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ABSTRACT 

Resolution is an useful tool for mechanical theorem proving in modelling the refutation proof procedure, which is 
mostly used in constructing a “proof” of a “theorem”. An attempt is made to utilize approximate reasoning methodol- 
ogy in fuzzy resolution. Approximate reasoning is a methodology which can deduce a specific information from general 
knowledge and specific observation. It is dependent on the form of general knowledge and the corresponding deductive 
mechanism. In ordinary approximate reasoning, we derive B  from A→B and A  by some mechanism. In inverse 
approximate reasoning, we conclude A  from A→B and B  using an altogether different mechanism. An important 
observation is that similarity is inherent in fuzzy set theory. In approximate reasoning methodology-similarity relation is 
used in fuzzification while, similarity measure is used in fuzzy inference mechanism. This research proposes that simi-
larity based approximate reasoning-modelling generalised modus ponens/generalised modus tollens—can be used to 
derive a resolution—like inference pattern in fuzzy logic. The proposal is well-illustrated with artificial examples. 
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1. Introduction 

In automated theorem proving, resolution is a rule of 
inference leading to a refutation theorem-proving tech- 
nique. Applying the resolution rule in a suitable way, it is 
possible to check whether a propositional formula is 
satisfiable and construct a proof that a first-order formula 
is satisfiable/unsatisfiable. In 1965, J. A. Robinson [1] 
introduced the resolution principle for first-order logic. A 
resolvent of two clauses  containing the comple- 
mentary literals  and  respectively, is defined as 

2   
 is understood as the disjunction of the literals present 

in them. It is also a logical consequence of 1

1 2,C C
p

 C 
p

1       1 2, ,res C C C p p
∪

∪

2C C . A 
resolution deduction of a clause C from a set S  of 
clauses is a finite sequence of clauses 1 2, , , nCC C C

S

UE

 
such that, each iC  is either a member of  or is a 
resolvent of two clauses taken from  From the 
resolution principle in propositional logic we deduce that, 
if  is true under some truth valuation , then v(Ci) = 
TRUE for all i, and in particular,  [2]. 
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Example 1: Here, is a derivation of a clause from a set 
of clauses presented by means of a resolution Tree in 
Figure 1. 

In first order logic, resolution condenses the traditional 
syllogism of logical inference down to single rule. To 

 

Figure 1. Resolution Tree. 
 
A simple resoluion scheme is:  

premise1 :

premise2 :

conclusion :

a b

b

a


  

recast the logical inference using the resolution technique, 
first the formulae are represented in conjunctive normal 
form. In this form, all quantification becomes implicit: 
universal quantifiers on variables  are simply 
omitted as understood, while existentially quantified 
variables are replaced with Skolem functions. 

 , ,X Y 

The first step in automated deduction in fuzzy logic 
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was taken by Lee and Chang [3]. Lee’s works [3,4] were  
continued and implemented by many researchers. Lee’s 
fuzzy formulae are syntactically defined as classical 
first-order formulae, but they differ semantically as the 
formulae have a truth value in [0,1]. An interpretation I  
is defined by an assignment IT  of a truth value to each 
atomic formula, from which truth values of compounded 
formulae are computed [5]. Interpretation I  is said to 
satisfy (or falsify) a formula F , if  IT , the truth 
value of 

F
F  under I , is at least 0.5 (or at most 0.5). A 

formula is said to be unsatisfiable if and only if, it is 
falsified by all its interpretations. A set  of clauses is 
unsatisfiable in fuzzy logic if and only if, it is unsa- 
tisfiable in binary logic [3]. Mukaidono [6,7] has gene- 
ralized Lee’s result in the following way: 

S

For two clauses  in fuzzy logic, let  1 2,C C
, A L1 1 2 2  where 1  and 2  do not 

contain the literal 

in approximate reasoning. 

,C A L C   L L
A  and A



 respectively as a factor 
and have no pair of complementary variables. Then the 
clause 1 2  is said to be a classical resolvent of 

1 2  written as 1 2  whose keyword is 
L L

,C C  ,R C C A  and 
the contradictory degree of the keyword is  A

1 2C

1 2,C

S

cd
R C

R C

. A 
fuzzy resolvent of 1 2  is written as 

cd
 

where  is the contradictory degree of the 
keyword or the confidence associated with the resolvent. 
They have computed the truth value of 

cd
 

from the truth value of 1 2  and the truth values 
of the atomic formulae. Then, it is proved a set  of 
fuzzy clauses is unsatisfiable if and only if, there is a 
deduction of empty clause with its confidence of resol- 
vent  from  Dubois and Prade [8] established 
fuzzy resolution principle in the case of uncertain 
proposition. In [9], antonym-based fuzzy hyper-reso- 
lution was introduced and its completeness was proved. S 

 nchez et al. [10] proposed a fuzzy temporal con- 
straint logic and introduced a valid resolution principle in 
order to explain/clarity some queries in this logic. 
Fontana and Formato [11] introduced a fuzzy resolution 
rule based on an extended most general unifier supplied 
by the extended unification algorithm. S. Raha and K. S. 
Ray [12] presented a generalised resolution principle that 
handles the inexact situation effectively and is applicable 
for both well-defined and undefined propositions. They 
associated a truth value to every proposition. We assume 
the fuzzy propositions to be completely true and, hence, 
do not associate partial truth value to the propositions. 
Our idea is to present, a generalised resolution principle 
that deals with the fuzzy propositions by the technique of 
inverse approximate reasoning. The advantage is that, it 
executes effective resolution and shows its flexibility for 
automated reasoning. To avoid the generic problem in 
handling generalised modus ponens (GMP) we use 
inverse approximate reasoning in fuzzy resolution. We 
also define fuzzy resolution on the basis of similarity/ 
dissimilarity measure of fuzzy sets, which is inherent 

,C C
 cd cd A

0cd  .S

a

 

 

, ,

,

1

 ,R C C 

Let us consider two clauses  and  1C P C 
2C P C2   . Resolvent of 1C  and 2  denoted by C
 1 2,res C C 1 2C C  

P
 if and only if similarity between 

 and not P   is greater than  or equivalently, 
dissimilarity between  and  is less than 


PP 1  ,  

being pre-defined threshold. Instead of complementary 
literal, we introduce similar/dissimilar literal here. The 
argument form of simple Fuzzy Resolution is as follows. 



A B

notB

A


 

The scheme for Generalised Fuzzy Resolution is given 
in Table 1.  

In this case, we can say that the Disjunctive Syllogism 
holds if B  is close to  ,notB A  is close to .A  

The scheme in Inverse Approximate Reasoning looks 
like as given in the following Table 2.  

Here, fuzzy sets A  and A  are defined over the 
universe of discourse  , mU u u 1 2, ,u  and fuzzy sets 

 and B B  are defined over the universe of discourse 
 , .nV v v1 2, ,v   

We shall transform the disjunction form of rule into 
fuzzy implication or fuzzy relation and apply the method 
of inverse approximate reasoning to get the required 
resolvent. However, in the case of complex set of clauses 
the method is not suitable. Hence, we investigate for 
another method of approximate reasoning based on 
similarity to get the fuzzy resolvent. 

