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ABSTRACT 

In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and 
finite operation time horizons, and compare them in terms of computational accuracy. The underlying problem is for-
mulated as the maximization of steady-state system availability and is to determine the optimal aperiodic checkpoint 
sequence. We present two exact computation algorithms in both forward and backward manners and two approximate 
ones; constant hazard approximation and fluid approximation, toward this end. In numerical examples with Weibull 
system failure time distribution, it is shown that the combined algorithm with the fluid approximation can calculate ef-
fectively the exact solutions on the optimal aperiodic checkpoint sequence. 
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1. Introduction 

It is well known that the system failure in large-scale 
computer systems can lead to a huge economic or critical 
social loss. Checkpointing and rollback recovery is a 
commonly used technique for improving the reliabil-
ity/availability of fault-tolerant computing systems, and 
is regarded as a low-cost software dependability tech-
nique from the standpoint of environment diversity. Es-
pecially, when file systems to write and/or read data are 
designed, checkpoint (CP) generations back up periodi-
cally/aperiodically the significant data on a primary me-
dium to safe secondary media, and play a significant role 
to limit the amount of data processing for recovery ac-
tions after system failures occur. If CPs are frequently 
taken, a larger overhead will be incurred. Conversely, if 
only a few CPs are taken, a larger overhead after a sys-
tem failure will be required in rollback recovery actions. 
Hence, it is important to determine the optimal CP se-
quence taking account of the trade-off between two kinds  

of overhead factor above. In many cases, the system fail- 
ure phenomenon is described with a probability distribu-
tion called the system-failure time distribution, and the 
optimal CP sequence is determined based on any sto-
chastic model. For the excellent survey on this topic, see 
[2,3]. 

First Young [4] obtains the optimal CP interval ap-
proximately for a computation restart after system fail-
ures. Baccelli [5], Chandy et al. [6,7], Dohi et al. [8-10], 
Gelenbe and Derochette [11], Gelenbe [12], Gelenbe and 
Hernandez [13], Goes and Sumita [14], Goes [15], Grassi 
et al. [16], Kobayashi and Dohi [17], Kulkarni et al. [18], 
Nicola and van Spanje [19], Sumita et al. [20], among 
others, propose performance evaluation models for data-
base recovery, and calculate the optimal CP intervals 
which maximize the system availability or minimize the 
mean overhead during the normal operation. L’Ecuyer 
and Malenfant [21] formulate a dynamic CP placement 
problem by a Markov decision process. Ziv and Bruck 
[22] analyze an online algorithm for a probabilistic CP 
placement. Vaidya [23] examines an impact of check-
point latency on overhead ratio for a simple CP model. 
Okamura et al. [24] reformulate the Vaidya model [23] 
with a semi-Markov decision process and further develop 
a reinforcement adaptive learning algorithm for CP 
placement. For several CP models in the literature, the 
periodic CP intervals are implicitly assumed. This is 

*This is an extended version of the conference paper [1] presented at 
The 2nd International Conference on Advanced Computer Science and 
Information Technology (AST 2010), Miyazaki, Japan, June 23-25, 
2010. 
This work is supported by the Grant-in-Aid for the Scientific Research 
(C) from the Ministry of Education, Science, Sports and Culture of 
Japan, under Grant Nos. 23510171 (2011-2013) and 23500047 (2011-
2013). 

Copyright © 2013 SciRes.                                                                                 JSEA 



Aperiodic Checkpoint Placement Algorithms—Survey and Comparison 42 

because the periodic CP intervals maximize the steady- 
state system availability, and in many cases, are better 
than the randomized CP ones which are given by inde- 
pendent and identically distributed random variables. 
However, it is worth noting that the periodic CP strate-
gies can not be always validated in some cases and less 
performe than the aperiodic CP placement. In general, it 
is known that the way to place the optimal CP sequence 
strongly depends on both kind of objective functions 
(system availability, mean overhead, etc.) and kind of 
system-failure time distribution. Since the aperiodic CP 
involves the periodic CP as a special case, it is meaning-
ful to consider the aperiodic CP placement algorithm for 
file systems. 

