorem 4.1 (Weak Duality): Let xeQ and
(u,4,y,z)eT such that with respect to the same 7,

1) Zl[(fl (.)+(.)TB,.W[) is pseudoinvex
2) y'g(.) isquasi-invex, and
3) z'h(.) isquasi-invex.

Then

f. (x)+(xTB,x)y2 < f,(u)+u"B.w, for somere K (9)

f (x)+(xTBl.x)j/2§fi (u)+u'Bw, ,ieK (10)

r

cannot hold.
Proof: Suppose the contrary that (9) and (10) hold.
Since A >0 ,the aboveinequalities (9) and (10) give

k k
Z/li (fz (x)-i—(xTB,.x)]/Z) < z/?'i (fz (”)"_”TBI'WI')
i=1 i=1
v'g(x)<y g (u)
zrh(x)izrh(u)
These inequalities because of quasi-invexity of »"g(.)
and z'h(.) imply
n'Vy'g(u)<0
nTVzTh(u)io
Combining these, we give
n' (Vyrg(u)+VzTh(u))§0
Using the equality constraint of (M-WED), thisyields,

k
nT(Z%(ﬁ(u)JruTBiw,-)ij
i=1 -
This, because of 1), implies

Zk‘/zi (/; (x)+x"Bw, );Zk:/@ (f; (u)+u"Bw,)

Using ' Bw< (+'Bx)" thisyields

k k
Z/II. (f, (x)+(xTB[x)]/2)ZZ/1[ (]f (u)+uTB[w,.)
i=1 i=1

Hence the result follows.

Theorem 4.2 (Strong Duality): LetXx satisty MFCQ
and be an efficient solution (VEP). Then there exist
AeRf,yeR",zeR”and we R" such that
(x,y,2,4,w) isfeasible for (M-WED) and the two ob-
jective functions are equal. Furthermore, if the weak du-
ality holds for al feasible solution of (VEP) and
(M-WED), then (x,y,z,4,w) isan efficient solution of
the (M-WED).

Proof: SinceXx is an efficient solution (VEP) satisfy
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MFCQ, therefore by Theorem (3.3), there exist 4 € R*,
yeR",zeR?andw, eR",ie K satisfy

iz,. (Vf;(x)+Bw)+Vy g(x)+Vz"h(X)=0

y'g(¥)=0
—r —rp=\Y?2 .
X Bl.wl.z(x B,x) ,iekK
wiTBiWiil
A>0
>0
Hence (x,4,y,z,w, -+, w, ) satisfies the constraints of
(M-WED) and

£(®)+(7Bx)" = f(x)+x"Bw,i k.

i

i.e. the two objective functions have the same value.

Now we claim that (x,4,y,z,w, -, w,) is an effi-
cient solution of (M-WED). If not, then there exist
(ﬁ,l,y,z,w)el“

(fl(ﬁ)+ﬁBlwl,-~,fk(ﬁ) +ﬁBkwk)
>(AE)+X B, £, (%) + X Byw, )

As ¥ Bw, =(¥'B¥)" icKk ,wehave
(A (@) + By, f () +iByw, )
(A (7 Bx)" @+ (7 87) )

This contradicts Theorem 4.1 Hence (X,y,z,A,w) is
an efficient solution.

Theorem 4.3 (Strict-converse duality): Let x and
(u,4,y,z,w) be an efficient solution of (VEP) and
(M-WED), such that

k

A (f(X)+X Bw ) =D 4 (f (@) +u" Bw,) (11)

i=1

M-

1l
5N

i

If with respect to the same 7,
k

(A) Y4 (f()+()Bw,) isstrictly pseudoinvex,
i=1

(A2 »y'g(.) isquasi-invex, and

(A3 z'h(.) isquasi-invex
then x =1u.

Proof: Let x #u. By hypothesis (A;), we have from
(11)

k
n" Y 24 (Vf,(@)+Bw,)<0 (12
i=1
By hypothesis (A,) and (Az) we have
n'Vy'g(w)<0 (13)
OJMSi
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n'vz'h(ir)<0 (14)
Combining (12), (13) and (14), we have

n' [,Z::;Li (Vf, (LT)+BI.WI.)+VyTg(u)+VzTh(u)} <0

which contradict the equality constraint of (M-WED).
Hence x =u.

Theorem 4.4 (Conver se duality):

Let (X,y,4,z,w,---,w,) bean efficient solution of
(M-WED) at which

1) the matrix VZ(/lff( )+ g(x)+z"h(x )) is
positive or negative definite and

2) the vectors Vy'g(x)and Vz'h(X) arelinearly in-
dependent .