This paper consists of eight sections. In Section 2, we 
define and dicuss some basic concepts which are used in 
our paper. We briefly describe two methods of inverse 
approximate reasoning proposed in [13], in Section 3, 
and apply the method of inverse approximate reasoning 
towards fuzzy resolution in Section 4. Another method 
for fuzzy resolution in the case of complex clauses, is 
applied in Section 5. Section 6 is devoted with some 
artificial examples to illustrate the method. At last, in 
Section 7 some conclusions are made, follwed by some 
references.  
 

Table 1. Generalised fuzzy resolution. 

Rule:  is X A  or Y  is B  

Fact: Y  is B  

Conclusion:  is X A   

 
Table 2. Inverse approximate reasoning. 

Rule (p): If  is X A  then Y  is B  

Fact (q): Y  is B  

Conclusion:  is X A   
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2. Preliminaries 

To study ordinary approximate reasoning as well as 
inverse approximate reasoning, we have to deal with 
fuzzy sets, fuzzy relations and operations on fuzzy sets, 
fuzzy connectives not  , and   and    or  . 
These are represented by the well known classes of 
negation functions (to model complement operators), 
continuous triangular norms (t-norms to model conjunc- 
tion) and triangular conorms (t-conorms to model dis- 
junction) respectively. 

Some well-known t-norms and correlated t-conorms 
are listed in Table 3, where M, P, B indicate minimum, 
product, bounded product and drastic product respec- 
tively for t-norms, and maximum, algebraic sum and 
bounded sum respectively, for the correlated t-conorms. 

Typically, a fuzzy rule “If X  is A  then Y  is ” 
(

B
A  and  are fuzzy sets) is expressed as B  ,I a b , 

where I  is a fuzzy implication and a  and  are 
membership grades of 

b
A  and  respectively. From 

an algebraic point of view, some implication operators 
basically identified in [14] are classified with four 
families , where 1

B

 1,2,3, ,T
iI i 4 I , known as QL- 

implication, is based on classical logic form  
 and logical operators 

are substituted by fuzzy operators. Family 2

  b   a   a a a  b
I , often 

named S-implication, derives from classical logic form 
 Families 3.ba b  a I  and 4I  reflect a partial 

ordering on propositions and are based on a gene- 
ralisation of modus ponens and modus tollens, respec- 
tively. Family 3I  is known as R-implication. With 
reference to the t-norms and t-conorms in Table 3, the 
explicit expressions of fuzzy implication operators T

iI  
are presented in Table 4. 
 

Table 3. t-norms and t-conorms. 

T T    ,T a b   ,T a b  

M   min ,a b   max ,a b  

P  a b  a b a b    

B   max 0, 1a b    min 1,a b  

 
Table 4. Expression of fuzzy implication operators. 

T

iI  M  P  B  

1

TI    max min , ,1a b a  21 a a b     max 1 ,a b  

2

TI   max 1 ,a b  1 a a b     min 1 ,1a b 

3

TI  
1 if

otherwise

a b

b


 

1 if

otherwise

a b

b a


 min 1 ,1a b 

Here, some of the most popular implications such as 
the Kleene-Dienes, Reichenbach, Lukaseiwicz, Gödel 
and Gaines implication operators correspond to  

2 2 2 3 3, , ,M P B M PI I I I and I  respectively. 
The notion of similarity plays a fundamental role in 

theories of knowledge and behaviour and has been dealt 
with extensively in psychology and philosophy. If we 
study the behaviour pattern of children we find that, 
children have a natural sense to recognize regularities in 
the world and to mimic the behavior of competent 
members of their community. Children thus make deci- 
sions on similarity matching. The similarity between two 
objects suggests, the degree to which properties of one 
may be inferred from those of the other. The measure of 
similarity provided, depends mostly on the perceptions of 
different observers. Emphasis should also be given to 
different members of the sets, so that no one member can 
influence the ultimate result. Many measures of simi- 
larity have been proposed in the existing literature 
[15,16]. A careful analysis of the different similarity 
measures reveals, that it is impossible to single out one 
particular similarity measure that works well for all 
purposes. 

Suppose U be an arbitrary finite set, and F(U) be the 
collection of all fuzzy subsets of U. For  ,A B U , a 
similarity index between the pair {A,B} is denoted as 
S(A,B;U) or simply S(A,B) which can also be consi- 
dered as a function S:      0,1U U  . In order 
to provide a definition for similarity index, a number of 
factors must be considered. We expect a similarity 
measure  ,S A B  to satisfy the following axioms: 

P1.        ot  ,B S A B ,S B A S ,A , not , nB S A , not 
A being some negation of A . 

P2.  0 ,S A B 1.    
P3.  ,   1S A B   if and only if   A B . 
P4. For two fuzzy sets A  and , simultaneously 

not null, if 
B

 ,   0S A B   then     min , 0A Bu u    
for all u U , i.e., A B   . 

P5. If either A B C   or A B C   then  
      ,C, mS A C B in , ,S A B S . 
A similarity measure between two fuzzy sets satisfying 

these axioms can also be termed as a f-near-degree. For 
0 1  , if  ,S A B   , we say that the two fuzzy sets 
A  and  are -similar. We now consider a defi- 

nition of measure of similarity which has been proposed 
in [17,18]. 

B 



4

TI  
1 if

1 otherwise

a b

a




 
1 if

1
otherwise

1

a b

a

b





  min 1 ,1a b 

Definition 1—Similarity Indices: Let A  and  be 
two fuzzy sets defined over the same universe of dis- 
course  The similarity index  of pair  

B

.U  ,S A B
 ,A B  is defined by  

     
1

1
, 1

qq

A B
u

S A B u u
n

     
 
 ,  
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where  is the cardinality of the universe of discourse 
and  is the family parameter. Here,  is a real 
number such that a large  always gives a large 
similarity measure. It is left to the user to set  for a 
problem. It is easy to say that the similarity measure 
referred to in the Definition 1 satisfies axioms P1, P2, P3, 
P4 and P5. 

n
1q q

q
q

  ,S A B S A C ,  implies that “  is at least as 
close to 

B
A  as  is to C A ”.  as given in 

Definition 1 is quite sensitive-every change in 
 ,S A B

A  or  
will be reflected in . Detailed clarification of 
choice of the definition is described in [18]. 

B
 ,S A B

Measure of dissimilarity is another measure of com- 
parison of objects in literature. Many authors like B. 
Meunier et al. [15] have defined measure of dissimi- 
larity in different way. However, we use the dissimilarity 
measure in the context of similarity measure and 
consider measure of dissimilarity of two fuzzy subsets 
A  and  defined over B  U , denoted by  ,D A B  

as  Moreover, we assume  
 Through out the 

paper, we use this concept of dissimilarity. In the next 
section, method of inverse approximate reasoning is 
discussed briefly. 