When the system-failure time obeys a non-exponen- 
tial distribution, it is easily shown that the aperiodic CP 
placement is not worse than the periodic CP one. Toueg 
and Babao lu [25] develop a dynamic programming 
(DP) algorithm which minimizes expected execution 
time of tasks placing CPs between two consecutive tasks 
under very general assumptions. Kaio and Osaki [26] 
consider an approximate aperiodic CP placement algo-
rithm under the asssumption that the conditional sys-
tem-failure probability is constant during the successive 
CPs. Fukumoto et al. [27,28] and Ling et al. [29] propose 
fluid approximation methods based on a variational cal-
culus approach to derive the cost-optimal aperiodic CP 
sequence. Ozaki et al. [30,31] give an exact aperiodic CP 
placement algorithm and further develop an estimation 
scheme under the incomplete knowledge on system- 
failure time distribution. In a fashion similar to the above 
approach, Dohi et al. [32] formulate another aperiodic 
CP placement problem with equality constraints. Iwa-
moto et al. [33], Okamura et al. [34,35], and Okamura 
and Dohi [36] propose different DP-based algorithms 
from Toueg and Babao lu [25] under the availability 
criterion, by taking account of another dependability 
technique, called the software rejuvenation in the pre-
sense of software aging, where the system failure caused 
by the aging is not exponentially distributed. Recently, 
Ozaki et al. [37] propose a fixed-point type algorithm 
for an aperiodic CP placement with an infinite opera-
tion-time horizon. In this way, considerable attentions 
have been paid for aperiodic CP placement problems in 
past. 

g

g

Nevertheless, it can be pointed out that no effective 
aperiodic CP placement algorithm has been known yet 
when the number of CPs is very large. The constant haz-
ard approximation [26] and fluid approximation [27-29] 
may poorly work in such a case. The search-based itera-
tion algorithm in [30,31] and the DP-based algorithm in 
[33-36], which are regarded as exact computation algo-
rithms, also require the very careful adjustment to deter-
mine the number of CPs if the operation time for a file  

system is finite. As the operation time becomes longer, in 
general, the number of CPs is sensitive to not only the 
determination of the aperiodic CP sequence but also the 
resulting dependability measures. In this article we sum- 
marize some aperiodic CP placement algorithms for a 
software system over infinite and finite operationtime 
horizons, and compare them in terms of computational 
accuracy. It is proposed to combine the fluid approxima- 
tion with an exact computation algorithm in determining 
the initial value of the number of CPs. The idea is quite 
simple, but we show that the combined algorithm with 
the fluid approximation can calculate effectively the ex- 
act solutions on the optimal aperiodic CP sequence. 

2. Formulation of Optimal CP Placement 

First, consider a centralized file system with sequential 
checkpoint (CP) over an infinite time horizon. The 
system operation starts at time , and the CP is 
sequentially placed at time 1 2  to back up 
the data processed in the file system. At each CP, 

0t 
 , , , kt ,t t 

 1,2,kt k   , all the file data on the main memory is 
saved to a safe secondary medium, where the fixed cost 
(time overhead)  0 0c   is needed per each CP place- 
ment. It is assumed that the system operation stops 
during the checkpointing, so during the period 0  the 
file system does not deteriorate. System failure may 
occur according to an absolutely continuous and non-de- 
creasing probability distribution function 

c

 F t  having 
density function  f t  and finite mean . Upon 
a system failure, a rollback recovery takes place imme- 
diately where the file data saved at the last CP creation is 
used. Next, a CP restart is performed and the file data is 
recovered to the state just before the system failure 
occurs. The time length required for the CP restart is 
given by the function 

 0 

 

 



L , which depends on the 
system failure time, and is assumed to be differentiable 
and increasing. We call the function  the recovery 
function in this article. After the completion of CP restart, 
an additional CP must be created to save the current state 
and the system operation restarts with the same condition 
as the initial point of time t . The similar cycle 
repeats again and again over an infinite time horizon. 

L

0

The problem is to determine the optimal CP sequence 
 1 2 3, , ,t t t  t  maximizing the steady-state system 
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denotes the expected operaing cost with 0 0t  . It is 
evident that the underlying problem is reduced to a 
simple minimization problem 

  t . In this pro- 
blem, the expected recovery cost is usually given by the 
affine form  

min V t 

     0 0 , 0,1,2,k k kL t t a t t b t t k         

for the system failure time , where  and 
 are given constants. Instead, by replacing the 

above CP cost and recovery cost by  and  

t 0 0a  





 0 0b 

L t
0

, this is equivallent to the clas- 
sical inspection problem by Barlow and Proschan [38]. 
Figure 1 illustrates the configuration of the underly- 
ing CP placement with a finite operation-time horizon 

. 

c k
  1 0 1k kt a t t   

  0T 
From the analogy to the inspection problem, it can be 

easily shown that the optimal CP sequence  
 1 2 3, , ,t t t   

  t

 

 maximizing the steady-state system 
availability is a non-increasing sequence under the 
assumption that the system failure time distribution 
F t

t t t t t   

 is PF2 (Polya Frequency Function of Order 2) [38], 
if there exists the optimal CP sequence  satisfying 

1 2 1 3 2 . Then, it must satisfy the fol- 
lowing first order condition of optimality:  

t
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From the condition of optimality, an algorithm to de- 
rive the optimal CP sequence  which 
minimezes  or equivalentlly maximizes 

 can be derived as follows. 
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Forward CP Placement Algorithm for an Infinite 
Operation-Time Horizon: [30,31,37]. 
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if 

kt
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1 0k kt t  
 is sufficiently small tolerance 

value and .  
 

