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ABSTRACT 

The AGM postulates ([1]) are for the belief revision (revision by a single belief), and the DP postulates ([2]) are for the 
iterated revision (revision by a finite sequence of beliefs). Li [3] gave an R-calculus for R-configurations ,   where 

Δ is a set of literals, and Γ is a finite set of formulas. We shall give two -calculi such that for any consistent set Γ and 
finite consistent set  of formulas in the propositional logic, in one calculus, there is a pseudo-revision Θ of Γ by Δ 
such that 

R


   is provable and  and in another calculus, there is a pre-revision Ξ of Γ by Δ such that ;  ∪

   is provable,  and  for some pseudo-revision Θ; and prove that the deduction systems for 

both the -calculi are sound and complete with the pseudo-revision and the pre-revision, respectively. 

  ,  
R
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1. Introduction 

The AGM postulates ([1],[4-6]) are for the revision 
K   of a theory  by a formula K ;  and the DP 
postulates ([2]) are for the iterated revision  

  1 .nK     
R

 
The -calculus ([3]) gave a Gentzen-type deduction 

system to deduce a consistent theory  from any 
theory  where  should be a maximal 
consistent subtheory of  which includes 

 ∪
,∪  ∪

 ∪   as a 
subset, where    is an -configuration, R   is a 
consistent set of formulas, and  is a consistent sets of 
literals (atomic formulas or the negation of atomic 
formulas). It was proved that if 



     is 
deducible and    is an -termination, i.e., there is 
no -rule to reduce 

R
R    to another -configuration R

,   then  is a pseudo-revision of  by  ∪  .  
The -calculus has the following features: R

   is a finite set of literals (propositional variables or 
the negation of propositional variables); 

   is a set of formulas; 
 , , ,R R RR     are not sufficient for pseudo-revision, 

and cutR  is introduced to deduce    into a con- 
sistent set   of formulas including  ;

 the soundness theorem holds, that is, if    is 
provable then   is a pseudo-revision of   by ;  
and 

 the completeness theorem holds, that is, if   is a 
pseudo-revision of   by   then    is 
provable. 

Because each rule in the -calculus consists of the 
statements of form  

R

, ,     

the -calculus is based on pseudo-revision, i.e., to 
contract 

R
  from   ∪ ∪  if   ∪ ∪  is incon- 

sistent, which makes the -calculus not preserve the 
minimal change principle. 

R

Given two theories   and  a pseudo-revision ,   
of   by   is a consistent subset of  including  ∪
  (if  ∪  is inconsistent; otherwise, ).    ∪*This work was supported by the Open Fund of the State Key Labo-

ratory of Software Development Environment under Grant No.
SKLSDE-2010KF-06, Beijing University of Aeronautics and Astro-
nautics, and by the National Basic Research Program of China (973
Program) under Grant No. 2005CB321901. 

We shall give two -calculi such that R
 in one R -calculus, say 1,R  for any consistent for- 

mula set   and finite formula set ,  there is a 
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consistent formula set   ∪  such that  
   is provable and   is a pseudo-revision 
of   by   (the soundness theorem); and con- 
versely, given any pseudo-revision   of   by 

,  is provable (the completeness theorem);   
 in another R -calculus, say 2 ,R  for any consistent 

formula set   and finite formula set ,  there are 
consistent formula sets   and   such that 

◦     is provable, 
◦   is a pseudo-revision of   by  ,
◦    and 
◦ there is no subformula   of   contradictory to   

(the soundness theorem);  
and conversely, given any pseudo-revision  of    by 

 there is a consistent formula set  such that , 
   is provable,  and  is contra- 
dictory to no subformula 

  
  of  (the completeness 

theorem). 