 B , 1 ,D A S A B 
   , not ,D A B S A B 

.
 , notS A .B

3. Inverse Approximate Reasoning 

Let there be a fuzzy rule: “If 2  flow rate is LOW then 
heating power is LOW”. Let us suppose that the “heating 
power is rather LOW”. Then, by the method of inverse 
approximate reasoning with a single rule, we may 
construct hypotheses which would explain the causes of 
observation by fuzzy mathematical method. Let us 
consider a second example as considered in [19]. Let 
there be two fuzzy rules: “if the traffic is crowded then 
the flow is low” and “if the visibility is weak then the 
flow is low”. Suppose, we observe “the flow is very low”. 
According to these two linguistic rules and the corre- 
sponding observation, we first construct hypotheses by 
abduction such as “the traffic is very crowded” or “the 
visibility is very weak” or “the traffic is very crowded 
and the visibility is very weak”. It is difficult to decide 
which are possible explanations for this observation. N. 
Mellouli and B. Bouchon-Meunier [20] have used gene- 
ralised modus ponens (GMP) to construct abductive 
hypotheses and used the measure of similitude to con- 
struct the best possible explanation. Here, we consider a 
single rule for the method of inverse approximate rea- 
soning. 

O

Definition 2—Inverse Approximate Reasoning: Let  

: If is then isX A Yp B          (1) 

be a given rule, where A  and  are fuzzy subsets 
defined over the universes of discourse U  and V  
respectively. From a given fact “

B

X  is A ”, where A   

is a fuzzy subset of  we can conclude that “Y  is U
B ”, where B  is a fuzzy subset of V , by applying 
some method of approximate reasoning. This is called 
forward approximate reasoning. Now for given “Y  is 
B ”, we consider  B  be the set of all fuzzy subsets 
A  of  such that for given “U X  is A ” we can 

conclude “  is Y B ” by the method of approximate 
reasoning. We have to choose the best member/s of 
 B  (not empty) in some sense and define some 

inverse mapping from fuzzy subsets of V  into fuzzy 
subsets of U , which we refer here as inverse appro- 
ximate reasoning. We shall discuss briefly two methods 
of inverse approximate reasoning presented in [13] to 
establish fuzzy resolution principle. 

3.1. Similarity Based Inverse Approximate  
Reasoning 

Our aim, in [13], was to feed the method of similarity- 
based approximate reasoning [17] to inverse approximate 
reasoning by writing the rule into its equivalent form. Let 
X ,  be two linguistic variables and ,  be their 

respective universes of discourse. Two typical propo- 
sitions “p” and “q” are given in scheme as presented in 
Table 2 and we may derive a conclusion according to 
similarity based inference method [17] of the scheme in 
Table 2. The membership values of 

Y U

, ,

V

 A A B  and B  
are defined as before. Unlike the existing similarity based 
methods, a convenient way to represent a rule given by 
premise “p” is in the form of a fuzzy relation. The rule in 
premise “p” may be transformed into its equivalent form 
“ p ” of the given premise “p”. We represent this 
equivalent rule by a fuzzy relation  10,R

V U  [21]. 
Usually,  is defined on the basis of one of the 
operation 

R
 , ,     , where  is 

associative, commutative and the conjunction operator in 
the GL-monoid 

 2: 0,1 0, 1

 0,1 , ,  .  is the residuation ope- 
ration associated with the conjunction  and can be 
viewed as the valuation function for the implication; 



  
is an alternative to the lattice operation  (in this case 
simply the “min” operation) for the valuation of the 
conjunction. Then for a given fact, the similarity between 
the fact and the antecedent of the equivalent form of the 
given rule denoted by “p” is computed and is used to 
modify the relation . Here, every change in the 
concept, as it appears in the conditional equivalent 
premise and in the fact, is incorporated into the induced 
fuzzy relation (say, 



R

R ). The conclusion may then be 
drawn using the projection operation, valuating the 
existential quantifier by the supremum and the 
conjunction by the operation . We obtain the 
definition of the composition of a fuzzy relation and a 
fuzzy set as  

 ,   

      , ,
A R Bv V

u v u v u    


 .U  V  
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In order to avoid the use of rule-misfiring, we modify 
the inference scheme in such a way that significant 
change will make the conclusion less specific. This is 
done by choosing an expansion type of inference scheme. 
Here, the “UNKNOWN” case, i.e., the fuzzy set  A U  , 
is to be taken as the limit of non-specificity. Explicitly, 
when the similarity value becomes low, i.e., when 

 and  differ significantly, the inference should 
be 
not B B

  .A U
 



  not
 As for , we expect that    not B  B

A A   and for all other B , the relation not A A  
holds. This in turn implies that, nothing better than what 
the rule says, should be allowed as a valid conclusion. In 
view of the above observation we propose a scheme for 
computation of A  in the following algorithm. 

ALGORITHM-SIAR: 
Step 1. Translate given premise  and compute 

 using some suitable translating rule 
(possibly, a t-norm). 

p
not , not R B A

Step 2. Compute similarity measure not ,S B B  
using some suitable definition . 

Step 3. Modify  with  not , not R B A not ,S B B   

to obtain the modified conditional relation  

 not , not R B A B  using some scheme C. 

Step 4. Use sup-projection operation on  

 not , not R B A B  to obtain A  as  

     
not ,not 

  , .sup
A R B A Bv

u v   u        (2) 

In [17,18], authors have proposed two schemes for 
computation of the modified conditional relation  
 not , not R B A B  as given in Step 3, the general form 

of which is given by: 
Scheme C: 

        not ,not not ,not 
, R B AR B A B

v u s v u    , ,



 

where  is any implication function. As previously 
done in [13], We have  



      not ,not sup ,v V R B AA
u s v u         (3) 

and when the conditional relation is interpreted as a 
t-norm we get  

    not .AA
u s u     

Otherwise, A  by SIAR could be anything. From (2) 
and (3) it is found that when  we have 

.
 not , 0S B B 

A U   In other words, it is impossible to conclude any- 
thing when  not ,B B  are completely dissimilar, i.e., 
 ,B B  are completely similar. When noS t ,B B  is 
c l o se  t o  un i t y ,   not , not R B A B  i s  c lo se  t o  

. Hence, the inferred fuzzy set  no tnot ,R B  A A  will 
be close to not A , i.e.,  is close to unity. 
Scheme  also ensures that a small change in the input 

produces a small change in the output and hence, in this  

not ,S A A 
C

sense the above mechanism of inference is reasonable. 
Let us consider the model as in Table 2 and a theorem is 
established as follows: 

Theorem 1: For all  and , not B B not .A A  
We have investigated another method to deal with 

fuzzy implication operators in inverse approximate rea- 
soning.  

3.2. Method Using Cylindrical Extension and 
Projection—INAR  

We now consider the scheme given in Table 2 and inves- 
tigate the scheme for generalised modus tollens (GMT). 
We describe the method simply by an algorithm. 

