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ABSTRACT
The AGM postulates ([1]) are for the belief revision (revision by a single belief), and the DP postulates ([2]) are for the
iterated revision (revision by a finite sequence of beliefs). Li [3] gave an R-calculus for R-configurations A|F, where

A is a set of literals, and I' is a finite set of formulas. We shall give two R -calculi such that for any consistent set I and
finite consistent set A of formulas in the propositional logic, in one calculus, there is a pseudo-revision ® of I' by A

such that A|F = @ isprovable and ® c AUT; and in another calculus, there is a pre-revision = of I' by A such that

A|F = E is provable, EFA and A,0FE for some pseudo-revision ®; and prove that the deduction systems for

both the R -calculi are sound and complete with the pseudo-revision and the pre-revision, respectively.

Keywords: Belief Revision; R-Calculus; Maximal Consistent Set; Pseudo-Revision; Pre-Revision

1. Introduction

The AGM postulates ([1],[4-6]) are for the revision
Kog of a theory K by a formula ¢; and the DP
postulates ([2]) are for the iterated revision
(...(Ko(pl)o...)o(/)n.

The R -calculus ([3]) gave a Gentzen-type deduction
system to deduce a consistent theory T"UA from any
theory TUA, where T"UA should be a maximal
consistent subtheory of TUA which includes A as a
subset, where A|F is an R -configuration, ' is a
consistent set of formulas, and A is a consistent sets of
literals (atomic formulas or the negation of atomic
formulas). It was proved that if A|F:>A|F' is
deducible and A|F’ is an R -termination, i.e., there is
no R -rule to reduce A|["" to another R -configuration
A|F”, then AUT" is a pseudo-revision of T' by A.

The R -calculus has the following features:

* A is a finite set of literals (propositional variables or
the negation of propositional variables);
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e T isasetof formulas;

* R,R",R’,R” are not sufficient for pseudo-revision,
and R® is introduced to deduce A|F into a con-
sistent set ® of formulas including A;

¢ the soundness theorem holds, that is, if A|F =0 is
provable then ® is a pseudo-revision of I by A;
and

* the completeness theorem holds, that is, if ® is a
pseudo-revision of I' by A then A|F:>® is
provable.

Because each rule in the R -calculus consists of the
statements of form

Alp, T = AT,

the R -calculus is based on pseudo-revision, ie., to
contract ¢ from AUTU{p} if AUTU{gp} is incon-
sistent, which makes the R -calculus not preserve the
minimal change principle.

Given two theories A and I, a pseudo-revision ®
of ' by A is a consistent subset of TTUA including
A (if AUT is inconsistent; otherwise, ® = AUT").

We shall give two R -calculi such that
* in one R -calculus, say R,, for any consistent for-

mula set A and finite formula set I', there is a
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consistent formula set ® c AUT such that
A|F = 0 is provable and ® is a pseudo-revision
of ' by A (the soundness theorem); and con-
versely, given any pseudo-revision ® of ' by
A,A|F = 0O is provable (the completeness theorem);
* in another R -calculus, say R,, for any consistent
formula set A and finite formula set I, there are
consistent formula sets ® and Z such that
° Al=Z is provable,
° O isapseudo-revisionof I' by A,
° EF40® and
o there is no subformula & of E contradictory to A
(the soundness theorem);
and conversely, given any pseudo-revision ® of T' by
A, there is a consistent formula set = such that
A|F:E is provable, ®FH4Z and Z= is contra-
dictory to no subformula £ of = (the completeness
theorem).
The R -calculi are different from the R -calculus in
[3] as follows:
¢ A is any set of formulas;
¢ The cut-rule in the R -calculus is eliminated in the
R -calculi;
¢ Because (/\) -rule in the R -calculus is not sufficient
for reducing