The -calculi are different from the -calculus in 
[3] as follows: 

R R

◊   is any set of formulas; 
◊ The cut-rule in the R -calculus is eliminated in the 

R -calculi; 
◊ Because   -rule in the R -calculus is not sufficient 

for reducing  

1 2 ,       

to either 1 ,     or 2  the - 
calculus is not complete with respect to the pseudo- 
revision of  by  In the new -calculi, we split 

 into two deduction rules 

,  

R

 R

 .
   1R

2R and    
according to whether 1


  is consistent with  ∪  or 

not. The reason is given as follows. 
Given a consistent theory   and formulas  

 1 1 2 2, ,    ∪  is inconsistent if and only if  

 1∪  and  2∪  are inconsistent; and if either 

 1∪  or  1∪  is inconsistent then  1 2 ∪   

is inconsistent; and if  1 2  ∪  is inconsistent then 

we cannot deduce that either  1∪  or  2∪

1 2

 is 

inconsistent, and what we have is that   ∪  is 

inconsistent if and only if either  1∪  is inconsistent 

or  1, 2 ∪  is inconsistent. Formally,  

  
 

1 2

1 2

incon , or incon ,

incon ,

 
 

 
 



       (1) 

  
 
1

1 2

2on , incon ,

incon ,

inc  
 

 
 

          (2) 

    
 

1 1

1 2

inco or incon ,

incon ,
2n ,  

 
 

 

∪
       (3) 

where  con ,  and incon ,   denote that  ∪  
is consistent and inconsistent, respectively. Therefore, we 
use  

 

 

1
1

1 2

1 2 1
2

1 2

,

,

, , ,

,

R

R


 

  
 





   

    

   

    

，

 

in  and  instead of  1R 2R

1 2

1 2 1 2

, ,

, ,

 
   
       

         
 

in the -calculus. R
In  we use a rule  1R

 con

, , ,
R


 

  
   

∪
 

to deduce ,   to , ,   if , ,   are consistent. 
In 2 , we shall give a deduction rule to reduce R ,   
to the atomic cases where  

, ,
, ,

, ,
, , , , , ,

p p

p p

p p

p p p p

    
        

     
         

∪ ∪

∪ ∪

 

 
 

with a cost that we cannot prove that if     is 
provable then   is a pseudo-revision of   by .  
Instead we shall prove that if     is provable then 
  is a pre-revision of   by  that is, there is a 
consistent theory 

,
  ∪  such that 1)  is a 

pseudo-revision of 
  

  by  2)  and 3) no 
subformula 

; ; 
  of   is contradictory to  .

The paper is organized as follows: the next section 
gives the -calculus in [3] and basic definitions; the 
third section defines an -calculus 1  for the pseudo- 
revision and proves that 1  is sound and complete with 
respect to the pseudo-revision; the fourth section defines 
another -calculus 2  for the pre-revision and prove 
that 2  is sound and complete with respect to the 
pseudo-revision, and the last section concludes the whole 
paper. 

R

R

R
R

R

R
R

2. The R -Calculus 

The -calculus is defined on a first-order logical 
language. Let 

R
L  be a logical language of the first-order 

logic; 1 2 3, ,    formulas and  sets of formulas 
(theories), where 

, 
  is a set of atomic formulas or the 

negations of atomic formulas, and    is called an 
R-configuration. 

The -calculus consists of the following axiom and 
inference rules:  

R
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  1 1 1, , ,A          

 
1 1 2 1 2

2 2 3 3 2 2cut

1 1 2 1 2

,

, ,

, , ,

T

R

   
  




    
      



 
 

  1

1 2

,

,
R


 

    
    

 

  1 2

1 2

, ,

,
R

 
 

        
    

 

  1 2

1 2

, | ,

,
R

 
 

         
    

 

   ,
,

t x
R

x




   
    


 

where in 2
cut

1, TR    means that 1  occurs in the 
proof tree T  of 2  from 1  and 1;  and in  
is a term, and is free in 

,R t

  for x . 
The -calculus is in the first-order logic. In the 

following we discuss the -calculi in the propositional 
logic. 

R
R

Let  be a logical language of the propositional 
logic which contains the following symbols: 

L

 propositional variables: 1, ,  0 ;p p 
, , .   logical connectives:  

Formulas are defined as follows:  

1 2 1 2| | |p p .         