 

Figure 1. Configuration of the aperiodic CP placement with 
a finite operation-time horizon T. 

In the above algorithm, arbitrary increasing and de- 
creasing operations in Steps 3 and 4 can be taken to 
speed up the computation. The simplest method would be 
the bisection serach method. As the simplest case, if the 
system failure time is given by the exponential distri- 
bution with mean  , it is well known that the optimal 
CP sequence is periodic, i.e.,  

1 2 1 3 2t t t t t     . 

Since the processing time for a given transaction is in 
general bounded, the CP placement for an infinite-time 
horizon may be questionable in many practical applica- 
tions. As a natural extension of the infinite-time horizon 
problem, it would be interesting to consider the finite 
operation-time horizon problem, because  is a 
special case. Suppose that the time horizon of operation 
for the file system is finite, say, , which can be 
regarded as a fixed transaction processing time. For a 
finite sequence 
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 1 2, , ,N Nt t t t , the expected ope- 
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where  1min : kN k t  T 

T

. Also we suppose that the 
file system restarts with a fixed CP overhead 0c  just 
after the time , if the system failure does not occur. 
Since the steady-state system availability is given by  
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the underlying maximization problem reduces to 
 min Vt t

t 

N T N . It should be noted that the recovery cost 
does not occur at . To simplify the notation, we 
define 1N

t T
T  in this article. When the recocery cost 

function is the affine form i.e.,   0L t a t b  0 , dif- 
ferentiating Equation (4) with respect to   1, 2,kt k  , N  
and setting it equal to 0 yield Equation (3) again for  

 1 0 1,2,3, ,k kt t k N     and a given . N
Since the finite operation-time horizon problem invo- 

lves the constraint  on the number of CPs, it is impo- 
ssible to apply directly the forward CP placement algo- 
rithm for an infinite operation-time horizon problem. 
However, by adjusting the value of , we can develop 
the similar algorithm to compute the optimal CP sequ- 

N

N
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ence. The basic idea is to utilize the non-increasing pro- 
perty of CP sequence under the PF2 assumption for an 
arbitrary number . Based on the result for an infinite 
time horizon [30,31,37], we modify the forward CP place- 
ment algorithm as follows. 

N

T

Forward CP Placement Algorithm for a Finite Opera- 
tion-Time Horizon: [30,31]. 

Step 1: Set the lower and upper bounds of  by 
 and , respectively.  

1t
: 0lz  uz 
Step 2:  1 : 2l 

0,k 

t z zu

N

.  

Step 3: For , compute the CP sequence 
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Step 2.  
1 1k kt  1uz t

Step 4.2: If , then  and Go to Step 
2.  

0  1lz t

Step 5: For an arbitrary tolerance level , if  
, then  and Go to Step 2.  




1 1

Step 6: For an arbitrary tolerance level , if  
, then and Go to Step 2.  

Nt T    :z t

1

Step 7: End. 
Nt T    1t

For all possible combinations of , we calculate all 
expected operating costs using the above algorithm, and 
determine both the optimal number of CPs, 

N

N   and its 
associated CP sequence  1 2, , ,N N . It should be 
noted that the above two algorithms can be validated 
only when the system failure time distribution is PF2 
and the resulting CP sequence is non-increasing, i.e., 

1k k . The most significant point is that these algo- 
rithms are very fast to derive the optimal CP sequence, 
but strongly depend on the initial value 1 . In the worst 
case, it is evident that these algorithms are sometime 
unstable and that the resulting CP sequence may not 
converge to the optimal solution. To overcome this point, 
the careful selection of the initial value 1  is essentially 
needed, so we improve it by the following algorithm. 

t t t  
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Finite Operation-Time Horizon: 
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Step 2.3: Compute the corresponding expected operating 
cost and set it as jV  based on .  1 1,2, ,kt k N  

Step 2.4: If 1j jV V  , then 1  and 1N jtN jV V  t  , 
and Go to Step 3, otherwise  and Go to Step 
2.1, where .  

