
Journal of Information Security, 2013, 4, 113-123
http://dx.doi.org/10.4236/jis.2013.42013 Published Online April 2013 (http://www.scirp.org/journal/jis)

A Formal Model of Conformity and Security Testing of
Inheritance for Object Oriented Constraint Programming

Khalid Benlhachmi, Mohammed Benattou
Laboratory of Research in Computer Science and Telecommunications,

Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Email: benlhachmi11@yahoo.fr

Received March 1, 2013; revised April 1, 2013; accepted April 9, 2013

Copyright © 2013 Khalid Benlhachmi, Mohammed Benattou. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

ABSTRACT

This paper presents an approach for extending the constraint model defined for conformity testing of a given method of
class to its overriding method in subclass using inheritance principle. The first objective of the proposed work is to find
the relationship between the test model of an overriding method and its overridden method using the constraint propa-
gation. In this context the approach shows that the test cases developed for testing an original method can be used for
testing its overriding method in a subclass and then the number of test cases can be reduced considerably. The second
objective is the use of invalid data which do not satisfy the precondition constraint and induce valid output values for
introducing a new concept of test called secure testing. The implementation of this approach is based on a random gen-
eration of test data and analysis by formal proof.

Keywords: Conformity Test; Security Test; Constraints Resolution; Formal Specification; Inheritance

1. Introduction

The principle of testing is to apply input events to the
Implementation under Test (IUT) and to compare the
observed output events to the expected results. A set of
input events and its corresponding results is generally
called test case and can be generated from the IUT speci-
fication. The purpose of testing methods is to find the
failures that are not detected during system normal op-
eration and to define the relationship between the speci-
fications and implementations of entities under test. In-
deed, in object oriented modeling, a formal specification
defines operations by collections of equivalence relations
and is often used to constrain class and type, to define the
constraints on the system states, to describe the pre- and
post-conditions on operations and methods, and to give
constraints of navigation in a class diagram. The object
oriented constraints (OOC) are specified by formal lan-
guages as OCL [1] and JML [2], and are used for gen-
erating test data from formal specifications [3]. The pro-
posed test oracles in the industry are satisfied with the
conformity test methods, and are carried out by generat-
ing test data that conform to the pre-condition constraint.
However, a false pre-condition may induce both valid
post-condition and invariant at the same time. A correctly

implemented testing method should eliminate cases of
invalid data which lead to valid results.

In this context, this paper introduces in the first in-
stance an optimizing approach to minimize the test se-
quences used for testing the conformity of an overriding
method in object oriented models. The main idea of this
work is the use of a technique that generates test data by
exploiting the existing test sequences. Indeed, it is im-
portant to reuse the test result of overridden methods for
testing the conformity of the overriding methods during
inheritance operation. That is why our approach specifies
all cases of conformity of an overriding method by using
data extracted from conformity testing of the original
methods. The second contribution of our approach is the
definition of a security testing based on the generation of
invalid input data which induce valid output values. In-
deed, in this paper we show how we can use the valid
data extracted from the pre-condition constraint to test
the conformity of an overriding method, and how the
data which does not satisfy the precondition can be used
to test the security of similar methods. Our test oracle
enables to detect anomalies in invalid inputs that imply
valid results.

The work presented in this paper allows to extend the

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 114

constraint model defined in [4] for modeling the specifi-
cation of an overriding method in subclass using inheri-
tance principle. This work is based on our model of
similarity concept [5,6] for testing the conformity and the
security of overriding methods from test results of the
original methods. The main objective is to reduce the
number of test cases by using the test result developed in
parent classes, and to integrate the invalid data in test
process. We present firstly, the relationship between the
test model of overridden and overriding methods, and we
show how to use the constraint model for extracting the
possible cases of test values. Secondly, we show how it
is possible to exploit the invalid data that do not satisfy
the precondition constraint and induce valid post-condi-
tions.