Alg, Anpy,T = AT
to either Alg,,[ = Al or Alp,,T =A[l the R -
calculus is not complete with respect to the pseudo-
revision of ' by A. In the new R -calculi, we split
(A) into two deduction rules (Rf) and (RZA)
according to whether ¢, is consistent with AUT or

not. The reason is given as follows.
Given a consistent theory A and formulas

@, 90,,AU{@, v p,} isinconsistent if and only if

AU{g} and AU{gp,} are inconsistent; and if either
AU{g} or AU{g} isinconsistent then AU{p, Ag,}
is inconsistent; and if AU{¢p Ag,} is inconsistent then
we cannot deduce that either AU{gp} or AU{gp,} is
inconsistent, and what we have is that AU{¢g A g,} is
inconsistent if and only if either AU{g,} is inconsistent

or AU{¢p,,¢,} isinconsistent. Formally,

incon (A, ¢,) or incon (A, ¢,)

1
incon (A, A ,) M
incon (A, ¢, ) incon (A, ,) )
incon (A, ¢, v @,)
incon(A,gol) or incon(AU{%},%) 3)

incon (A, @, A ;)
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where con(A,¢) and incon(A,p) denote that AU{p}
is consistent and inconsistent, respectively. Therefore, we
use

() A|¢1,F:A|F
" Alg Ap,. T = AL

W Agle, T=Ag|0
(%)
A|§01/\(02,F:>A|F
in R and R, instead of
Alg,,T = Al Alg,,T = Al
Alg rg,,T = Al Alp ~g,, T = AT

in the R -calculus.
In R weusearule
AUT I —
( Rcon) @
Alp,T = A,p.T

to deduce Alp,I' to A,p,I' if A, are consistent.
In R,, we shall give a deduction rule to reduce Aj@,I"
to the atomic cases where

AUT F—p AUTFp
AlpT=AT"  A-p,T=AT’
AUT ¥ —p AUT# p

Alp.T=Apl" A-p.T=A-pT’

with a cost that we cannot prove that if A|F:>E is
provable then Z is a pseudo-revision of I' by A.
Instead we shall prove that if A|F = E is provable then
E is a pre-revision of I' by A, that is, there is a
consistent theory ® c AUT such that 1) @ oA is a
pseudo-revision of I' by A; 2) ®FHE; and 3) no
subformula & of Z is contradictory to A.

The paper is organized as follows: the next section
gives the R -calculus in [3] and basic definitions; the
third section defines an R -calculus R, for the pseudo-
revision and proves that R, is sound and complete with
respect to the pseudo-revision; the fourth section defines
another R -calculus R, for the pre-revision and prove
that R, is sound and complete with respect to the
pseudo-revision, and the last section concludes the whole

paper.
2. The R -Calculus

The R -calculus is defined on a first-order logical
language. Let L' be a logical language of the first-order
logic; @,,¢,,p, formulas and I',A sets of formulas
(theories), where A is a set of atomic formulas or the
negations of atomic formulas, and A|F is called an
R-configuration.

The R -calculus consists of the following axiom and
inference rules:
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(47)  Ap|-p.T=0.AT
FLobo, ¢ —r 0
Lo 0 A|¢3»F2 :>A|r2

Alg,,T,,T, = AT, T,

()
()

Alg,,T = Al Alp,,T = AT
Alg, v, T = Al

Ao, T = AT
A|(o1 ~np,, T = A|F

(")
(R*)

Al—¢,,T = AT Alg,, T = Al
Alp, > ¢,, T = AT

Alp[t/x],T = AT
A|Vxp,T' = AT

(")

where in R™,p, >, ¢, means that ¢, occurs in the
proof tree T of ¢, from T, and ¢; and in R",t
is a term, and is free in ¢ for x.

The R -calculus is in the first-order logic. In the
following we discuss the R -calculi in the propositional
logic.

Let L be a logical language of the propositional
logic which contains the following symbols:

* propositional variables: p,, p;, **;
* logical connectives: —, A, V.
Formulas are defined as follows:

p=pl-vlore, o Ve,

Definition 2.1. Given a consistent set A of formulas
and a finite consistent set I' of formulas, a consistent
set © of formulas is a pseudo-revision of I' by A if
O=AUl (f AUT is consistent), or (if AUl is
inconsistent then) © satisfies the following conditions:

1) ®cAUT,

2) AcO, and

3) there is a @el such that ®U{p} is incon-
sistent.