ALGORITHM-INAR:  
Step 1. Translate the rule into a fuzzy relation or 

implication operator . R
Step 2. Take the  of fuzzy sub- 

set 
cylindrical extension

B  in V  on U V  and let it be . R
 Step 3. Construct R R R ∩ , where  is defined 

by any fuzzy conjunction operator. 
∩

Step 4. Obtain  onA proj R U  . 
Symbolically, we get, 

   ,v VA
u proj R u v 


   

    , , , ,sup R Rv V T u v u v   

T  is a t-norm 

    , ,sup Rv V B
T v u v  ,  

by definition of cylindrical extension, which establishes 
the CRI in the form of GMT. We have to select an 
appropriate fuzzy implication for the fuzzy relation in 
Step 1 so as to model GMT. Also the standard negation 
of the resulted fuzzy set obtained by GMT also gives the 
given observation by applying GMP. Hence, mathe- 
matical formulation of the above algorithm is:  

      , ,sup RA B
v V

u T v u v   


 .        (4) 

We now deduce some theorems from which we can 
establish the reasonableness of the method in which 
negation operator is taken as standard strong negation. 

Theorem 2: Let B  be normal and . 
Then 

not B B 
not A A , whenever the following implications 

satisfy the Equation (4) for any t-norm T: 
1) Reichenbach S-implication; 2) Kleene-Dienes S-im- 

plication and 3) Lukasiewicz R and S-implication. 
Theorem 3: Let B  be normal and . 

Then , whenever both the relation 
and conjunction in the Equation (4) are defined by any 
t-norm . 

not B B 
UNKA 

T

NOWN

Theorem 4: Let B  be normal and . 
Then 

not B B 
not A A , whenever the Rescher-Gaines R-imp- 

lication I  satisfies the Equation (4) for any t-norm T. 
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Theorem 5: Let  be normal and . 
Then 

B not B  B
not A A , if  and   0.5u A not A A , if 

  0.5A , whenever Gödel R-implication and Gou- 
gen R-implication satisfy the Equation (4) for any t-norm 
T. 

u

We observe in the above theorems that if  
then either 

not B B 
A  will be not A  or close to not A , that 

is, we may use GMT in the case of inverse approximate 
reasoning to get an output in the antecedent part of the 
given rule and the negation of this output may give B  
by applying GMP. So, we first consider the similarity 
between  and . If the similarity measure between 
these two is very very low, i.e.,  then we 
expect similarity between 

B B

 ,S B B  0
A  and A

 ,S B B

 to be very low, 
i.e., . If the similarity measure between 
these two is very very high, i.e.,  then we 
cannot make any specific conclusion about the similarity 
between 

 S A, A  0
 1

A  and A . Therefore, the method of inverse 
approximate reasoning demands dissimilarity between 
the specific observation and the consequent of the given 
rule. So we can apply the method in fuzzy resolution.  

4. Fuzzy Resolution Based on Inverse  
Approximate Reasoning  

Lately researchers discuss and explore the validity of 
many classical logic tautologies in fuzzy logic, especially 
those that involve fuzzy implications. We attempt to 
exploit such a classical logic equivalence to deal with 
fuzzy resolution in the framework of inverse approximate 
reasoning methodology. In classical logic 

 ,  , 0,1 .a b a b a b             (5) 

when extending this classical logic equivalence to fuzzy 
logic, we interpret the disjunction and negation as a 
fuzzy union (t-conorm) and a fuzzy complement, res- 
pectively. Fuzzy implication thus obtained is usually 
referred to in the literature as S-implication. 

We now consider the classical logic tautology which is 
obtained from (5). 

 ,  , 0,1 .a b a b a b              (6) 

Therefore, we can extend the classical equivalence (6) 
into fuzzy logic where fuzzy union is transformed to 
fuzzy implication. 

In fuzzy resolution we deal with the rule of the type 
“ X  is A or Y is B”. Like classical logic, we may trans- 
form the rule into “If X  is not A  then Y  is ” into 
fuzzy logic. Then the rule is executed in the method of 
Inverse Approximate Reasoning described in [13] to 
obtain the disjunct. The equivalent scheme of Table 1 
that conforms fuzzy resolution is given in the Table 5. 

B

We have demonstrated earlier in [13] that—if the give 

Table 5. Equivalent scheme conforms fuzzy resolution. 

Rule: If X  is not A  then Y  is B  

Fact: X  is B  

Conclusi  is on: X A   

 
iven rule then one may conclude that the resulting fuzzy 

nto fuzzy implication as  

g
set is sufficiently dissimilar to the antecedent part of the 
rule. Applying this method in the scheme given in Table 
5, we get the required resolvent which establishes the 
fuzzy resolution principle. So the algorithm is as follows. 

ALGORITHM-FRIAR: 
Step 1. Translate the rule i

      , ,u v I u v    not R A B

where I  is an implication operator. 
of  in  on Step 2. Take cylindrical extension  B V

,VU   say R , defined by  

   , .B
U V

R v  u v

  

Step 3. Construct  

where denotes any fuzzy conju ction operator. 
 4

,R R R  ∩  

∩  n
Step . Obtain A projR   on U  defined by  

 on , .upprojR v vs R
vu

U u   

Mathematically, we get 

 u Proj   
    

    

,

, , ,sup

, , ,sup

v VA

R R
v V

R B
v V

R u v

T u v u v

T u v v

 

 

















       (7) 

where is a t-norm used to describe fuzzy conjunction 
r. 

ected that, for the observation “  is ” 
an

T  
operato

It is exp Y not B
d the given premise “ X  is A  or Y  is B ” w n 

conclude “
 e ca

X  is A ” by zzy solution. Ho ever, for 
the the observation “ Y  is B ” no conclusion can be 
drawn. We establish th  above criteria by the following 
theorems. 

Theorem

 fu re w

e

 6: Let  be normal and  be 
in

not B B 
implication

R
terpreted by any S-  satisfying Equation (7). 

Then A A   for any t-norm T . 
Pro prove the theore  oof: We m nly for Reichen ach 

S-
b

implication and min.T   Proofs for other implica- 
tions are same as it. 

 u

          
        

not

not

 ,sup

 , ,sup

A

B A B A Bv V

B A A Bv V

T v u v u

T v u u v

    

   







   

  

 v

data is sufficiently dissimilar to the consequent part of a  
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     
 

since 0 and , ,

for , , , 0,1

B v T a c T a

c d a c d

  

  
 

d

       not not,sup supB A B Av V v VT v u v       ,u

   notsince not is normal and 1 .B BB v    



v

Corollary: Let  be normal and  be 
interpreted by ion satisfying 
Then 

=  B not B
any S-implicat

R
Equation (7). 

A A   for L  
Proof: 

Example 2: Consider the premises  

in which 

ukasiewicz t-norm T . 

     

     

sup B AA
v V

B A B

u v u

v u v



  




  



     
    

 

 sup 0,1

 sup 0, 1sup

 sup 0,sup

A B
v V

A notB
v V

A

u v

u v

u

 

 

 







  

  

 



 

: is LARGE or is SMALL;

: is not SMALL

p X Y

q Y
 

X  and  are defined over the universes 
ively and 

 and  
 de

Y

fine

 1 4, ,u u   and  1 4, ,V v v   respectU

not SMA  are
fuzzy sets labelled by 

LL
LARGE , SMA
d by 

LL

1 2 3 4

1 2 3 4

1 3

LA E 0 0.45 0.95 1

1 0

not SMALL 5 1

A u u u u

v v

B v v v

  

  

�

�

 

rity between fuzz

2 4

RG

SMALL 0.65 0.15

0 0.35 0.8 .