This paper is organized as follows: in Section 2 we
present related works and similar approaches for gener-
ating test data from a formal specification, in Section 3
we describe theoretical aspects of our test process, and
we define our test formal model of constraints, in Section
4 we present how the testing formal model can be used to
generate data for testing the conformity of overriding
methods during inheritance operation, in Section 5 we
present our approach of security testing that strengthens
the conformity testing, and we show how the security
testing of an overriding method can be deduced from its
overridden method in parent class. Finally, in Section 6
we describe our approach with an example of conformity
and security testing for an object oriented model.

2. Related Works

Most works have studied the problem of relating types
and subtypes with behavioral specification in an object
oriented paradigm. These proposed works show how the
contracts are inherited during method overriding and how
the testing process can use the formal specification. In
[4], we have presented the definition of a formal model
of constraint, illustrating the relationship between
pre-conditions, post-conditions and invariants of methods,
and we have formalized a generic constraint of a given
individual method of class that contains all constraints
into a single logical predicate. The given model translates
algebraically the contract between the user and the called
method.

In [5], we have developed a basic model for the con-
cept of methods similarity, the test is based only on a
random generation of input data. In [6], we have gener-
alized the basic model of similarity using analysis of par-
tition and formal proof. In [7], the authors propose a
randomly generation of test data from a JML specifica-
tion of class objects. They classify the methods and con-
structors according to their signature (basic, extended
constructors, mutator, and observer) and for each type of

individual method of class, a generation of test data is
proposed. In [8], the paper describes specially the fea-
tures for specifying methods, related to inheritance
specification; it shows how the specification of inheri-
tance in JML forces behavioral sub-typing.

The work presented in [9] shows how to enforce con-
tracts if components are manufactured from class and
interface hierarchies in the context of Java. It also over-
comes the problems related to adding behavioral con-
tracts to Object Oriented Languages, in particular, the
contracts on overriding methods that are improperly
synthesized from the original contracts of programmer in
all of the existing contract monitoring systems. The work
is based on the notion of behavioral sub-typing; it dem-
onstrates how to integrate contracts properly, according
to the notion of behavioral sub-typing into a contract
monitoring tool for java. In [10], the authors treat the
problem of types and subtypes with behavioral specifica-
tions in object oriented world. They present a way of
specification types that makes it convenient to define the
subtype relation. They also define a new notion of the
subtype relation based on the semantic properties of the
subtype and super-type. In [11], they examine various
notions of behavioral sub-typing proposed in the litera-
ture for objects in component-based systems, where rea-
soning about the events that a component can raise is
important.

All the proposed works concerning the generation of
test data from formal specification or to test the confor-
mity of a given method implementation, use only the
constraint propagation from super to subclass related to
subtype principle and do not exploit the test results of the
original method. As an example, several test oracles used
in industry as JML compiler can generate the conformity
test of an overriding method even if its original method
in the parent class does not conform to its specification.
Our approach shows that this type of test is unnecessary
and can be removed, and presents how we can reduce the
test cases by using the test values developed for testing
the original methods in a parent class. The main differ-
ence between our work and other related works is the
definition of the security testing. Indeed, the test methods
have focused only on valid inputs satisfying the pre-
condition, and do not integrate the invalid data in test
process. Our approach shows how we can use the valid
and invalid data extracting from the pre-condition to test
the conformity and the security of overridden and over-
riding methods.

3. Formal Model of Constraint

This section presents a formal model of the generalized
constraint defined in [4] which provides a way for mod-
eling the specification of an overriding method by in-

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 115

heritance from a super-class. Indeed, we establish a se-
ries of theoretical concepts in order to create a solid basis
for testing the conformity of overriding methods in sub-
classes using the test result of the original methods.