Each pseudo-revision ® can be generated by the
following procedure: given any consistent set A and
finite consistent set I', assume that I'={¢p,---,¢,} is
ordered by a linear ordering =< (without loss of
generality, assume that ¢, <@, <--- < ¢, ), define

0,=TUA;
O — 0, _{(Df} it O, F-gp
", otherwise

Let ®=0,. Then, ® is a subset of AUI' such
that ® oA, and © is consistent.

Lemma 2.2. ® is a pseudo-revision of I' by A.
Moreover, Let i, be the least i such that

Copyright © 2013 SciRes.

O ~{p}F -, Then, ©=AU{p .0, ..o, ]

Definition 2.3. Given a consistent set A of formulas
and a finite consistent set I of formulas, a consistent
set Z of formulas is a pre-revision of I' by A if
there is a pseudo-revision ® of T by A such that

1) OF4E,

2) AcE, and

3) no subformula & of E is contradictory to A.

Each pre-revision = can be generated by the follow-
ing procedure: given any consistent set A and finite
consistent set I', assume that I'={¢,,---,¢,}, define

- _ {Eil - {(Df}

" (BL—{e})U{g} otherwise

if &, F—o

where

A if ¢ =landE, =/

) if ¢ =landZ, =/

pirne,  if g =g rp

ove, if ¢ =¢ ve,and con(Ei,gol),

Q= con(EI.,(pz)

o if ¢, =¢ ve,and incon(Z,,¢),
con(E,,0,)

o if =g, ve,and con(E,,¢),
incon(Z,,¢,)

where A is the empty string.

Let =E=Z5,, and © be the pseudo-revision of I
by A in the same ordering as =. Then, we have the
following

Lemma 2.4. Let i, be the least i such that
O, ¥ =g, Then, for any ;j<i,®,=E; and for any
J Ziy,¢; is asubformula of ¢,.

Lemma 2.5. E is a pre-revision of I' by A such
that Z2-- @, and no subformula of E is contradictory
to A.

Proof. Let i, be the least i such that ©,, fF—g,.
Then,

E=AU{g .00 -
We prove that for any i with i, <i<n,5 -0, and
©, FE, by induction on i.
Let Q=0, , _{%,} and y =¢,. Then,
E, =QU{y'}. We prove by induction on the structure

of w that Quuty' and Qu'Fy.

If =1 and QF—I then QU{y} is inconsistent,
a contradiction to the choice of i;;

If w=I[ and QW —l then y' =y, and
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QuH1Q,y';

If =y, Ay, and QUy is consistent then QU{y,}
and QU{y,} are consistent, and by the induction
assumption,

Qu, Q|
Qal//2 l__{ Q:W;n

and hence,
Q. Ay, FAQup Ay,
If w=y,vy, and QUy is consistent then either
QU{y,} or QU{y,} is consistent.

If QU{y,} and QU{y,} are consistent. then by
the induction assumption,

Qa‘//I |__| Qs‘//ll’
Q)V/Z '7# Q,l//é,

and hence, Q,y, vy, 1 Qu v;

If QU{y,} is inconsistent and QU{y,} is consis-
tent. then Q |y, = Q,[4] and by the induction assump-
tion, Q,y, F4Q,w;, and hence, Qu, v, FHQ,y,,
because Q.p, Fy), and Qv by, (QU{y,} is in-
consistent, and hence, for any formula 8,Q,y, - 8).

Similar for the case that QU{y,} is consistent and
QU{y,} is inconsistent.

Similarly we can prove that for any i with
iy <i<nE, F10,.

3. The R-Calculus R,

In this section we give an R -calculus R, which is
sound and complete with respect to the pseudo-revision,
where the decision of whether AU{p}UT is consistent
is needed so that if AU{p}UT is consistent then
Alp,T = A,,T is provable; otherwise, Ao, = A|T
is provable.
Let A,I" be any consistent sets of formulas.
Definition 3.1. /=A|T is a term; and =1 is a
S

n

S ...
statement, where t:A|F and t’:A|F';and I’T

is a deduction rule, where S,,---,S,,S are statements.
R, has the following deduction rules:

(an) AUFV‘—Mp
Alp,T = A,p,T

. AUTFp
(%) Al-p,T = A|T

N AUTF—p
(%) Alp,T = AT

(RA) Alg,, T = AT
" Alg Ap, T = AT

Copyright © 2013 SciRes.