Definition 2.1. Given a consistent set  of formulas 
and a finite consistent set  of formulas, a consistent 
set  of formulas is a pseudo-revision of  by 




    if 
 (if  is consistent), or (if   ∪  ∪  ∪  is 

inconsistent then)  satisfies the following conditions: 
1)  ,  ∪
2)  and ,  
3) there is a   such that  ∪  is incon- 

sistent. 
Each pseudo-revision  can be generated by the 

following procedure: given any consistent set 


  and 
finite consistent set  assume that 1,  , , n   

n

 is 
ordered by a linear ordering   (without loss of 
generality, assume that 1 2     ), define  

 
0

1 1

;

if

otherwise
i i i

i

i

i  

   

     




∪

 

Let  Then,  is a subset of  such 
that  and   is consistent. 

.n  
,  

  ∪

Lemma 2.2.  is a pseudo-revision of    by .  
Moreover, Let  be the least  such that  0i i

 1 .i i i      Then, . 0 0 1, , ,i i n     ∪  

Definition 2.3. Given a consistent set  of formulas 
and a finite consistent set  of formulas, a consistent 
set 




  of formulas is a pre-revision of  by    if 
there is a pseudo-revision   of  by  such that  

1) ,   
2) ,    and 
3) no subformula   of  is contradictory to  .  
Each pre-revision   can be generated by the follow- 

ing procedure: given any consistent set  and finite 
consistent set 


,  assume that  1, , ,n    define  

 
    

1 1

1

if

otherwise

i i i

i

i i i

i 

 
 



    
 



∪



1

1

 

where  

 
 
 

 
 
 

1 2 1 2

1 2 1 2 1

2

2 1 2

2

1 1 2

2

if and

if and

if

if and con , ,

con ,

if and incon , ,

con ,

if and con , ,

incon ,

i i

i i

i

i i

i i

i i

i

i i

i

l l

l l l

 


    

     

 

    



   



   
   
    
       
    
 
    










 

where   is the empty string. 
Let ,n    and   be the pseudo-revision of   

by   in the same ordering as  Then, we have the 
following 

.

Lemma 2.4. Let 0i  be the least  such that i

1 .i i    Then, for any 0 , ;j jj i     and for any 

0 , jj i   is a subformula of .j  
Lemma 2.5.   is a pre-revision of  by    such 

that , 
.

 and no subformula of  is contradictory 
to 


  

Proof. Let  be the least i  such that 0i 1 .i i    
Then,  

 0 0 1, , ,i i n .       ∪  

We prove that for any  with  and i 0 , ii i n    i

i i   by induction on  .i

Let  0 1i 0i
     and 

0
.i   Then,  

 
0

.i    ∪  We prove by induction on the structure  

of   that ,     and , .    
If l   and l   then  ∪  is inconsistent, 

a contradiction to the choice of  ;0i
If l   and l   then ,    and  
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, , ;   

1

 
If 2    and ∪  is consistent then  1∪  

and  2∪  are consistent, and by the induction 
assumption,  

1 1, , ;     

2 2, , ,     

and hence,  

1 2 1 2, , ;        

2

 

If 1    and ∪  is consistent then either 

 1∪  or  2

 1
∪  is consistent. 

If ∪  and  2∪  are consistent. then by 
the induction assumption,  

1 1, , ;     

2 2, , ,     

and hence, 1 2 1 2, , ;         
If  1∪  is inconsistent and  2∪  is consis- 

tent. then  1| ,  
2, ,

 and by the induction assump- 
tion, 2,     and hence, 21 2, , ,       
because 2 2, ,    and 1 2,     (  1∪

, ,
 is in- 

consistent, and hence, for any formula 1  


). 
Similar for the case that  1∪  is consistent and 
 2∪

0i i n   

R

 is inconsistent. 
Similarly we can prove that for any i  with 

 , .i i

3. The -Calculus  R1

In this section we give an -calculus 1  which is 
sound and complete with respect to the pseudo-revision, 
where the decision of whether 

R R

 ∪ ∪
∪

  is consistent 
is needed so that if  is consistent then  ∪

, , ,      is provable; otherwise, ,     
is provable. 