3.1. Constraint Propagation in Inheritance

In [4] we have presented the definition of a formal model
of constraint, illustrating the relationship between the
pre-condition P, the post-condition Q of a method m and
the invariant Inv of the class C: this constraint H is a
logical property of the pair (x,o) (x is the vector of pa-
rameters  1 2(, , ,)nx x x x  and o is the receiver object)
such that:

         , : , , , , cH x o P x o Q x o Inv o x o E I     

where Ic is the set of instances of the class C and E the
set of input vectors of m.

Indeed, the invocation of a method m is generally done
by reference to an object o and consequently, m is identi-
fied by the couple (x,o). The logical implication in the
proposed formula means that: each call of method with
(x,o) satisfying the precondition P and the invariant be-
fore the call, (x,o) must necessarily satisfy the post-con-
dition Q and the invariant Inv after the call. In the context
of this work, we assume that the object which invokes
the method under test is valid (satisfying the invariant of
its class), thus, the objects used at the input of the method
under test are generated from a valid constructor. This
justifies the absence of predicate Inv of the object o be-
fore the call to m in the formula H (Figure 1).

The purpose of this paragraph is to establish a series of
theoretical rules in order to evolve the constraint H of a
method m of a super-class during the operation of inheri-
tance. We consider a method m of a class C2 which inher-
its from the class C1 such that m overrides a method of C1.
The original method and its overriding method in the
subclass C2 will be denoted respectively by m(1), m(2).
(P(1),Q(1)) denote respectively the pre-condition, the
post-condition of the method m(1), and Inv(1) the invariant
of C1; and  2 2,P Q  denote respectively the specific
pre-condition, post-condition of the overriding method
m(2), and 2Inv the specific invariant of the class C2. (P

(2),
Q(2)) denote respectively the pre-condition, the post-
condition of the method m(2), and Inv(2) the invariant of
C2 (Figure 2).

The results of this paragraph are based on the works of
Liskov, Wing [12] and Meyer [13] who have studied the
problem relating to types and subtypes with behavioral

m

 Input : P x,o    : ,Output Q x o Inv o

Figure 1. Specification of a method m.

specification in an object oriented (OO) paradigm. In-
deed, a derived class obeys the Liskov Substitution Prin-
ciple (LSP) if for each overriding method m(2), the
pre-condition P(2) is weaker than the pre-condition P(1) of
the overridden method     1P P

 

2 , the post-condition
Q(2) is stronger than the post-condition Q(1) of the over-
ridden method   2 1QQ , and the class invariant
Inv(2)

 of the subclass C2 must be equal to or stronger than
the class invariant Inv(1) of the C1

    2 1Inv Inv .
As a result of LSP:
The pre-condition P(2) of m(2) is the disjunction of P(1)

and the specific pre-condition of m(2) (Figure 2): 2P
    2 1

2P P   P (1)

The post-condition Q(2) of m(2) is the conjunction of the
post-condition Q(1) of m(1) and the specific post-condition

2Q of m(2) (Figure 2):

    2 1
2Q Q Q  (2)

The invariant Inv(2) of the class C2 is the conjunction of
the invariant Inv(1) of C1 and the specific invariant 2Inv
of C2 (Figure 2):

    2 1
2Inv Inv Inv  (3)

Based on the definition of the generalized constraint,
we have:

The constraint of m(1):

               
 

1

1 1 1 1, : , ,

, c

,H x o P x o Q x o Inv o

x o E I

   
 

The constraint of m(2):

               
 

2

2 2 2 2, : , ,

, c

,H x o P x o Q x o Inv o

x o E I

   
 

Using (1), (2), (3) the constraint of m(2) will have the
following form:

       2 1 1 1
2 2: 2H P P Q Inv Q Inv            

In our approach, the specification       2 2 2, ,P Q Inv
of m(2) is constituted by :

Two inputs: the Basic Input

and the Spe-
cific Input

  1BI P 
 2SI P

Two outputs: Basic Output

of m(2).
     1 1Inv,BO Q

and

the Specific Output   2 2, Inv SO Q
 This induces 4 possible combinations of I-O: (BI,BO),

(BI,SO), (SI,BO), (SI,SO).

of m(2).