(%) Ao, T = AT
: A|¢)1/\¢)2,F:>A|F

(=) Alg,,T = AT A|p,, T = A|T
Alg, v, T = Al

Definition 3.2. AT =® is provable if there is a
sequence

(AT, = AT,

r,=A

r,}
of statements such that

1) AT =A|T;

2) AT, =©, and

3) for each i< n,Ai|Fi = A,’,|FI’, is either an axiom or
deduced from the previous statements by the deduction
rules.

For example, the following

(1) =pv—g,pt—q
@ —pv—a.pla=-pv—aq.p| (().R)
(@.R8;)

is a proof and so —pv—q|pAg=—pVv—g is prova-
ble.
Also, the following

(D) —pAr—gt—p
2)—pAr—qlp=-pr—q|
B)—pAr—qt—q
@D-prr-qlg=—-pr—q|

B)—pVv—qlprg=-pv—q|

(R)
(&)

S)pr—qlpvg=—pr—ql (2.4).R")

is a proof and so —pA—¢q|pVvg=—pA—g Iis prova-
ble.

Theorem 3.3. For any consistent sets I',A of for-
mulas and formula ¢, if A|@, = A|Tl" is provable
then AU{p}UT is inconsistent; and if A[p,I' = A,@,T
is provable then AU{@}UT is consistent.

Proof. If A|p,T = A,p,T is provable then (R°°“)
isusedand AU{p}UT is consistent.

If Alp,'=A|T is provable then we prove that
AUTF =g, ie, AUTU{p} is inconsistent, by the
induction on the length of a proof of A|p, = A|T
and the cases that the last inference rule is used.

If the last rule used is R,” then ¢ =—p, and
AUTF p, ie., AUTF—gp;

If the last rule used is R, then ¢ =p, and
AUT F—p, ie., AUTF —g;

If the last rule used is R then @ =¢, A@,,and
Alg,I'= A|T'. By the induction assumption,

AUT - —¢@,, and hence, AUT F—¢p, v—p,, ie.,
AUT F —gp;
If the last rule used is R; then ¢=¢ A@,, and
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Ao |e,,I' = A, |I'. By the induction assumption,
AUTU{p }F—p,, andhence, AUTF =g v—g,, ie.,
AUT + —g;

If the last ruleused is R then ¢=¢, ve,, and

Alg, I = AT,
Alg, T = A|T.

By the induction assumption, AU - ¢,

AUT - —@,, and hence, AUT =@, A—gp,, ie.,

Theorem 3.4. For any consistent sets I',A of for-
mulas and formula ¢, if AU {go} UT is inconsistent then
Alp,T = A|T is provable; and if AU{p}UT is con-
sistent then A|@,I' = A,p,I" is provable.

Proof. If ¢ is consistent with AUT then by (R°°") ,
Alo, I’ = A,p,I" is provable;

Assume that ¢ is inconsistent with A. We prove by the
induction on the structure of ¢ that A|@,[' = A|l is
provable.

If p = p then AUTF—p and by (R;) , Alp,
I'= A|T" isprovable.

If op=—p then AUT'F p and by (R;), A|—p,
I'= A|T" isprovable.

If o=@ Ap, then there are two subcases: ¢, is
inconsistent with AUT, or ¢, is consistent with
AU{g}UT. In the first subcase, by the induction as-
sumption, A|¢,['= A|I" is provable, and by (RlA ),
Alg ~p,,I'=A|L is provable; and in the second
subcase, AU{g }UTL is consistent and AU{¢p,,¢,} Ul
is inconsistent. By the induction assumption, A,¢, |@,,
I'= A,¢ |I" is provable, and by
(R).Alp Ap) T=AIT=AT.

If ¢=¢, v, thenboth AU{(DI}UF and
AU{%} UT are inconsistent. By the induction assump-
tion, both A|¢,,I'= A|I" and A|¢,,I'= A|T" are pro-
vable, and by (R ),A lo,ve,, ' = A|l" isprovable.