Let  be any consistent sets of formulas. , 
Definition 3.1. t     is a term; and t t  is a  

statement, where t     and t    ; and 1, , nS
  

tion ru

S

S
is a deduc le, where S  are statements. 1, , ,nS S

duction rule1R  has the following de s:  

 conR
, , ,


    

  ∪
 

 1 ,

p
R

p
  

    
∪

 

 2 ,

p
R

p
   

   
∪

 

  1
1

1 2

,

,
R


 

    
    

 

  1 2 1
2

1 2

, , ,

,
R

  
 

    
    

 

  1 2

1 2

, ,

,
R

 
 

        
    

 

Definition 3.2.    is provable if there is a 
sequence  

 1 1 , n n n n1 1,            

of statement

  

s such that 
1) 1 1 ;      

,n n    2)  and 
3) for each , ii n i i i        is either an axiom or 

de d from the previous statements by the deduction 
rules. 

, the following  

duce

For example

(1) ,p q p q

 
 

2

2

, | (1),

(3) | | (2),

q p R

p q p q p q R

(2) , |p q p q p 



  

    

     

 

|p q p q p q    is a proof and so  is ova- 
ble. 

Also, the following  

pr

 

 
 

1

1

1

|

(3)

(4) | |

(5) | | (2), (4),

p

p q R

p q q

p q q p q R

p q p q p q R





(1) p q

(2) |p q p



  



  

   

    

  

   

is a proof and so q|p q p q p      is prova- 
ble. 

Theorem 3.3. For any consistent sets  of for- , 
mulas and formula ,  if | , |     is provable 
then   ∪ ∪  is is incons tent; and if | , , ,      
is provable then   ∪ ∪  is consistent. 

 Proof. If | , , ,    then   is provable  conR  
is used and   ∪  is consistent. 

If | ,
∪

|   vable then we   is pro pro  ve that
,  ∪  i.e.,   ∪ ∪  is inconsistent, by t

induction on h of a proof of
he 

 the lengt  | , |     
and the cases that the

If the last d is 
 last inference rule is used. 

rule use 1R  then ,p    and  
,p  ∪  i.e., ;  ∪  

If the last rule used is 2R  then ,p   and  
,p  ∪  i.e., ;  ∪  

If the last rule used is 1R  then 1 2   ,   and  

1| , |   . By the in ction as on,  

1

du sumpti
  ∪  , and hence, 1 2 ,      ∪ i.e.,  

;  ∪  
ule used is 2R  then 1If the last r 2 ,    and 
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1 2, | , 1, | .   
 1 2 ,

   By the i assumptinduction on, 
   ∪ ∪  and hence, 1 2 ,    ∪  i.e., 

;
If the last rule used is
 ∪  

 1R  then 1 2 ,     and  

1| , | ,     

.2| , |     

1By the induction assumption,   ∪  ,  

2  ∪  , and hence, 1 2 ,    i.e.,   ∪
.  ∪  

mulas and fo
| ,

Theorem 3.4. For any consi , 
rmula φ, if sistent then 
|

stent sets  of
 ∪ ∪  is incon

 for- 
 

     is 
sis

provable; and if   ∪ ∪  is con- 
tent then | , , ,      is provable. 
Proof. If φ is consisten   then by t with ∪  conR , 
| , , ,   

at φ is inco
indu

  is provable; 
Assume th nt with Δ. We nsiste  prove by

that |
 the

ction on the structure of φ | ,   s   i
provable. 

If φ = p then p  ∪   and by  1R , | ,p  
|    is provable. 

If p    then ∪ p    and by  2 ,R  | ,p   
|   is provab

1 2

 le.
If 

 
    then t here are two subcases: 1  is 

inc sistent ∪on with    2,  or   is consistent  
.  In the first

with
ubca 1∪ ∪

su tion, 1| ,
 s se, by the induction as- 

mp |     is provable, and by  1 ,  

1 2| , |
R

      rovab and in the second 
 1 ∪  is consistent and  1 2,  ∪ ∪  

is inconsistent. By the induction assumption, 1 2,

 
subcase, ∪

is p le; 

| ,   

1, |    is prov
,  

able, and by  
 2 1 2, | | , .R       

If 1 2     then both  1 ∪ ∪  and 
are inconsistent. By th

 
e induction assu 2 ∪ ∪  

tion, both 1| ,
mp- 

|    and 2 , ||    are 
, |   able. 

is a set  
provable 

pro- 

he
 is 

vable, and by R
Theorem 

  is finite t
t | 

 1 2, |     is prov
3.5. For any consistent sets ,   of for- 

mulas, if n there  of for- 
mulas such tha 

Proof. Let  1, , .n     

We prove the y the inductiontheorem
If 1n   the

 b
m 3.