3.2. Constraint Model of Overriding Methods

The aim of this paragraph is to construct a formal model
of an overriding method by generalizing the constraint

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 116

1Class C

2Class C

 (1) (1) (1) (1)m : P , Q , Inv

 (2) (2) (2) (2)m : P , Q , Inv

(1) '
2P P (1) '

2Q Q (1) '
2Inv Inv

Figure 2. Constraints of m(1) and m(2).

model of the original methods. In achieving this goal, we
should define a specific constraint of inheritance and also
study the compatibility between the overriding methods
and original methods in the parent class.

In this sense, we had proposed in [5,6] the definition
of similarity concept for assuring if the overriding me-
thod m(2) has the same behavior as its original version m(1)
in the super-class relatively to their common specifica-
tion . Indeed, the implementation in the
subclass must override the implementation in the super
class by providing a method m(2) that is similar to m(1).
We propose firstly the definition of a constraint H(SI,SO)
allowing a partial view of the overriding method m(2) in
the class C2. Secondly, we determine the relationship
between the constraints H(2), H(1) and H(SI,SO).

      1 1 1, ,P Q Inv 

The constraint H(SI,SO) specifies the logical relationship
between the input specific predicate 2 of m(2) and the
output predicates

P
 2 2,Q Inv  specific to m(2):

Definition 1: (Constraint H(SI,SO))
We define the constraint H(SI,SO) of an overriding

method m(2) of a sub-class C2 as a logical property of the
pair  

2
, Cx o E I  such that:

         2 2 2, , : , ,SI SOH x o P x o Q x o Inv o     

where
2CI is the set of instances of C2, and E is the set of

parameters vector of m(2).
The logical implication in the proposed formula means

that: each call of method with (x,o) satisfying the specific
precondition 2 before the call, (x,o) must necessarily
satisfy the specific post-condition and the specific
invariant

P

2Q
2Inv after the call.

In the same way, we put:

           1
2 2, , : , ,BI SOH x o P x o Q x o Inv o    

And

             1 1
2, , : , ,SI BOH x o P x o Q x o Inv o    

The relationship between H(1) and H(2) for the two
similar methods m(1) and m(2) in classes C1 and C2 is
shown in the following theorem:

Theorem 1:
   

    2 1
,SI SOH H H R   

Proof: Using the following result:

   
      

a b c d

a c a d b c b d

    
          

We have:

          
            

        

1 1 1
2 2

1 1 1 1
2 2

1 1
2 2 2

P P Q Inv Q Inv

P Q Inv P Q Inv

P Q Inv P Q Inv

        
       



2

2



         

Therefore, we have the following result:

   
      2 1

, , ,BI SO SI BO SI SOH H H H H     

In principle, the method m(2) is not intended to provide
the services (SI,BO) and (BI,SO) however m(2) must
guarantee the services (BI,BO) (Figure 3) and (SI,SO)
(Figure 4). Consequently, we put:  , 1BI SOH  and

 ,SI BO 1H  .
Finally, (R) is equivalent to

   
  2 1

,SI SOH H H    .

The constraints H(1), H(SI,SO), and the relation (R) form
the theoretical basis that will be used to test the confor-
mity of overriding methods in subclasses from the test
result of their original methods in the parent classes.

4. Conformity Testing

The formal model of test proposed in [4] defines the no-

(1)

B asic Inpu t :

P (x , o) (1) (1)

Basic Output :

Q (x, o) Inv ()o

(2)m

Figure 3. Constraint BI-BO of an overriding method.

(2)m
2

S p e c if ic In p u t :

P (x , o)
2 2

Specific Output :

Q (x, o) Inv ()o 

Figure 4. Constraint SI-SO of an overriding method.