Theorem 3.5. For any consistent sets I',A of for-
mulas, if T' is finite then there is a set @ cI" of for-
mulas such that A|I"= ® is provable

Proof. Let T ={p,-,0,}.

We prove the theorem by the induction on 7.
If n=1 then by theorem 3.3, let

A if AU{g,} is inconsistent
“au {¢} otherwise

and O satisfies the theorem.

Assume that the theorem holds for n=k, that is,
there is a set ® such that A|T'= ©® is provable. Let
n=k+1.

If ¢@,,, 1is consistent with @ then AT =0 is
provable, where ©'=0U{gp,,,};

If ¢,,, isinconsistent with ® then

Copyright © 2013 SciRes.

A|TU{g,,} = ©, because the last formula ¢, is
inconsistent with ©.

Theorem 3.6 (The soundness theorem for I'). If
A|T'= ® is provable then ® is a pseudo-revision of
I' by A

Proof. Firstly we prove that if A|p = © is provable
then ® isa pseudo-revision of @ by A.

Assume that A|@ = ® is provable.

If @zAU{go} then A is consistent with ¢, and
® is apseudo-revision of ¢ by A.

If ®=A then A is inconsistent with ¢, A|p= A
is provable, and © is a pseudo-revision of ¢ by A.

Similarly, by the induction on the number of formulas
in I, we can prove that if A|=® then ® is a
pseudo-revisionof I' by A.

Theorem 3.7 (The completeness theorem for I'). If
® is a pseudo-revision of I' by A then A|T =0
is provable.

Proof. Let ©® be a pseudo-revision of I' by A under
the ordering ¢, --,¢, ofI.

We prove by induction on i<n that there is a
formula set ®, such that ©,|¢, I, =0, |, is
provable, where ®,=A, and T, ={p.,,-.9,}.

If ©,U{g,}UT,,, is consistent then let ©,, =AU{gp,},
and O, |¢.,I',, =0, I, =06,,I,=0 is prova-
ble, where @' =0, UT,,,.

Assume that ®,U{p,}UT,, is inconsistent. Then,
0,Ul,, F—g, and let ©,, =0,, by theorem 3.4,
0|, I, =0,,|I', isprovable.

Let ®=0,. Then, A,'=© is provable.

i+l i+l

i+1

4. The R-Calculus R,

In this section we give an R -calculus R, which is
sound and complete with respect to the pre-revision,
where the decision of whether AU{g}UT is consistent
is deduced by a set of A -rules.

Rjisusedtoreduce A|@,I' to A|T" when
AU{p}UT is inconsistent. When AU{p}UT is con-
sistent, there are subformulas in ¢ which is inconsi-
stent with A, we hope to reduce those subformulas into
the empty string. For example, let

A={-p,—q},
r :{p,(q/\r)\/s}.
Then, by R, we have the following reduction:
A|F:>—|p,—|q|(q/\r)vs
= —p,—q.(gAr)vs;
and by R, we shall have the following one:

A|F:>—|p,—|q|(qAr)vs
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= —=p,—q,rVvs.
For the two reductions, we have
—p,—q,rv st —|p,—|q,(q A r)v S.

Let A be a consistent set of formulas and I' a finite
consistent set of formulas.

R, consists of two parts: R, which we use to
decompose formula ¢ in I' if AU{p}UT is incon-
sistent; and A -deduction rules, which we use to decom-
pose ¢ if AU{p}UTL is consistent.

R, has the following A -deduction rules to reduce
Alp,T when AU{p}UT is consistent:

con AUFH_‘p
(21 ) A|p,F:>A,[p],F
(ﬂzcon) AUF}?LP

Al=p,T = A[-p].T
A|¢1,FSA,[61]‘F

(1) Maliear = sja) o]
Alg, A¢2,F:>A,[91 /\02]|F

(lv) A|(01,F:>A,[91:|‘FA‘¢2,FZ>A,[€2]|F
Algv e, T=A[6,v6,]|IT

where if @ 1is consistent then
AvO=0vA=0,A0=0A1=0,A, 1 =A,

and if € is inconsistent then
AvO=0vi=A
AnG=0AA=A.
The deductions for the inconsistent AU{gp}UT are
the same as in R, minus (R°°“ .