1j j 
41 10 j

Step 3: If  N1,t T k  2,,k  and Max , then N N
1N N   and Go to Step 2, otherwise Go to Step.  

Step 4: For all Max1,2, ,N N  , search the minimum 
value 

N
C   and its associated CP sequence 

N
t  .  

Since the initial value 1  in the above algorithm can 
be adjusted gradually from 0, the stability for the original 
forward CP placement algorithm could be rather im- 
proved. However, when 

t

t  is relatively large, the solu- 
tion may still drop in the local minimum, and even the 
improved algorithm may fail to converge. In our nume- 
rical experiments, even when , the search of 
the initial value 1  was sometimes unsuccsessful. In ad- 
dition, it can be obvious that the computation cost of the 
improved algorithm is much larger than the original for- 
ward CP placement algorithm. In the following section, 
we introduce more stable algorithm on computation. 

21 10t   
t

3. Backward CP Placement Algorithm 

For the same aperiodic CP placement problem, Naruse et 
al. [39,40] propose to solve the optimality condition in 
the backward manner. Letting  for 
a  g i v e n  ,  t h e  o p t i m a l  C P  s e q u e n c e  

   ,T N T NV Vt t N
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     (6) 

Although this algorithm does not depend on the PF2 
property, it is not feasible for a large number of CPs, 
because an explosion of the number of simultaneous 
equations occurs for increasing the number of CPs. In 
fact, the authors in [40] present only a toy problem with a 
very small number of CPs. 

The most realistic backward algorithm is already given 
by Iwamoto et al. [33], and is based on the well-known 
dynamic programing (DP). Since this algorithm does not 
also depend on the PF2 property, it is applicable even to 
the more general failure time distribution. During the 
time period between two successive CPs,  

   1,  1, 2, , , 1k kt t k N N   ,  

the expected operation time  and the mean  1|k kU t t  
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time length of one cycle  are given by   1|k kS t t 
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respectively, where one cycle is defined as the time in- 
terval between two successive renewal points. In Equa- 
tions (7) and (8),  represents the conditional pro- 
bability distribution:  

 |F  

     | 1 .F s t F t s F t           (9) 

At the end of the operation-time , the above 
expressions are rewritten as follows.  
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From the principle of optimality, we obtain the fol- 
lowing DP equations:  

 1 1 1max | , , , 1, , ,
k

k k k k
t

h w t t h h k
      (12) 

1 1| , , ,N Nh w T t h h
           (13) 
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In the above equation,   indicates the maximum 
steady-state system availability and k , , 
are relative value functions in the DP. The derivation of 
the optimal CP intervals is equivalent to finding 

h 1, , 1k N  

 1 , ,N Nt t  t  which satisfy the DP equations. Fol- 
lowing Iwamoto et al. [33], we apply the policy iteration 
algorithm which is effective to solve the above type of 
functional equations. Instead of the original function 
 w  , define for convenience the following function:  

 1 1 1 1 2| , , | , ,k k k k kw t t h w t t h h   .       (15) 

Then the DP-based CP placement algorithm is given in 
the following: 

Backward CP Placement Algorithm: [33]. 
Step 1: Give initial values  

: 0,i                    (16) 

0 : 0,t                    (17) 
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where  is the iteration number.  i
Step 2: Compute      

1 1, , ,i i
Nh h   under the policy 

 i
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Step 4: For all 1, ,k N  , if    1i i
k kt t   , stop 

the algorithm, where   is an error tolerance, otherwise, 
let :i i 1   and go to Step 2.  

In Step 2 of the above algorithm, we have to calculate 
the relative value functions. From the original DP Equa- 
tions (12) and (13), we find that the relative value func- 
tions under a fixed policy  must satisfy 
the following linear equation:  

 1, ,N t t t N

,Mx b                   (21) 

where  
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 tr

2 1, , , , ,N Nh h h x         (23) 

      tr

1 0 1| , , | , | ,N N NU t t U t t U T tb    (24) 

  ,k j
  denotes the  ,k j -element of matrix, and  

represents transpose of vector. Without a loss of gene- 
rality, we set 

tr

1 0h   in the above algorithm. 
For both forward and backward CP placement algori- 

thms, it is essential to determine the number of CPs, , 
during the finite operation-time horizon. In other words, 
if the initial value of  in the algorithms can be known 
in advance, it can be easily explored with any low-cost 
search technique. In the following section, we introduce 
two approximate algorithms for the finite operation-time 
horizon problem. 