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 117

tion of method validity in a basic class and constitutes a
way to generate test data for conformity. In a conformity
test, the input data must satisfy the precondition of the
method under test. In this context, we are particularly
interested in valid input values (i.e. the pairs (x,o) that
satisfy the precondition P). The conformity test for a
method means that if a pre-condition is satisfied at the
input, the post-condition and the invariant must be satis-
fied at the output. The purpose of this section is to gener-
alize the model of [4-6] in order to test the conformity of
an overriding method m(2) in a derived class by using the
elements of conformity test of its original method m(1) in
the super-class.

In [4], we have tested the conformity of methods in a
basic class without taking into account the inheritance
relationship: the model of test generates random data at
the input of a method using elements of the valid domain
which satisfy the precondition of the method under test.
This test stops when the constraint H becomes False

  , 0H x o  or when the maximum threshold of the
test is reached with H satisfied.

Definition 2: (Valid method)
A method m of class C is valid or conforms to its

specification if for each  , cx o E I 
 , : ,cI H x o

, the constraint H
is satisfied:  x o E  1

In other words, for a valid method:  , cx o E I   :
If (x,o) satisfies the precondition P then this (x,o) must
satisfy the post-condition Q and the invariant Inv.

The conformity test of m(2) requires the following
steps:
 Step 1: a conformity test of a basic constructor of

class C2. This step is necessary for using valid objects
at the input of the method under test.

 Step 2: a similarity test of m(1) and m(2) relatively to
.       1 1 1, ,P Q Inv

We assume that the test of step 2 showed that m(1) and
m(2) are similar.

The conformity test process of the overriding method
m(2) relatively to H(2) is based on the test result of m(1)
relatively to H(1) and the test result of m(2) relatively to
H(SI,SO) (Theorem1).

The conformity test of m(1) induces two cases: m(1)
conforms to its specification or m(1) is not in conformity
with its specification:
 Case 1: The method m(1) is not in conformity with its

specification
We have the following result:
Theorem 2:
If the overridden method m(1) in parent class C is not

in conformity with its specification
then any similar method m(2) in a subclass is not in con-
formity with its specification

1
      1 1 1, ,P Q Inv

 


    2 2P Q 2, , Inv .

Proof:
We assume that the method m(1) is not in conformity

with its specification. This means (Def. 2) that:

  (1)
0 0 0 0, : ,cx o E I H x o  0   

The object o0 is an instance of the class C1. We con-
sider an object 0o of the subclass C2 that has the same
values as the object o0 for attributes of C1 And therefore,
the object 0o has the same behavior as o0 in a context
of C1 and consequently:

     
2

1
0 0 0 0, : ,Cx o E I H x o  0   

We apply the relationship (R) (Theorem 1) on the pair
 0 0,x o of the domain :

2CE I

          
   

2
0 0 0 0,

2
0 0

, 0 ,

, 0

SI SOR H x o H x o

H x o

     
   

This means:      2
0 0, : ,cx o E I H x o  0

2 0 0   
This shows (Def. 2) that the method m(2) is not in con-

formity with its specification.
 Case 2: The method m(1) conforms to its specification

In this case, we have (Def. 2):

     
1

1, : ,cx o E I H x o 1   

Using  2cE I E I  

 
1

   
2

1, : ,cx o E I H x o

c

1

, we have:

   

The relationships (R) in theorem1implies:

            2
, ,, 1 , ,SI SO SI SOH x o H x o H x o        

Therefore, we must to test m(2) relatively to :  ,SI SOH
 m(2) is not in conformity with H (SI,SO)

We have in this case, the following result:
Theorem 3:
If the overriding method m(2) of the subclass C2 is not

in conformity relatively to its specific constraints
 2 2 2, ,P Q Inv   , then the method m(2) is not in conformity
with its global specification

      2 2 2, ,P Q Inv .