Definition 4.1. A|T = E is provable if there is a
sequence

{Al |rl :>A{ |FI"“’An |rn = A; |r;l}

of statements such that

D AT, =A[T;

2) AT, =E, and

3) for each i<n,A,|T, = A]|T"} is either an axiom
or deduced from the previous statements by the deduc-
tion rules.

We call the sequence a proof of statement A|I = E.

For example, the following

) —pAr—gF-—p

(0(4™))
(@(%))

S)—pr—qg|pvr= —\pv—\q,[ivr] ((4),(&V ))

Q2)—pr—q|p :>—|pv—|q,[/1]
B)—pAr—gtt—r

@)—pnr—q|r :—p\/—q,[r]

Copyright © 2013 SciRes.

isaproofand —pA—qg|pvr=—pA—gq,r isprovable.

Theorem 4.2. For any consistent sets I[,A of
formulas and formula ¢, if A|@,I'= A|I" is provable
then AU {go} UL is inconsistent; and if there is a
formula 6# A4 such that A|p, I = A,[H] |T" is prova-
ble then AU{p}UT is consistent.

Proof. If Alp,I'= A|I" is provable then similar to
the proof of theorem 3.3, AU {go} UT is inconsistent.

Assume that there is a formula 8# A such that
Alo,T = A,[0]|T is provable. We prove by the induc-
tion on the length of a proof of A|@,I'= A,[@] | and
the cases that the last inference rule is used that
AU{p}UT is consistent.

If the last rule used is A" then ¢@=p, AU —p,
and A|p,L=A,[p],I" is provable, where 6=p= 4.
Hence, AUT'U{p} is consistent.

If the last rule used is A, then @=p,AUTW p,
and A|—p,I = A,[-p],T is provable, where
0 =—p =¢. Hence, AUTU{—p} is consistent.

If the last rule used is A" then @ =¢, A@p,, and there
are formulas 6,6, such that

Alg. T =A[6]IT,
and
A6 ]l @), T = A[6].[6,]IT.

By the induction assumption, if 8;# 1 and 6,# A then
AU{p }UT is consistent and AU{6,p,}UT is con-
sistent, and therefore, AU{@, A¢,}UT is consistent.

If the last rule used is A7 then ¢ =¢,v@,, and

Alg,T=A[6]IT,
A|¢29F:Aa[92]|ra

where either 6, #4 or 6, # A

If 6, # 1 and 6,# A then by the induction assumption,
AU{p}UT and AU{p,}UT are consistent, and so is
AU{p v ¢,}UT.

If 6,# 4 and 6, # /A then by the induction assumption,
AU{p }UT is consistent, and so is AU{g, v ¢, }UT.

If 6,# A and 6, # / then by the induction assumption,

AU{p,}UT is consistent, and so is AU{¢g, v ¢,}UT.
By the proof of the theorem, we have

A if p=Iland A,T' -/

/ if p=Iland A,T' ¥ -/

G0, if p=¢ Ao,

6vo, if p=p v, and con(AT,q),

6= con(A,T,,)

o, if p=¢ v, and incon(A,T,¢ ),
con(A,F,;oz)

6, if p=¢ ve,and con(A,T,p),
incon (A, I, )
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Theorem 4.3. For any formula sets I',A and formula
o, if TUAU {go} is consistent then A,p, T4 A,6,T.

Proof. We prove the theorem by the induction on the
structure of @, Assume that TUA W —¢.

If ¢=1 then TUAW/, and 6=I. Hence,

Ao, THAAO,T.
If p=¢,Ap, then TUAW =g, and TUAW —gp,.
By the induction assumption,
A, THFHA6,T,
A, TH1A6,T.
Hence, we have
Aprng, T'F4A,6,A0,,T.

If p=¢ v, then either TUAU{g} is consistent
or TUAU{gp,} is consistent.