N

N

4. Approximate CP Placement Algorithms 

4.1. Constant Hazard Approximation 

If the time interval between two successive CPs, 
   1,  0,1,2, ,k kt t k N   , is sufficiently short, the sys- 
tem-failure probability during the time interval can be 
approximately considered as a constant, i.e.,  
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Kaio and Osaki [26] approximate the expected ope- 
rating cost,  as a function of  T NV t   under the above 
assumption. Here we derive the same result as [26] in a 
different way. Let X  be the system-failure time having 
the probability distribution  F t . For an arbitrary pro- 
bability , define the CP sequence satisfying the 
following quantile condition:  
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By minimizing the expected operating cost with 
respect to   and substituting the optimal   into 

 1 kF  , an aperiodic CP sequence is approximately 
derived. For this approximate algorithm, we need to deter- 
mine the number of CPs in advance. Also, even though 
the exact number of CPs is known, the approximate algo- 
rithm does not guarantee an exactly optimal CP sequ- 
ence. 

4.2. Fluid Approximation 

The next approximate algorithm focuses on the determi- 
nation of the number of CPs. Let  be the average 
frequency of CP placement at time instant . Then the 
time interval between two succsessive CPs at time  is 
approximately given by 

 n t
t

t
 1 n t . Using , the ex- 

pected operating cost over an infinite operation-time 
horizon is approximately expressed as a functional of 

:  

n t 
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(27) 

Then, the optimization problem with an infinite- 

operation time horizon reduces to a variational culculus 

      min ,n t V n t F t . By solving the corresponding 
Euler equation, we have the optimal CP frequency  

   0 0 2n t a t c 0 .  

On the other hand, in the case with a large operation-time 
horizon, Ozaki et al. [30,31] assume that the probability 
of the occurrence of a system failure can be negligible 
even if the file system survives after the time horizon, 
and derive the average frequency of CP placement by  

      1 0 02n t a f t c F t  ,  

where the control parameter   is determined so as to 
satisfy 

0
. Naruse et al. [40] also propose 

a modified average frequency of CP placement by  
 11

T
N n t   dt

     2 0b an t n n n t ,  

where  

   0 00 0
d ,   d ,

T T

a bn n t t n n t t    


      (28) 

and     is the integer part satisfying 1x x x     . 
Hence, the optimal aperiodic CP sequence is deter-  

mined by  or  for   10
dktk n t  t t

N

 20
dktk n t 

1,2, ,k   . Substituting the approximate CP sequence 
yields the following approximate expected operating 
cost:  
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(29) 
for 1, 2j  . As mentioned before, both two approximate 
algorithms do not also guarantee an exactly optimal CP 
sequence. However, it is worth mentioning that b  in 
Equation (28) provides a very near value of the exact 
number of CPs. By setting b  as the initial value of  
in the forward or backward CP placement algorithm and 
adjusting its integer value via a simple bisection method, 
we can seek the number of CPs placed up to the finite 
operation time . 

n

n N

T
The main difference between the constant hazard 

approximation and the fluid approximation is that the 
latter is based on the number of CPs by  

 
0

d 1
T

jN n t t     , 

where 1,2,3j  . For a given  and , both forward 
and backward algorithms are applicable. By combining 
the fluid approximation with the forward or backward CP 
placement algorithm, it is possible to speed up the 
computation to calcurate the optimal CP sequense. 

T N
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5. Numerical Examples 

We calculate numerically the optimal CP sequence and 
the corresponding steady-state system availability. Sup- 
pose that the failure time distribution obeys the Weibull 
distribution:  

   1 e tF t
             (30) 

with shape parameter  and scale parameter 
. In this case, the failure (hazard) rate 

  0 
  0   t  and 

the inverse function  1F t  in the algorithms are given 
by  

   
 

1

,
f t t

t
F t









          (31) 

    
1

1 log 1 ,   0 1.F t t t         (32) 

For the operation-time horizon , we cal- 
culate the optimal CP sequence with an exact solution 
algorithm (forward or backward CP placement algorithm) 
and two approximate algorithms, and derive both the 
number of CPs and the steady-state system availability. 
When 

10, 15, 20T 

1.0 

n

, it is noted that the system failure time 
distribution is strictly DFR (Decreasing Failure Rate) and 
is not PF2. Hence we apply only the backward CP place- 
ment algorithm for this case. In the case with PF2, two 
exact solution algorithms provide the exactly same re- 
sults, where the number of CPs is adjusted from the ini- 
tial value b  given in Equation (28). For the other 
model parameters, we set c0 0.003 ,  and 