Proof:
We assume that the method m(2) does not satisfy its

specific constraint H(SI,SO):

     
20 0 0 0,, : ,c SI SOx o E I H x o 0   

Applying the relationship (R):

        
   

2 1
0 0 0 0

2
0 0

, ,

, 0

H x o H x o

H x o

0   
   

and consequently:      2, : ,x o E I H x o 0
20 0 0 0c   

This induces that m(2) is not in conformity with its
global specification (Def. 2) .
 m(2) conforms to its specific constraint H(SI,SO)

We have in this case, the following result:

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 118

Theorem 4:
If the overridden method m(1) of the class C1 conforms

to its specification, and its similar method m(2) in the
subclass C2 conforms to the specific constraint H(SI,SO),
we deduce that the overriding method m(2) conforms to
its global specification.

Proof:
In this case, we have:

     
2

1, : ,cx o E I H x o   1 and    , , 1SI SOH x o 

The relationships (R) implies:      2 , 1 1H x o   

This means:      
2

2, : ,cx o E I H x o   1

We deduce that the overriding method m(2) conforms
to its global specification (Def. 2).

5. Security Testing

5.1. Formal Model of Security Testing

The realized tests for conformity consider that the input
data satisfy the precondition. However, a false pre-con-
dition may induce both a post-condition and an invariant
which are valid. A correctly testing of implementation of
a method should reject cases of invalid data which pro-
vide valid results. Most of test oracles do not integrate
the invalid data in test process. This section presents a
complementary test aimed to study the invalid inputs of a
method that conforms to its specification. Indeed, an
anomaly difficult to be detected arises when a couple (x,o)
does not satisfy the pre-condition P is accepted and in-
duces both a post-condition Q and invariant Inv that are
valid at the output. Our approach allows resolving these
anomalies by the introduction of a complementary test
for each method m that conforms to its specification. On
the theoretical level, we are looking for strengthening the
current constraint H in order to integrate this type of test.

Consider a method m of class C such that: o the re-
ceiver object and x the vector of parameters.

Definition 3: (Secure method)
The method m is secure relatively to its specification if

it satisfies the following conditions:
 It conforms to its specification.
 For each invalid couple (x,o) of input (does not satisfy

the pre-condition:  , 0P x o ), the post-condition Q
and the invariant Inv should not be both valid in out-
put:     , 0nv o Q x o I .

As is shown in Table 1, the constraint H defined
above for conformity test takes in the security test the
following form:

       , : , ,cx o E I P x o Q x o Inv o      

We note:

       , : , ,securityH x o P x o Q x o Inv o 

Table 1. Truth cases of H and Hsecurity.

P Q Inv   : H P Q Inv   : securityH P Q Inv 

1 1 1 1 1

1 1 0 0 0

1 0 1 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

In this test, we assume that with an invalid input, we

can expect only an invalid result: any valid result coming
from an invalid input indicates the presence of a security
problem into the method implementation.

Theorem 5: The method m is secure relatively to its
specification, if:   , : ,c securityx o E I H x o 1    .

5.2. Algorithm of Security Testing

The main aim of security testing algorithm is the use of
the proposed security testing model for checking if the
method under test is secure relatively to its specification.
We assume that the method under test is conforming to
its specification. The test data generation requires that the
input values generated must not satisfy the pre-condition
 0P  . The execution of each security test algorithm
stops when the constraint Hsecurity becomes false

  , 0H x o 
1securityH
 security or when we reach the threshold of

test with  . In the Figure 5, the constant N is an
input value and (A21, A22, A23, A24) is the partition of the
invalid input domain of the method m:

           
21

, / , , , , 0,0,0c

A

x o E I P x o Q x o Inv o



  

           
22

, / , , , , 0,0,1c

A

x o E I P x o Q x o Inv o



  

           
23

, / , , , , 0,1,0c

A

x o E I P x o Q x o Inv o



  

           
24

, / , , , , 0,1,1c

A

x o E I P x o Q x o Inv o



  