If TUAU{p} and TUAU{gp,} are consistent then
TUAW =@, and TUAF —¢,. By the induction as-
sumption,

Ao, T'HHA6,T,
A, ,T'H1A6,T.
Hence, we have
Agve, I'F1A,6,v0,T.
If TUAU{¢g} is inconsistent and TUAU{p,} is
consistent then T'UA W —¢,. By the induction assump-

tion, A,p,,I'F4A,0,,'. Hence, by Lemma 2.5, we
have

Ao ve, I'F4AAv0,,T
FA,0,,T
FHA,0,T.
Ao v, I'=1AAvE,,T.
If TUAU{g,} is consistent and TUAU{p,} is in-
consistent then 'UAW —¢,. By the induction assump-

tion, A,¢,I'4A,0,I. Hence, by Lemma 2.5, we
have

Ao ve, I'F1A,6 v AT
FHA,6,T
F4A6,T.

Theorem 4.4. For any consistent sets I',A of for-
mulas and formula ¢, if AU{p}UT is inconsistent
then A[@,I'= AT is provable; and if AU{p}UT is
consistent then there is a formula @#A4 such that
Alp,T = A,[0]|T is provable.

Proof. If ¢ is inconsistent with AUT" then similar
to theorem 3.5, A|p,I'= A|T" is provable.

Copyright © 2013 SciRes.

Assume that ¢ is consistent with AUT. We prove the
theorem by the induction on the structure of ¢.

If = p then AUTH—p and by (4*).A|p,
I'= A,[p].T" isprovable, where 6= p.

If p=—p then AUTHF p and by (/12°°"),A|—\p,
I'= A,[-p].I" isprovable, where 6=—p.

If o=@ Ag@, then g, is consistent with AUT, and
@, is consistent with AU {gol} UT. By the induction
assumption, there are formulas 6,6, such that A|¢,
I'=> A,[&l] [T and A,[&l] |, , I = A,[@l],[HZ]H‘ are
provable. By (/V), we have

A|¢1/\¢2,F:>A,[91/\92]|F

is provable, where 0 =6, A0,.

If p=¢, v, then either AU{p }UT or AU{p,}UT
is consistent. By the induction assumption, if AU{¢,jUT
is consistent then there is a formula 6 #A4 such that
Alp, T =A[6]IT; and if AU{g,}UT is consistent
then there is a formula 6, #A4 such that Aje,,
' A,[HZ] |T. Then, by
(ﬂv),A o v e,,T = A,[6/v6],T" is provable, where

0y 0, =

6, v 6, if both ¢, ¢, are consistent with AUT
6, v A if only ¢, is consistent with AUT
Avé, if only ¢, isconsistent with AUT

Remark. In fact, in theorem 4.3, if AU{p}UT is
consistent then there is a formula &= A4 such that
A|4,T = A,[0],T is provable.

By Theorem 4.3, we have the following

Theorem 4.5. (The soundness theorem for I'). If
A|T' = Z is provable then = is a pre-revision of I’
by A.

Proof. We only prove that no subformula & of E is
contradictory to A.

Assume that there is a subformula ¢ of some formula
0 in E such that AF—¢. Let I'={g,,-,¢,}cT
such that ¢, =¢.

If AUF’U{({J} is inconsistent then € =1, a contra-

diction.
If AUT'U {gp} is consistent then by Lemma 3.5,
Ap,T"HH4A,0,T,

and for any subformula ¢ of 6, if A,T"F—=¢& then, by
the definition of #, & is replaced by A in 6, a con-
tradiction to the assumption that & is a subformula of 6.
Theorem 4.6. (The completeness theorem for I). If E
is a pre-revision of ' by A then A|I'=Z is provable.
Proof. The proof is similar to theorem 3.7 and omitted.

5. Conclusion

This paper gave two R -calculi which are sound and
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complete with respect to the pseudo-revision and pre-
revision, respectively. The calculi are of Gentzen-type, in
which each statement is of form A|@, T = A|I". Dif-
ferent orderings of I' give different results of revision
A|T. Correspondingly, if A|I" is irreducible, that is,
no deduction rule can be used to reduce A|I”, then I’
may be a minimal change of I' by A. A further work
is to give an R -calculus such that if A|I = A|T”" is
irreducible then AUT" is consistent and I" is a mini-
mal change of I" by A, that is, for any I'" with
I"'cI"<TI,AUT"" is inconsistent.
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