. 
0 0.20a  0

0b  0.300
Figure 2 depicts the optimal CP time sequence with 

different shape parameter 0.5, 1.0, 2.0   for 10   
and , in the strict DFR case (a) with 20T  0.5  , the 
optimal CP time behaves as convex functions with 
respect to the number of CPs for both exact and appro- 
ximate methods. It can be seen that the two approximate 
methods poorly work except around 14-th CP. In the 
CFR (Constant Failure Rate) case (b) with 1.0  , the 
optimal CP time becomes a linear function, so all the 
methods give the almost same periodic CP time sequence. 
In the strict IFR (Increasing Failure Rate) case (c) with 

2.0 

T 

, the optimal CP time shows concave functions of 
the number of CPs, and two approximate methods pro- 
vide rather close values to the exact solution. In Figures 
3 and 4, we show the optimal CP time sequence with 

 and . As the finite operation time be- 
comes longer, the constant hazard approximation tends to 
be far from the exact solution, when the system failure 
time distribution is strict IFR. On the other hand, the 
fluid approximation gives the almost similar CP time se- 
quence to the exact solution. However, in Figure 3(a), 
the fluid approximation takes a bit differnt value of the 
optimal CP time sequence from the exact solution. In  

15 20T 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Aperiodic CP placement with different shape pa-
rameters for T = 10. (a) Case 1: γ = 0.5 and θ = 10; (b) Case 
2: γ = 1.0 and θ = 10; (c) Case 3: γ = 2.0 and θ = 10. 

 
other words, the computation accuracy for two appro- 
ximate algorithms becomes worse as the shape parameter 
deviates from 1.0   more and more. In Figure 5, we 
investgate the dependence of the optimal aperiodic CP 
time on the scale parametr and the operation time in the 
strict IFR case. Looking at (a) to (f), only the constant 
hazard approximation shows the different behavior from 
the exact solutions. 

Next, we compare two approximation methods with 
the exact computation in terms of steady-state system 
availability more precisely. In Table 1, we present the 
steady-state system availability and the number of CPs  
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(a) 

 
(b) 

 
(c) 

Figure 3. Aperiodic CP placement with different shape pa-
rameters for T = 15. (a) Case 1: γ = 0.5 and θ = 10; (b) Case 
2: γ = 1.0 and θ = 10; (c) Case 3: γ = 2.0 and θ = 10. 

 
for varying the failure parameters  ,    when three al- 
gorithms are used. In the terms of approximate algo- 
rithms,  is caluculated by substituting each ap- 
proximate CP sequence into Equation (5), so that 

 T NAV t

TAV   and  T bAV n  in Equations (26) and (29)  

are calculated, where  is used for the   dt t20

ktk n 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Aperiodic CP placement with different shape pa-
rameters for T = 20. (a) Case 1: γ = 0.5 and θ = 10; (b) Case 
2: γ = 1.0 and θ = 10; (c) Case 3: γ = 2.0 and θ = 10. 
 
fluid approximation. Tables 1 and 2 present the 
dependence of the shape and the scale parameters on the 
steady-state system availability, respectively. When   
increases, then the system tends to fail as the operation 
time goes on, and the system availability does not always 
decrease in Table 1. In this case, the number of CPs does 
not always increase from Table 1. When   increases, 
then the mean time to system failure (MTTSF) also 
increases and the steady-state system availability is  
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Table 1. Dependence of the shape parameter γ on the steady-state system availability. (a) Case 1: T = 10; (b) Case 2: T = 15; (c) 
Case 3: T = 20. 

(a) 

10T   Hazard Approx. Fluid Approx. Exact. 

(θ, γ)  T NAV t  kAV  No. CPs  T NAV t  kAV  No. CPs  T NAV t  No. CPs 

(10, 0.5) 98.7527 98.7529 15 98.7047 98.7611 17 98.7771 16 

(10, 1.0) 97.4702 94.4704 17 97.4425 97.4764 18 97.4704 17 

(10, 1.5) 97.1502 97.1502 19 97.1415 97.1919 16 97.1750 17 

(10, 2.0) 97.0513 97.0513 20 97.0891 97.1511 17 97.1246 17 

(10, 2.5) 97.0146 97.0146 20 97.0996 97.1730 16 97.1408 16 

(10, 3.0) 97.0004 97.0004 21 97.1270 97.2119 15 97.1755 16 

(10, 3.5) 96.9950 96.9950 21 97.1648 97.2552 15 97.2146 15 

(10, 4.0) 96.9940 96.9940 22 97.1934 97.2954 14 97.2524 15 

(10, 4.5) 96.9952 96.9952 22 97.2278 97.3336 14 97.2880 14 

(10, 5.0) 96.9976 96.9976 22 97.2480 97.2480 13 97.3204 14 

(b) 

15T   Hazard Approx. Fluid Approx. Exact. 