5.3. Security Testing in Inheritance

The purpose of this paragraph is to test the security of an
overriding method m(2) relatively to its global specifica-


tion       2 2 2, ,P Q Inv in a derived class C2 using the

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 119

do{
 do{
for (xi in set of parameters of m)
{xi=generate(Ei);}
x= (x1,x2,…,xn);o = generate_object();
 }while(P(x,o));
invoke"o.m(x)"
if(!Q(x,o)&& !Inv(o))
A21.add(x,o);
elseif(!Q(x,o)&&Inv(o))
A22.add(x,o);
elseif(Q(x,o)&& !Inv(o))
A23.add(x,o);
else A24.add(x,o)
}while(A21.size()<N && A22.size()<N && A23.size()<N
&& A24.isEmpty());

Figure 5. Security test algorithm of the method m.

elements of security test of its original method m(1) in the
super-class C1.

Definition 4: (Security of m(2) relatively to
       1 1 1, ,P Q Inv

An overriding method m(2) is secure relatively to its
inherited specification if:       1 1 1, ,P Q Inv
 m(2) conforms to its inherited specification

.       1 1 1, ,P Q Inv
 For each couple (x,o) in the invalid input domain of

m(2) 0 , the post-condition Q(1)
and the invariant Inv(1) should not be both valid in
output of m(2)    .

    1
2() ,P P x o

   Q x o  1 1, 0Inv o 
Definition 5: (Security of an overriding method m(2)

relatively to  2 2 2, ,P Q Inv  ).
An overriding method m(2) is secure relatively to its

own specification  2 2 2, ,P Q Inv   if:
 m(2) conforms to its own specification  2 2 2, ,P Q Inv   .
 For each couple (x,o) in the invalid input domain of

m(2)  , the post-condition 2Q     1
2 , 0P P x o 

and the invariant 2Inv sh
 2Q x o

ould not be both valid in
output of m(2)  .    , 0Inv o 2

Definition 6: (Security of an overriding method m(2)

relatively to its global specification       2 2 2, ,P Q Inv)
An overriding method m(2) is secure relatively to its

global specification       2 2 2, ,P Q Inv if and only if:
 m(2) is secure relatively to its inherited specification

.       1 1 1, ,P Q Inv
 m(2) is secure relatively to its own specification

 2 2 2, ,P Q Inv   .
Theorem 6:
An overriding method m(2) is secure relatively to its

global specification       2 2 2, ,P Q Inv if:
 m(2) conforms relatively to its global specification

      2 2 2, ,P Q Inv .
 For each invalid couple (x,o) of input (does not satisfy

the pre-condition     2 , 0P x o  , the post-condition
Q(2) and the invariant Inv(2) should not be both valid in

output of m(2)         2 2, 0Q x o Inv o 

 

.
Theorem 7:
An overriding method m(2) (that conforms to its global

specification) is not secure relatively to this specification
if

    
2

1
2, :CE I P P x o,x o  0     

in input of m(2) and

         2 2, 1x o Q Inv x  1 1 , 1Q Inv o        

in output of m(2).
The security test of m(2) relatively to its global specifi-

cation       2 2P Q 2, , Inv
   

 is performed only if the con-
formity test of m(2) relatively to   2 2P Q

    

2, , Inv is
validated. We consider that m(1) and m(2) are in confor-
mity with their specifications, and we assume that the
security test of m(2) starts when the security testing of m(1)
is completed. Indeed, the security test of m(1) induces two
cases: m(1) is secure relatively to its specification or m(1) is
not secure relatively to its specification:
 Case 1: m(1) is not secure relatively to its specification.