B v v

v

   





�

The simila y sets  and B B  is 
i.e., fuzzy set in observation is dissimi r to fuzzy
set in the disjunctive form of rule. 

Again, by INAR, we study the shape of the resolvent 

0.0 , 
  B  la

B  

A  for data given in above with different S-implications 
an rib les

rity between 

d different t-norms, which is desc ed in the Tab  
6-8. 

The result shows that the dissimila B  
and B assures the similarity between A  and A when the 

soning mechanism is handled using inverse appro- 
ximate reasoning. 
rea

“given a disjunction and the negation of one of the 
di in

. Consider  

sjuncts, the other may be inferred” is established  
fuzzy logic. 

Example 3: Now, we consider the scheme and data of 
Example 2 except B

1 2 3 40.0 0.1225 0.7225 1.0v v v v    in Equation 
(4). We shall observe the results for the given premise 
“ p ”and data

B 

 in Example 2. 

and  are dissi
In this case,  , 0.1304S B B  , i.e., fuzzy sets B  

Table 6. A

B milar. 

  f h S-implication. or Reichenbac

A
T   1u  2u  3u  4u  A   ,S A A  

M 0.35 0.53 0.95 1.0 0.820 A  

P 0.23 0.45  0.95 1.0 A  0.886 

B 0.0 0.45 0.95 1.0 A  1.0 

 
Table 7. A  fo Kleen -Dien  S-implication. r e es

A
T   1u  2u  3u  4u  A   ,S A A  

M 0.35 0.45 0.95 1.0 0.825 A  

P 0.23 0.45 0.95 1.0 A  0.886 

B 0.0 0.45 0.95 1.0 A  1.0 

 
Table 8. A  for Lukasiewic  S-implication. z

A A   ,S A A  T   1u  2u  3u  4u  

M 0.809 0.35 0.60 0.95 1.0 A  

P 0.23 0.51 0.95 1.0 A  0.882 

B 0.0 0.45 0.95 1.0 A  1.0 

 
Let us execute the reasoning mechanism by INAR. 

The ults sh  i bles 9-11 respectively for 
diffe ti nd rm

That is, if 

 res  are own n Ta
rent implica ons a  t-no s. 

B  is not exactly match with  but 
these are dissimila e  r vent can be ned 

rough inverse approximate reasoning method. The 
te

not B
r, th fuzzy esol obtai

th
chnique is very new one. 
Theorem 7: Let B B   be normal and R  be 

interpreted by any implication satisfying Equation (7). 
Then UN NOWNA   for any t-norm T . 

Proof: 
K

 
A

u 

        
     

 ,sup B A B A B
v V

B A

T v v u v

v

   

 




   



    
 

    

 min ,sup

 1,sup

since 1 0.

B A B

B
v V

A B

u

v u u v

v

u v



  



 


  

  

 



Hence, 
We pr eichenbach S-implication 

and 

v V

 

UNKNOWNA  . 
ove the theorem for R
minT   only, but the above theorem can be proved 

for any other implications and any other t-norms in the 
similar way. 

Example 4: In Example 2, if we take  

1 2 3 4

uation (4) then either by SIAR or by INAR we get 
SB  � MALL 1.0 0.65 0.15 0.0B v v v v     in 

Eq

1 2 3 41.0 1.0 1.0 UNKNOWNA u u u u      , for 1.0  
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Table 9. Another A  for Reichenbach S-implication. 

A
T    

1u  2u  3u  4u  A   ,S A A  

M 0.15 0.53 0.95 1.0 A  0.9144 

P 0.11 0.45 0.95 1.0 A  0.9458 

B 0.0 0.45 0.95 1.0 A  1.0 

 
Table 10. Another  for eene-Dienes -implication. A Kl  S

A
T    

1u  2u  3u  4u  A   , S A A  

M 0.15 0.45 0.95 1.0 A  0.9250 

P 0.11 0.45 0.95 1.0 A  0.9458 

B 0.0 0.45 0.95 1.0 A  1.0 

 
Table 11. Another for icz S ation. A   Lukasiew -implic

A
T    

1u  2u  3u  4u  A   , S A A  

M 0.15 0.60 0.95 1.0 A  0.8939 

P 0.11 0.45 0.95 1.0 A  0.9458 

B 0.0 0.45 0.95 1.0 A  1.0 

 
all of th case

Theorem L  norm l an  
interpreted plica on 
Equation (7). Then 

e s. 
 8: et B not B   be a d R  be
by Rescher-Gaines R-im ti satisfying 

A A   for an nor  
Proof:  




Example 5: For the data given in Example 2, applying 
INAR for Recher-Gaines R-implication combined with 
any t-norm , we get the fuzzy resolvent 

y t- m T . 

 
A

 
 

0,1

 1 ,sup

 1 ,

notA
b

T b I 


 

 

  

 
 

 
 

 
 

 
   

not not 

not not 

,

1 ,  1 ,0sup sup

max 1 ,0  1 .sup sup

A A

A A

u b u b

A
u b u b

u

u b

T b T b

b b
 





 

 

 

 
     

 

 max
 

 


u

T A  as 

1 2 30.0 0.35 0.85 1.0 4A u u u    
bset of A and  , 0.929.S A A   It 

rem 8. 

u  which is a 
su establishes Theo- 

Observation: In Example 2, for another  

1 2 3 40.0 0.1225 0.7225 1.0 not B v v v v B      , we 
also get the fuzzy resolvent  

1 42 30.0 0.12 0.72 1.0A u u u u     
th Rescher-Ga

r, considering other R-implications, except, Luka- 
si sol- 
vent 

A  when  we 
apply INAR wi ines R-implication. 
Howeve

ewicz R-implication we cannot get such a fuzzy re
A  which is a subset of A  for the same 

vent obtained is significant. 

We are now going to aplpply another m

input 
data, although the fuzzy resol

ethod SIAR 
[13] to obtain fuzzy resolvent for the scheme given in 
Table 1. Let us consider another classical logic equi- 
valence  

a b b a a                 (8) b

The classical logic equivalence (8) can be extended in 
fuzzy logic with implication and negation function. Then 
we transform the rule in Table 1 into its equivalent form 
“ 1 :p  If Y  is not B  then X  is A ” over the domain 
of  0,1

V U
. A f ule m  be def ned by means of a 
fo  a fu  Ca

th

uzzy r
r defining

ay
zzy

i
rtesiconjunction an product rather 

an in terms of a multivalued logic implication [13,22]. 
Therefore, the rule in 1p  is transformed into fuzzy 

relation R  as  

      , 1 , ,R B Av u T v u           (9) 

where T  is a t-norm describing a fuzzy conjunction. 
Now we can apply our method SIAR described in [13]. 

Th : 
SIAR:  

Step 1. Translate given premise  a

e algorithm is as follows
ALGORITHM-FR

1p nd compute 
 not ,R B A

 2
 by Equation (9). 

Step . Compute similarity measure  not ,S B B  
using some suitable definition . 