(θ, γ)  T NAV t  kAV  No. CPs  T NAV t  kAV  No. CPs  T NAV t  No. CPs 

(10, 0.5) 98.5791 98.5786 21 98.5948 98.6065 23 98.6093 20 

(10, 1.0) 96.9090 96.9091 26 96.8831 96.9164 27 96.9091 26 

(10, 1.5) 96.3061 96.3062 33 96.3070 96.3589 28 96.3386 30 

(10, 2.0) 95.9951 95.9952 41 96.0611 96.1259 31 96.0970 31 

(10, 2.5) 95.8043 95.8045 50 95.9434 96.0188 33 95.9833 33 

(10, 3.0) 95.6864 95.6866 62 95.8945 95.9796 35 95.9393 35 

(10, 3.5) 95.6198 95.6200 76 95.8884 95.9828 37 95.9390 37 

(10, 4.0) 95.5881 95.5883 93 95.9107 96.0119 40 95.9651 39 

(10, 4.5) 95.5773 95.5775 113 95.9421 96.0532 42 96.0043 41 

(10, 5.0) 95.5768 95.5770 134 95.9794 96.0981 45 96.0473 42 

(c) 

10T   Hazard Approx. Fluid Approx. Exact. 

(θ, γ)  T NAV t  kAV  No. CPs  T NAV t  kAV  No. CPs  T NAV t  No. CPs 

(10, 0.5) 98.4563 98.4564 25 98.4771 98.4887 28 98.4922 27 

(10, 1.0) 96.5717 96.5718 35 96.5440 96.5798 36 96.5718 35 

(10, 1.5) 95.9123 95.9123 49 95.9183 95.9710 41 95.9501 41 

(10, 2.0) 95.6574 95.6575 71 95.7351 95.8005 48 95.7707 47 

(10, 2.5) 95.5744 95.5744 102 95.7268 95.8025 55 95.7663 53 

(10, 3.0) 95.5577 95.5577 146 95.7768 95.8613 63 95.8206 62 

(10, 3.5) 95.5591 95.5591 208 95.8355 95.9284 72 95.8843 71 

(10, 4.0) 95.5564 95.5564 282 95.8893 95.9908 82 95.9439 80 

(10, 4.5) 95.5695 95.5696 260 95.9374 96.0467 94 95.9977 92 

(10, 5.0) 95.5747 95.5749 212 95.9796 96.0966 108 96.0457 107 
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Table 2. Dependence of the scale parameter   on the steady-state system availability. (a) Case 1: T = 10; (b) Case 2: T = 15; 
(c) Case 3: T = 20. 

(a) 

10T   Hazard Approx. Fluid Approx. Exact. 

 ,    T NAV t  kAV  No. CPs  T NAV t  kAV  No. CPs  T NAV t  No. CPs 

(2, 2.0) 83.5027 83.5027 197 83.5707 83.8078 86 83.7033 83 

(5, 2.0) 92.2638 92.2638 49 92.3486 92.4677 34 92.4143 33 

(8, 2.0) 95.6733 95.6733 26 95.7281 95.8064 21 95.7724 21 

(10, 2.0) 97.0513 97.0515 20 97.0891 97.1511 17 97.1246 17 

(13, 2.0) 98.2550 98.2551 14 98.2749 98.3222 13 98.3031 13 

(15, 2.0) 98.7205 98.7205 12 98.7320 98.7736 11 98.7577 11 

(18, 2.0) 99.1519 99.1519 10 99.1557 99.1907 9 99.1781 9 

(20, 2.0) 99.3348 99.3348 9 99.3354 99.3565 8 99.3561 8 

(23, 2.0) 99.5196 99.5196 8 99.5180 99.5451 7 99.5359 7 

(25, 2.0) 99.6052 99.6052 7 99.5995 99.6268 6 99.6183 6 

(28, 2.0) 99.6976 99.6976 6 99.6943 99.7152 6 99.7078 6 

(30, 2.0) 99.7426 99.7426 6 99.7361 99.7572 5 99.7517 5 

(b) 

15T   Hazard Approx. Fluid Approx. Exact. 