 on .n  
3, let  n by theore

 1if is inconsiste   
∪

 
 1 otherwise ∪

nt

olds for ,n k  that
and   satisfies the 

Assume that the th
there is a set   such 

theorem. 
eorem h  is, 
that |   is provable. Let 

1.n k   
If 1k   is consistent with   then |  

;  
  is 

provable, where  k  ∪ 
If 1k

1

  is inconsiste nt with   then  

 1| ,k   ∪  because the ast form l ula 1k   is 
inconsistent with .  

Theorem 3.6 (The soundness theorem for  ). If 
|   is provable then   is a pseudo-revi  of sion

  by .  
Proof. Firstly we prove that if |   is pr able ov

then   i fs a pseudo-revision o    by .  
Assum  te hat |   is provable. 
If    ∪  then   is co ith ,nsistent w   and 

  is pseudo-revision of  a   by .   
 is i φ, If     then  nconsistent with |    

is provable, and   is a p eudo-revision of s   b .y   
Similarly, by the induction on the number of formulas 

in  we can prove that if |   then,    is a
f 

 
pseudo-revision o   by  . 

Theorem 3.7 (The completeness theorem for  ). If 
   a pseudo-revision of  hen |is  by  t    
is provable. 

Proof. Let   be a pseudo-revision of Γ by   under 
e ordering 1, , nth    of Γ. 
We prove by induction on  that  is a 

fo
i n there

rmula set i  such that 1 1 1| ,i i i i i|        is  
provable, whe ,re 0    and 1 , , 1i i n .     

If   1i i i  ∪ ∪  is consistent t t hen le  1i i

1i

  ∪ , 
and | , |1 1 1i i i i i 1,i          

i i

   is prova- 
ble, where .1 1     ∪

Assume that   1 i i i ∪ ∪  is incon , 

1i i

sistent. Then

,i  ∪   and let 1 ,i i  by th   eorem 3.4,  

1 1| ,i i i 1| i      ble. 
Let .

  is prova

n    Then, ,   is provable. 

4. The Calculu

In this section e an which is 

 d he consistent 

R - s R2  

 we giv -calculus R   R 2

 is 
sound and complete with respect to the pre-revision, 
where the ecision of whet r   ∪ ∪
is deduced by a set of  -rules.

R1 is used to reduce | ,
 

   to |  when  
  ∪ ∪  is inconsistent. W  ∪  is con- 

sistent, there are subformulas i
h
n
en 
 

∪
  which is inconsi- 

stent with ,  we hop uce t e subform
tring. For example, let  

e to red hos ulas into 
the empty s

 , ,p q     

    ,p q r s    .

Then, by we have the following reduction:  1R  

 | , |p q q r s     

 , , ;p q q r s     

and by we shall have the following o  2R  ne: 

 | , |p q q r s      
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, , .p q r s    

 For the two reductions, we have  

 , , , ,p q r s p q q r s        .

Let   be a consistent set of formulas and   a finite 
consistent set 

 consists of two parts:  which we use to 
d

of formulas. 

2R
e

1,R
compose formula   in   if   ∪ ∪ s incon- 

sistent; and 
 i

 -deduction rules, which we use to decom- 
pose   if   ∪ ∪  is consistent. 

2R  has the following  -deduction rules to reduce 
| ,   when   ∪ ∪  is consistent:  

   
con

1 | , , ,p p


   
 

p  ∪



   
con
2 | , , ,

p

p p


 
     

∪ 
 

 

 
     

 

1 1

1 2 1 2

1 2 1 2

| , , |

, | , , , |

| , , |

 

   


   


   

  

     
 



     
 

1 1 2 2

1 2 1 2

| , , | | , , |

| , , |

   


   
        

     
 

where if   is consistent then  

, ;, ,                      

and if   s inconsistent then  i

.