Step 3. Modify  , Anot R B  not ,S B B with  to 
lationobtain the modified conditional re   not ,R B A B  

us
Step 4. U eration on  
ing Scheme  C  in (3).  

se sup-projection op
 not ,B A BR   to obtain A  as  

   t ,A B A B
 

We shall illustrate the method applied  
su

 
no

, .
Rv

v u       (10) 

 here by some

Ex L ample 2. For 
completely dissi th or different t-norms 

 the shapes of fuzzy resolvent 

 supu 

itable examples. 
ample 6: et us consider the data in Ex

milar B* wi  B and f
T , A

ub
 in 

, when we apply SIAR. The s seq  results are 
U

uent
 are studied 

here
shown in Table 12. In each case, it turns out exacltly the 
fuzzy set A  which corresponds LARGE` . 

Example 7: Consider the data in Example 2 where B  
is not completely dissimilar with B , but dissimilarity 

ceeds certain threshold. Then, a lying IAR we ob- 
serve the shapes of 
ex  Spp

A  and compare it with given A  
for different t-norms, which is shown in Table 13. 

Since  , 0.9255S A A  , i.e., A  is al st similar 
to 

mo
A , it establishes fuzzy resolution in reasoning. 

In the above methods, we apllied INAR or SIAR when 
the disjunctive knoledge can be transformed into fuzzy 
implication. However, it may not always be the cas . 
Moreover, when the expert knowledge is in co

e
mplex 

fo isjunction it is diffi ap
 w n deal 

with complex premises.  

rm of d cult to ply INAR or SIAR. 
So, e extend our method in such a way that ca
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Table 12. Fuzzy resolvent A . 

A
T    

1u  2u  3u  4u  A   ,S A A  

M 0.0 0.45 0.95 1.0 A  1.0 

P 0.0 0.45 0.95 1.0 A  1.0 

B 0.0 0.45 0.95 1.0 A  1.0 

 
Table 13.  for another A B . 

A
T    

1u  2u  3u  4u  A   S   ,A A

M 0.13 0.52 0.96 1.0 A  0.92 

P 0.13 0.52 0.96 1.0 A  0.92 

B 0.13 0.52 0.96 1.0 A  0.92 

5. Fuzzy Re i

In t sec w al en he scheme 
Table 1. Let 

solution w th Complex Clauses 

his tion, e sh l ext d t given in 
X , Y  and Z  

cal k

be three linguistic 
bles k o n U, V nd W ec- 
tively. We e a  of an inex on- 
clusion “ ” f  typi nowledge (premises) “ ” 

, 

varia- 
 that ta e valu

id
rom

es from the d mai  a  resp
cons er th  deriv tion  act c

r  two p
4and “ q ” acording to the scheme given in Table 1

where A ’s, B ’s and C ’s are approximations of 

d c ip

positional rule inference. We have found 
th

 basis of the observation 
co y to mod

ules so th e shortfall n be 
re

y g e-defined threshold value, 
w

possibly inexact concepts by fuzzy sets over U, V and W 
respectively. 

In 1993, Raha and Ray [12] applied Zadeh’s [23] 
concept of approximate reasoning with the application of 
possibility theory to model a deductive process “Genera- 
lised Disjunctive Syllogism”. They used projection prin- 
ciple an onjunction princ le to deduce fuzzy resolvent. 
However, the method could not reduce the shortfall of 
Zadeh’s Com

e shortfalls in [12] as follows: 
1) Let fuzzy resolvent be R  for not B B   in the 

scheme given in Table 14, by the method of Raha and 
Ray [12]. The fuzzy resolvent also be same R  for 
taking B  as either notB B   or not .B B    

2) If we interchange B  and B  the same fuzzy re- 
solvent R  will be produced. 

Therefore, firing a rule on the
uld be harmful. So, it is necessar ify the 

relation generated by the two given premises, with the 
similarity measure of two fuzzy sets involved in the 
disjunctive form of r at th  ca

moved. If a pair of fuzzy sets involved having dis- 
similarit reater than certain pr

e get our expected fuzzy resolvent using some de- 
ductive reasoning. Hence, we investigate another method 
which is described in the following algorithm. 

ALGORITHM-FRCEP: 
Step 1. Translate the premise p  into fuzzy relation  

 1R U V    

Table 14. Generalised fuzzy resolution—extended form. 

p : X  is A  or Y  is B  

q : Y  is B  or Z  is C  

r : X  is A  or Z  is C  

 
as 

      
1

, min ,1 ;R A Bu v u v     

Step 2. Translate p into fuzzy rel  


as 

 the remise q  ation 

2R V W   

     
2

, min ,R Bv w v w     ;C

Step 3. Take cylindrical extension of in 1R   U V  
on ,U V W   say 1R , defined by  

   
11 , , , ;RU V W

R u v u v w
 

    

Step 4. Take cylindrical extensi  of  in on  2R V W  
on ,U V W   say 2R , defined by  

   
22 , , ,RU V W

R v w u
 

  ;v w  

Step 5. Construct 1 2 ,R R R   ∩  where ∩  de  
any perator; 

notes
 fuzzy conjunction 

Step 6. Compute 
o
 ,S notB B s and, say, ; 

Step 7. Modify R  with s  by Sche C  in 
and, say, R

me (3) 
 ; 

S ain R projR  on Utep 8. Obt  defined by W

   * on , , , ;supvU W R
projR U W u v w u w 

   

Step 9. Obtain A  and C  by ojecting R eparately 
on t 

 pr  s
 U and W such tha  ,supwUU RA proj R  u w u   

an


d  

 , .supW RuW
C proj R u w w    

he fuzzy re t , 
for 

Symbolically, t solven is obtained by R  
u U , v V  and w W ,  

   


, , ,sup

sup

R v R
u w u v w

s    
 

    
   

    
    

    
    

    

1 2

, , , from 3

, ,sup

, , , , ,sup

, ,sup

min ,1 ,sup

min ,

min ,1 inf ,

min ,sup

, ,

Rv

Rv

A Bv

B C

A v B

B Cv

A C

u v w

s u v w


1 2

,

R Rv

R Rv 
s T u v w u v w

u v v w

s T u v

v w

s T u v

v w

s T u w



 

 

 

 

 

 













 

 

 

  

  

 

 
s T  

 

 

 
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   iff 1 inf 1.supv B Bvv v     

This derivation can be achieved if there is a 0v V  
is possi- 
ilar, i.e., 
  in 

such that  and  which 
dissim

 and plication 
derivation. We observe two criteria here. 