 ,    T NAV t  kAV  No. CPs  T NAV t  kAV  No. CPs  T NAV t  No. CPs 

(2, 2.0) 83.5027 83.5027 235 83.5027 83.8078 156 83.7033 152 

(5, 2.0) 92.1413 92.1413 112 92.2308 92.3497 63 92.2960 62 

(8, 2.0) 94.8230 94.8230 56 94.9024 94.9820 39 94.9459 39 

(10, 2.0) 95.9951 95.9952 41 96.0611 96.1259 31 96.0970 31 

(13, 2.0) 97.2857 97.2857 29 97.3325 97.3822 24 97.3604 24 

(15, 2.0) 97.8891 97.8891 24 97.7926 97.9685 21 97.9499 21 

(18, 2.0) 98.5157 98.5157 20 98.5420 98.5776 17 98.5632 17 

(20, 2.0) 98.8074 98.8074 17 98.8257 98.8580 15 98.8456 15 

(23, 2.0) 99.1168 99.1168 15 99.1290 99.1568 13 99.1465 13 

(25, 2.0) 99.2650 99.2650 14 99.2764 99.2999 12 99.2906 12 

(28, 2.0) 99.4301 99.4301 12 99.4369 99.4589 11 99.4506 11 

(30, 2.0) 99.5127 99.5127 11 99.5171 99.5379 10 99.5306 10 

(c) 

20T   Hazard Approx. Fluid Approx. Exact. 

 ,    nAV t  kAV  No. CPs  nAV t  kAV  No. CPs  nAV t  No. CPs 

(2, 2.0) 83.5027 83.5027 261 83.5706 83.8078 243 83.7033 228 

(5, 2.0) 92.1404 92.1404 156 92.2300 92.4389 97 92.2952 95 

(8, 2.0) 94.6948 94.6948 99 94.7790 94.8589 60 94.8226 60 

(10, 2.0) 95.6574 95.6574 71 95.7351 95.8005 48 95.7707 47 

(13, 2.0) 96.7417 96.7417 49 96.8056 96.8565 37 96.8333 37 

(15, 2.0) 97.3154 97.3154 40 97.3694 97.4136 32 97.3936 31 

(18, 2.0) 97.9871 97.9871 32 98.0289 98.0652 27 98.0490 27 

(20, 2.0) 98.3284 98.3284 28 98.3631 98.3958 24 98.3816 24 

(23, 2.0) 98.7178 98.7178 24 98.7444 98.7724 21 98.7605 21 

(25, 2.0) 98.9147 98.9147 22 98.9367 98.9626 19 98.9520 19 

(28, 2.0) 99.1420 99.1420 19 99.1590 99.1818 17 99.1726 17 

(30, 2.0) 99.2592 99.2592 19 99.2737 99.2947 16 99.2862 16  
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(a)                                                           (b) 

 
(c)                                                     (d) 

 
(e)                                                             (f) 

Figure 5. Aperiodic CP placement with different scale parameters and operation time for γ = 2.0. (a) Case 1: θ = 5 and T = 10; 
(b) Case 2: θ = 20 and T = 10; (c) Case 3: θ = 5 and T = 15; (d) Case 4: θ = 25 and T = 15; (e) Case 5: θ = 5 and T = 20; (f) Case 
6: θ = 20 and T = 20.  
 
expected to increse.This intuitive observation as well as 
the decreasing trend of the number of CPs are corect 
from Table 2. If we compare the minimum steady-state 
system availability calculated by the exact solution algo- 
rithm with the other ones, the relative error in both app- 
roximate methods can be found at the order of . 
Especially, the reason why the constant hazard appro- 
ximation works well is that it increases the number of 
CPs so as to increase the system availability. This im- 
plies that even the constant hazard approximation prob- 
vides the nice approximate performance on the maximum 
system availability. On the other hand, the number of 
CPs in the fluid approximation is also close to the exact  

0.01%

one. Through these numerical examples, it can be con- 
cluded that if the steady-state system availability is evalu- 
ated with higher accuracy such as four or five nines, it is 
needed to apply the exact solution algorithms, where the 
initial value of the number of CPs is decided by the fluid 
approximation. Otherwise, i.e., the three nines level is 
enough for calculating the steady-state system availabi- 
lity, then the fluid approximation provides rather good 
CP schedule. 

6. Conclusion 

In this article we have introduced some exact and appro- 
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ximate algorithms to create the aperiodic checkpoint sche- 
dule maximizing the steady-state system availability, 
when the file system operation terminates at a fixed time 
horizon. Since the determination of the number of check- 
points within the finite operation-time period has been an 
essential problem, we have combined the fluid approxi- 
mation with the exact solution algorithm. In numerical ex- 
amples with Weibull system failure time distribution, we 
have calculated the optimal aperiodic checkpoint sequ- 
ence under different parametric circumstances. It has 
been shown that the combined algorithm with the fluid 
approximation could calculate effectively the exact solu- 
tions on the optimal aperiodic checkpoint sequence. 
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