    
    
   
   

 

The deductions for the inconsistent   ∪ ∪

ble if there is 

 are 
the same as in  minus 

Definition 4 va a 
se

s such that 
1) ;
2) 

is either an axiom 
or d fro ents by the deduc- 
tio les.  

quence a proof of st



is a proof and r

1R
.1. 

 con .R  
  is pro| 

quence  

 | | ,      1 1 n n n n       

of statement

1 1 , | |

1 1| |      
| ,      and n n

3) for each , ii n  | |i i i      
m the previous statem deduce

n ru
We call the se atement |   . 
For example, the following  

(1) p 

(2) | ,p q p p q      (  

    
    

con
1

2

1),

(3)

(4) | , (3),

(5) | , (4),

q p

p q r

p q r p q r

p q p r p q r

 



 







  

   

      



  

| ,p q p r p q    
 For any consistent sets 

 is provable. 
Theorem 4.2. ,   of 

formulas and formula ,  if | , |     is able 
then 

 prov
  ∪ ∪

ula 
 is con  th a 

form
in sistent; and if ere is 

ch that  | , , |      is pro   su va- 
ble then   ∪ ∪

Proof. If | ,
 is con

|
sistent. 

    en si is provable th milar to 
the proof of theorem 3.3,   ∪ ∪

 a formula 
 is inconsistent. 

Assume that there is    such that 
 | , , |      is provable. We prove by th uc- 

tion on the length of a oof of
e ind

 pr   | , , |   and 
the c e last inference rule is used that 

  
ases that th

    is 
last rule us

∪ ∪ consistent. 
If the ed is con

1  then , ,p p  ∪    
and  | ,p p, ,  provable, where .p   is     
Hence,  p ∪ ∪  is consistent. 

If the last rule used is con
2  then , ,p p   ∪  

 | , ,p ,pand       is provable, where  
p    . Hence,  p  ∪ ∪

If the last rule used is 
 is consistent. 

  then 1 2 ,     and there 
s ,are formula 1 2   such that  

 1| , 1, | ,      

and  

     1 2 1 2, | , , , | .        

nduction a f θ1 ≠ λ and θ2 ≠By the i ssumption, i  λ then 
 1 ∪ ∪  is consiste and  ∪  is con- 

sistent, and th re, 
 1 2,  ∪nt 

erefo  21 ∪ ∪  is consistent. 
le usedIf the last ru  is   then ,1 2     and  

 1 1| , , | ,      

 2 2| , , | ,      

here either 1   or 2 .   
If  λ and θ2 ≠ λ then by the in umption, 

w
θ ≠ duction ass1 

 1 ∪ ∪  and  2 ∪  ∪ nsistent, and so is are co

 1 2 .   ∪ ∪  

If θ ≠ λ and θ2 ≠ λ then by the indu  assumption, 1 ction
 1 ∪ ∪  

If θ1 ≠ λ
is consistent, and so is ∪

 and θ2 ≠ λ then by the in n, 
 1 2 .  ∪  

du tion assumptioc
 2 ∪ ∪  sisten ois con t, and s  is 

1

1

 1 2 .  ∪ ∪  
By the proof of the theorem, we have  

if ,
if

l 

 
 
 

 
 
 

1

2

2

1 1 2

2

and
and ,

con , , ,

n , , ,

con , ,

if and con , , ,

incon , ,

l
l l l
 



  





    


  
   

  

 
 

    
  



2 1 2

2 1 2

if

if and

    
  

   


 1 1

con , ,    

2 1 2if and inco     
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Theorem 4.3. For any formula sets  and formula , 
,  if   ∪ ∪  is consistent then , , , , .    

duction on the 
 
e inProof. e the theorem by th

structure of 
 We prov

,  Assume that .  ∪  
If l   then ,l  ∪  and .l   Hence,  

, , , , .      

If 1 2     then 1,  ∪  and 2.  ∪  
By th  assume induction ption,  

1 1, , , , ,      

2 1, , , , .    

Henc   

 

e, we have

1 2 1, , , , .2          

If 1 2    er 1then eith ∪  is cons∪ istent 
or  2 ∪ ∪

 
 is consistent. 

If 1 ∪ ∪  and  2 ∪ ∪  are consistent then 

1,  ∪  and 2.   By ∪  the i
sumption,  

nduction as- 

1 1, , , , ,      

2 1, , , , .      

Hence, we have  

1 2 1 2, , , , .          