If, for al feasible(A,x,u, y,z,w, -, w, ),

g%(ﬁ(-ﬁ(.)rliwi) ispseudoinvex, y'g(.) is

gausi-invex and z'A(.) is quasi-invex with respect to
thesame 7, then X isan efficient solution (EP).

Proof: By Theorem 3.3, there exist r e R*,0eR",
acR feR, y,eR i=12- -k, feRk and neR”

such that
Zkllr,. (V£ (¥)+Bw)

+0"V (A" 1 (X)+y"g(%)+="h(%)) (15)

+aVy' g(X)+pVz"h(x)=0
7,(x"B,)+ 04, ~2y,Bw, =0 (16)
O(Vf,(X)+Bw,)+& =0 (17)
OVg(X)+ag(x)+n=0 (18)
0 Vh(X)+ ph(x)=0 (19)
ay'g(x)=0 (20)
pz"h(3)=0 (21)
n'y=0 (22)
E'A=0 (23)
7:(1-wBw,)=0,ieK (24)
(r.a. .5, 7.m)>0 (25)
(r,,8,0,&,7,m) %0 (26)

Multiplying (15) by 4, and summing over i, we have

S (34 (v )
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+(Zk:/1,.jafv2(/lff( )+ g(x)+2"h(x))

+(é/1ijaVyTg(f)+(gﬂijﬂvf}z(f):0 @)

Using the equality constraint, we have

(i(q —al, ))vﬂ g(f)+[i(‘q —al, ))VzTh(a‘c)

i=1 i=1

‘@J”VZ(M )+ g(F)+:"h(%)) =0 (28)
(jzl(r, et )j&TVyTg(J_c)
+ il 7, —ak) jQTVZTh()_C) (29)

b
(iﬂ,jefvz (A1 (F)+ " g(¥)+"h(¥))0=0

1

From (18) and (19), we have
HTVyTg()?) =0
0'Vz'h(x)=0

Using thesein (15), we have

0"V (A" f(%)+ )y g(X)+2 h(x))0=0

which because of the hypothesis 1) gives 9 =0.
Using # =0 and the hypothesis 2), we have

k k
(z(f,.—az,.)j:o,(z(f,_m,.)j:o (30)
i=1 i=1
Let 7,=0, i = 1, 2, ==, k. Then (30) implies
a=0= . The relations (17) and (18) implies =0
and £=0.Using =0 and =0 aong with (24) in
(16), weget 7, =0,ieK,8=0.
Thus (a,4,8,7,&,6)=0 a contradiction to (26).
Hence 7>0. Consequently «>0andfg>0. Using
=0, a>0andps >0,in(18) and (19), we have

g(¥)<0.,4(x)=0

Thisimpliesthat x € Q.
If ¢=0in(16), we have

T

i

B¥ = (2—7] Bw, ,icK (31)
Hence by Schwartz inequality

 Bw, =(x'Bx) (w'Bw, )" (32

i

If y,>0,then (24) implies
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wl.TBl.wl.:l, iekK
Consequently (32) yields
* Bw, =(x'Bx) " icK
If y,=0,then (31) implies Bx =0. Sowestill get
(¥"8w)=("Bx) ick (33)
Thus by (33), we have
Jj.(f)+(fTB,.7c) = f(X)+x" Bw, ,ieK.

implying the two objective functions have the same va-
lue.

Now, assume that x is not an efficient solution of
(VEP), then thereexists x e Q such that

L(®+(FBR) <)+ (xBx)",
forsome re K and
f,.(fc)+(chB,.£) <f,(X)+X"Bw, foriek,
Using (¥'B¥)" =B, i< K, wehave
L&) +(FB3) < (x)+¥ Bw, ,
for some re K
£(®)+(783)" <

This contradicts Theorem 4.1. HenceXx is an efficient
solution of (VEP).

fi(X)+xX"Bw, foriek,

5. A Special Case
If K={1}, f,=f andB, =B, our problems reduce to
the following problems recently studied by Husain and
Srivastav [8]:
(EP): Minimize f(x)+(xTBx)j/2
subject to
g(x)<0
h(x)=0
(M-WED): Maximize f(u)+u’Bw
subject to
Vf (u)+Bw+V y' g(u)+Vz"h(u)=0

II/\

yrg(u);o

z'h(u) >0

w’ Bw

v

1,
0

II\/ IIA
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6. Conclusion

In this research optimality conditions are derived for a
nondifferentiable multiobjective programming problem
containing a certain sguare root of a quadratic form in
each component of the objective function in the presence
of equality and inequality constraints embodying many
realistic problems. A Mond-Weir type dual to this prob-
lem is formulated and usua duality theorems are proved
under appropriate generalized invexity conditions. A
specia caseis aso obtained from our duality results. Our
results can be revisited in the multiobjective setting of a
nondifferentiable control problem.
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