Criterion 1: Taking 

 0 0B v 
ble if the fuzzy sets 

B  are si

  0 1B v  
 and B  are 

milar for any im
B

notB

 min 1, ,x y y  x  we get  

      , min 1, ,R A Cu w T u w s    ;
Criterion 2: Taking 1 ,x y x x    y  we get  

.C

From above two criteria we observe that when 
, i.e., when  and  are com- 

herefore, 
, if

      , 1 ,R Au w s T u w s       

 not , 0s S B B 
pletely similar 
fuzzy resolvent coul

 B
UNKN
hing

B
.  T

ever
OWNR U W  

d be anyt . How  s  is 
st dissimilar close to unity, i.e., if 

we
B  and B are alm  o

 have R  is close to  

      , ,A C
U W

T u w u w 

  

which, after re-translation, gives “If X  is A  or Z  is 
 that a smal ngC ”. Again, we observe n Bl cha e i   pro- 

duces a small change in fuzzy resolvent—which ensures 
our method is resonable one. 

e another method zzy 
re ex set of clauses. ved 
that, to obtain a fuzzy resolvent from two clauses 
containi
the sam

er

 
e fidence of which is measured 

by the dissimilarity measure of the c mplementary 
literals. However, in the case of almost complementary 

bu  m

measure of complementary 
lit

Let us consider a scheme given in Table 15 where  

Let us now investigat to find a fu
solvent from a compl It is obser

ng a pair of complementary literals defined over 
e domain. If the dissimilarity measure of the 

complementary lit als is unity then we get the resolvent 
by the disjunction of remaining literals and subsequent 
removal of the complementary literals. The keyword of 
the fuzzy resolvent is any one of the complementary 
literals, th  degree of con

o

literals for which dissimilarity value does not attain unity, 
t exceeds a certain pre-defined threshold, we odify 

the remaining literals with the measure of dissimilarity in 
such a way that dissimilarity 

erals tends to unity and we obtain the resolvent by 
taking the disjunction of modified literals removing the 
complementary literals. If the dissimilarity measure of a 
pair of literals is either zero or close to zero, we cannot 
obtain a fuzzy resolvent. In this way, we can proceed for 
a method to find out the derivation of the empty clause 
and establish the refutation method for the proof of a 
theorem. The degree of confidence of the empty clause is 
measured by the degree of confidence of keyword that 
generated the empty clause and, thus, a sort of com- 
pleteness of fuzzy resolution principle is established. 

Table 15. Generalised fuzzy resolution—another extension. 

1C  : 1X  is 1A  or 2X  is 2A  or   or mX  is mA ; 

2C  : 1Y  is 1B  or 2Y  is 2B  or   or nY  is nB  ; 

 1 2,R C C  : 1X  is 1A  or   or mX  is mA  

or 1Y  is 1B  or   or nY  is nB  

 
variables  1, 2, ,iX i m   and the respective fuzzy 
subsets  1, 2, ,iA i m   are defined on universe 

 1, 2, ,iU i m   repectively; variables  ( = 1, 2, , )jY j n  
and the respective fuzzy subsets   1, 2, ,jB j n   are 
defined on universe   1, 2, ,jV j n   repectively. 
 ,k lA B  is almost complementary over the same uni- 
verse   k lU V  with the degree of confidence of key- 
word kA  is    1 ,cd A S A B   cok k l and the rre- 
sponding ,i jA B  are defined over ,i jU V  respectively. 

To show the method we set up an algorithm FRAE as 
follows

ALGO E:
Step h m  o e

: 
RITHM-FRA  

1. C eck the do ain f pair of lit rals  i j,A B , 
,i j  from clauses 

 2. If t p e same o
1  and 2CC ; 

s inStep he air remain  th  d main, say, 
 k lU V  then e e d i y f  m asur the issim larit o  ,k lA B ; 

rwise, there is no fuzzy resolvent; 
 Dissimilarity of 

Othe
Step 3.  ,k lA B , i.e.,  ,k lD A B  is 

computed by  1 ,S A B
 If 

;k l  
Step 4.  ,k lD A B  is very v , e i.e.ry high, 
 , ,k lD A B      is pre-defined th o the 

next step and say, k

reshold then go t
A  is ise, there is 

 resolvent; 
Step y Bi either by 

 keyword; Otherw

 5. Modif
no fuzzy

  min 1, ,j j k lB B D A B   
or by    1 , ;B B S A      1j j k l

Step 6. Fuzzy resolvent is  
B

 1 2 1 1, m nR C C A A B B            

and  

   2 cd
R C C d1, kc A   

whic ih s measured as    , ;k k lcd A D A B  
Step 7. Repeat the process until empty clause, e 

co
 with th

nfidence 0cd  , is derive ore than ses. 
Hence, we prove the (u ility of  by 

the de

d for m  two clau
n)satisfiab  a theorem

empty clau
ses.  

W trate the models presented
 paper. Let us consider variables that range over 

fin ated by variables ranging 
over such sets. 

Example 8: Consider the premises  

duction of se from a set of fuzzy clau- 

6. Artificial Examples 

e consider examples to illus  
in this

ite sets or can be approxim

Copyright © 2013 SciRes.                                                                                  IJIS 



B. MONDAL, S. RAHA 96 

: is LARGE or is SMALL;

: is not SMALL or is L GE;

p X Y

q Y Z
 

AR

in which X , Y  and Z  are defined ov the respec- er 
tive universes  1 4, ,U u u  ,  1 4, ,V v v   and 

 1 2, , ,W w w w w  and fuzzy sets labelled by  
LARGE , SMA  and not SMALL  are defined by 

3 4

LL

1 2 3 4LARGE 0 0.45 0.95 1A u u u u

B

   �

1 2 3 4

2 3 4

SMALL 1 0.65 0.15 0

0.35 0.85 1

v v v v

v v v

   

 

 

�
 

1not SMALL 0B v  

 

�

1 2 3 4LARGE 0 0.20 0.75 1 .C w w w w�

The similarity between fuzzy sets not B  and B  is 
1.0 , i.e.,  not , 1.0S B B  . Therefore, in two clauses, 
fuzzy sets B  
B

in observation is di  
ir 

ssimilar to fu
ilar pa

zzy set
. Hence, we can resolve upon dissim  ,B B . 

lv  We apply -FRCEP to gALGORITHM et the reso ent. 

      1 min ,1 ,

0.00 0.0 0.00 0.00

0.00 0
,

0.35 0.85 0.95

0.35

 







0

0.35 0.45 .45

0.00

0.00 0.85 1.00

A BU V
R u v u v 


 










 

      2 min , ,

0.00 0.00 0.00 0.00

0.01 0.20 0.35 0.35
.

0.01 0.20 0.75 0.85

0.01 0.20 0.75 1.00


We cons ct 1 2 ,R R R   ∩  where ∩  denotes any 
zzy conjunction operator and  

   

B CV W
R v w v w 



 
 
 
 


 



 

tru
fu

11 , , , ,R u v u v w    R
U V W 

   
22 , , ,R

U V W

R v w u
 

    .v w

We modify  with R  ,s S notB B
 s  (using Sche

 as get 
me  and 

we 
  , , 1 RR
u v w     1 2C

M∩  in Tabl ) and we 3 e get  

on

0.00 0.00 0.00 0.00

0.01 0.20 0.45 0.45
.

0.01 0.20 0.75 0.95

0.01 0.20 0.75 1.00

R projR U W 



 




 







in We can also obta A  and C  by  

1 2 30.0 0.45 0.95 1.0 ,4u u u u   
 UA proj R 

1 2 30.0 0.20 0.75 1.0 ,WC proj R w w w w       

A

4

which are same as  and respectively, since the 
dissimilarity between  and  is zero. 

t same 

B  
BB 

Again, it is observed tha R , A  and C  are 
conjunctions (t-nor here) 

ed in Table 3. However,
obtained for different fuzzy m
describ rent 

s, 
B for diffe   in 

premise , it yields different resul
Let us consider  

q ts. 