If  1 ∪ ∪  is inconsistent and  2 ∪ ∪  is 
consisten .t then 2    By th∪ e induction assump- 

n, , ,tio 2 2 ., ,    by Lemma 2.5, we 
have  

   Hence,

,1 2, , , 2         

2, ,   

, , .   

1 2 2, , , , .          

If  1 ∪ ∪  is consistent and  2 ∪∪ in- 
consistent then 

 is 

1. ∪  By the induction assump- 
tion, , ,


1 1, , .      Hence, by Lemma 2.5, we 

have  

1 2 1, , , ,          

1, ,   

, , .   

Theorem 4.4. For any consistent sets  of for- 
mulas and formula 

, 
,  if   ∪ ∪  is sistent 

th
incon

en || ,  
e
  is provable; and ∪  is 

consistent then th formula 
 if 

 
∪  

re is a    such that 
 | ,  ovable. 

Proof
, |    i

. If 
s pr

  is inconsisten ar 
to theorem 3

t with  ∪  then simil
.5, | , |     is 

Assume that φ is consistent with e prove the 
theorem by the induction on the structure of φ. 

If φ = p then 

provable. 

.  W ∪

p  ∪  and by  con
1 , | ,p   

 , ,p    is provable, where .p   
If p    then p  ∪  and by  con , | ,p2    

 , ,p     is provable, where .p    
If 1 2     then φ1 is consistent with , ∪  and 

φ2 is consistent with  1 . ∪ ∪  By tion 
assumption, there are formulas 1 2,

the induc
    1| ,such that   

 1, |     and      1 2 21 , |, | ,  ,      are 
provable. By   ,  we have  

 1 2 1| , ,   2 |      

is 



provable, where 1 2.     
If 21     then either  1 ∪ ∪  or  2 ∪ ∪

 
 

nduction as iis f consi y the i sumption, stent. B  1 ∪ ∪  
en there is a formula is consistent th 1     such that

 1| | ; 1, ,     and if 2 ∪ ∪  i t 
then there is a formula 

 s consisten

2   such that 2| ,  
 2, | .     Then, by  

   1 2, | , , ,    
1 2      ovable, w re  

1 2 

  is pr he

1 2 1 2

1

2 2

if both , are consistent with

if only is consistent with

if nsistent w

   
  1

  only is co ith

  

 
  

∪

∪

∪

 



  

Remark. In fact, in theorem 4.3, if   ∪ ∪  is 
consistent then there is a formula    such that 

 | , , ,      is provable. 
By Theorem 4.3, we have th wing 

.5. (The soun rem for 
e follo

Theorem 4 dness theo  ). If 
|   is provable then is   a pre-revision of   

by Δ. 
Proof. We only prove that no subformula ξ of Ξ is 

contradictory to Δ. 
Assume that there is a subformula ξ of some formula 

  in Ξ such that .   Let 
h that 

 1, ,i n      
suc .i   

If   ∪ ∪  is inconsistent then ,   a contra- 

diction. 
If   ∪ ∪  is consistent then by Lemma 3.5,  

, , , , ,       

and fo y subformula ξ of , if ,r an  θ     then,  
th

by
e definition of θ, ξ is replaced by   in θ, a con- 

tradiction to the assumption that ξ is a subformula of θ. 
Theorem 4.6. (The completeness theorem for Γ). If Ξ 

 a pre-revision of Γ by Δ n | 
Proof. T e of is o theo

is  the  is provable. 
h pro  similar t rem 3.7 and omitted. 

5. Conclusion 

wo -calculi which are sound and  



This paper gave t R
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co lete with re re- 
revision, respectively. The calculi are of Gentzen-type, in 
which each statement is of form 

mp spect to the pseudo-revision and p

| , | .     
t results o

d

 Dif- 
ferent orderings of   give differen f revision 

| .   Correspondingly, if |    is irre ucible, that is, 
no deduction rule can be used to reduce | ,   then   
may be a minimal change of   by .  A further work 
is to give an R -calculus such | | that if 

s, for any 

    is 
irreducible then  ∪  is consistent and   is a mini- 
mal change of    by ,  that i   with 

,        ∪   is inconsistent. 
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