1 2 3 40.0 0.1225 0.7225 1.0B v v v v B    
Similarity between not B  and B  is 0.8

 .  
i.e., 

dissimilarity between is very ess 
than pre-defined th y- 
ing ALGORITHM-FRCEP, we get the fuzzy resolvent as  



69604,  
 low, being l
.86 ). By appl

B  and 
reshol

B
d value 0.34(

  
1 0

0.13 .13 0.13 0.13 0

0.14 0.30 0.52 0.52
,

0.14 0.30 0.78 0.96

0.14 0.30 0.78 1.00

R
 
 
 
 
 

 

for t-norms M, P and B in Table 3, and by projection we 
obtain  

1 2 3 40.13 0.52 0.96 0 ,1.A u u uu      

1 2 3 40.14 0.30 0.78 1.0 .C w w w w      

Simila y between rit A  and A  is  and 
sim ich is 

r anot

0.925520,
5428  whilarity between 

our expected result. 
Now, if we conside her  

C  and C  is 0.91

1 2 30.0 0.5916 0.9219 1.0B v v v v B4      , similari- 
ty of which with not B  is 0.873964,  i.e., dissimilarity 
of it with B  is less than 1 0.86  then, we find the 
resolvent as  

ent t-norms in Table 3 and  

0.13 0.13 0.13 0.13

0.13 0.30 0.52 0.52
,

0.13 0.30 0.78 0.96
R

 
 
 
 
 

 

0.13 0.30 0.78 1.00 

for differ

1 2 30.13 0.52 0.96 1.0 ,4A u u u u      

1 2 30.14 0.30 0.78 1.0C w w w 4w      

with  , 0.928010S A A   and , 6.S C  
Another example can be il strate er number 

of premises is more t

  0.91825C 
d whenevlu

han two. 
 premises 

where 

Example 9: Let us consider the

RGE;

: is not LARGE;

: is not SMALL;

q X

r Y

 

: is LARGE or is SMALL or is LAp X Y Z

X , Y , Z  
not L

and all the fuzzy sets are defined as 
earlier. Here is defined by  , ARGE  

1 2 3not LARGE 1.0 0.55 0.05 0.0 .4A u u u    �  u

Selection of keywords: Since,  in pre- LARGEA �
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mise p and  in premise q are fuzzy 
subsets in the U and similarity between 

not LARGEA �
 same universe 

not A  and A , i.e., not ,S A  1A  , we r solve upon 
ywor

e
the ke d A , taking the premises p and q together as 
A  and A  completely dissimilar. Again, 

 

SMALLB �  
ise r are fuzzy 
 not , 1S B B

in premise p and not SMALLB �  in 
subsets over the same universe V and

prem
 . 

q  we resolve 
d 

Theref
upon th

ore, after resolving with 
e keyword B with taking 

p  and 
r  an  ,re p q  

eps with the 

A B C    

s
togeth e the f
giv

e

by

r. Next, we execut

 

ollowing st
en data, using ALGORITHM- FRCEP. 

Execution: 
Step 1: Compute the fuzzy relation 1R
 

     , ;B C w  ,1 
1

Step 2:

, , min 1R Aw u  

 Extend 

u v v  

A  in U cylindrically on U V W   
as  

   2
U V W

R
 

 

ompute R R  ∩

odi   with 

, , ;A u u v w   

Step 3:

Step

 C 1 2R  by

1

  

    2
, , , , ,R R Ru v w T u v w   ,  

taking fuzzy conjunction ∩  as t-norm T ; 
 4: M fy R  

 , ,v w u

  1,A Au u s     
to get R  as 

    1, , 1 1 , ,RR
u v w s u v w    

Step 5: Project R  on V W

1S 

;  

 

 

  such tha

 , ,sup

0.00 0.00 0.00 0.00

0.00 0.20 0.45 0.45

R
uV W

R u v w 




 
 
 


t  

;



 

on V W

0.00 0.20 0.75 0.85


0.00 0.20



tend B  in V

0.75

 cylindri

1.00 

cally Step 6: Ex   as  

 3

ompute R R  ∩

T v

 conjunction ∩  as

, ;B
V W

R v w 


   

Step 7:
by  

taking f

 C

uzzy

3R   

 R

t-norm

    
3

, ,R Rv w   , w ,  

; 
 

, w v

 T 
Step 8: Modify R  with   2Bv v   

 , ;w  

1 ,BS 
to 

 s

 su  

get R  as  

R
    , 1 1v w   

 Project R  on W



 

ch

2 Rs v

t  



thaStep 9:



1 20.20 0

R
v

w w



 

which is completely similar to i.e., 

3 4

,supC v w  
0.0
W

.75 1.0 ,w w
 

C ,  , 1S C C  . 
A  and BEven if  in the respective prem

and  com letely dissimilar to 
ises p  

q , are not p A  and 
ilarity m

greater tha rtain fined threshold th we can 
ent 

B  

get 
respectively, 

a fuzzy re

but the dissim
pre-de
C

easures attain values 
en n ce

solv   which is almost similar to 
using FRCEP. 

S

C , 

uppose, 1 2 3 41.0 0.3025 0.0025 ;0.0A u uu u      

1 2 30.0 0.1225 0.7225 1.0 .B v v v 4v       

 not , 0.8 otS A A   73992;  n , 0.869604S B B  
mputed. 



Then, it yields  
are co

1 2 30.24 0.39 0.81 1.0C w w w 4w     

with  , 0.84 1.S C C   
There re, it is poss e to get  

set of fuzzy claus

3 44
fo ibl  a fuzzy resolvent from a

es if there is a pair of dissimilar literals 
contained in the respective clauses.  

7.

This paper presented a resolution principle for fuzzy 
formulae based on similarity and approximate reasoning 
methodology. Similarity is inherent in approximate 

be used as a le 
o

nc
oval of the pair of almost complementary 

literals is a logical consequence. If we put the resolvents 
in the set of clauses its behaviour (satisfiability) never 
changes. It can be applied directly to any set S of sal 
formulae (not necessarily to ground clauses) to test the 

y of S. To test the unsatisfiability it 
ch ontains the empty clause (as a resolu- 
tion deduction). This could be a powerful technique in 
constructing a proof of a theorem using refutation pro- 

Examples cited in the paper attempted to demon- 
st

ected search techni- 
pproximate reasoning method to 

 problem of GMP. Instead of testing 

 Conclusion 

resoning and resolution deduction can  ru
of inference to generate new clause from a given set f 
clauses. The essential idea of resolution of two clauses is 
to search for a literal in a clausal formula that is almost 
complementary to a literal in the other form. The clause 
formed by the disju tion of the remaining literals and 
subsequent rem

clau

(un)satisfiabilit
ecks whether S c

cedure. 
rate how resolution can be effectively used to construct 

a proof of a theorem. Inverse approximate reasoning may 
be applied to model different goal-dir
ques. We apply inverse a
avoid the inherent
complementary literals we use dissimilarity concept of 
fuzzy literals. 
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