We assume that the method m(1) is not secure relatively
to its specification. This means (Def. 3 and Th. 5) that:

 0 0 ,x o
1

1
0 0, :C securityE I H x o 0  

o



The object o0 is an instance of the class C1. We con-
sider an object 0 of the subclass C2 that has the same
values as the object o0 for attributes of C1 and therefore,
the object 0o has the same behavior as o0 in a context
of C1 and consequently:

      0 0 ,x o
2

1
0 0, :C securityE I H x o  0  

   

    

1 1
0 0

1 1
0 0

0 in input of and

, 1 in output of

o m

nv x o

   



i.e.

 

   1

,P x

Q I m




    

m(1) and m(2) are similar, then we have:

 

   2

,P x

Q I m






   

    

1 2
0 0

1 1
0 0

0 in input of and

, 1 in output of

o m

nv x o

   

    

We have two cases:  2 0 0, 0P x o   or  2 0 0, 1P x o  
  2 0 0, 0  .P x o 

In this case, we have:

     

    

1 2
2 0 0

1 1
0 0

, 0 in input of

, 1 in output of

x o m

nv x o

    
   2

 andP P

Q I m




    

Consequently the method m(2) is not secure relatively

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU 120

to (Def. 4).       1 1 1, ,P Q Inv
Finally, this shows (Th. 7) that the method m(2) is not

secure relatively to its global specification
      2 2 2, ,P Q Inv

 2 0 0, 1P x o  
.



In this case, we have:      1
2 0 0, 1P P x o  

Consequently the couple  0 0,x o is in the valid input
domain: the security of m(2) cannot be deduced from the
security test of m(1) (Figure 6).
 Case 2: m(1) is secure relatively to its specification.

In this case, we must test the method m(2) relatively to
its own specification  2 2 2, ,P Q Inv   (Figure 6).

6. Evaluation

We evaluate the correctness of our approach by imple-
menting the algorithm of conformity and security testing
for inheritance. We consider for example of conformity
and security testing the methods withdraw(1) and with-
draw(2) of the class Account1 and Account2 (Figure 7).

The constraints H(1) and H(2) of withdraw(1) and with-
draw(2) in an algebraic specification are shown in the
Figure 8 (x = x1, o(a) and o(b) are respectively the object o

after and before the call of the method):
 Conformity testing for withdraw(2) and withdraw(1)

We test firstly the similarity of withdraw(2) and with-
draw(1) on the common valid domain C D V

      1, , 1CVD x o E I P x o   


2C : for each (x ,o)

that satisfy the common precondition of withdraw(1) and
withdraw(2) , the condition of the block if
{…} (method withdraw(2) in Figure 7) is not satisfied,
and thus the block if {…} is not executed, this means that
the method withdraw(2) does exactly the same thing as

    1 , 1P x o 

(m(2) is secure relatively to(P2’ ,Q2’ ,Inv2’))

(m(1) is secure relatively to (P(1),Q(1),Inv(1)))

-m(2) is secure relatively to (P(2),Q(2),Inv(2))

-m(2) is not secure relatively to (P(2),Q(2),Inv(2))

-Generate (x0 ,o0)E×IC1 / Hsecurity
(1)(x0 , o0)=0

-Generate (x0 ,o0
’)E×IC2 / o0

’ has the same attributes
values as o0

If
If

Else

EndIf

Else

EndIf

If

Else

EndIf

(P2’(x0 ,o0
’)=0)

-Indeterminate Form

- m(2) is not secure relatively to (P(2),Q(2),Inv(2))

Figure 6. Security test cases for an overriding method.

class Account1
{ protected double bal;
 /* bal is the account balance */
 public Account1(double x1)
 {this.bal=x1;}
 public void withdraw (int x1)
 {this.bal=this.bal - x1;}
}
class Account2 extends Account1
{ private double InterestRate;
 public Account2(double x1, double x2)
 {super(x1); this.InterestRate=x2;}
 public void withdraw (int x1)
 {super.withdraw(x1);
 if ((x1>bal) && (x1<(bal/InterestRate)))
 this.bal=this.bal-(this.InterestRate)*x1;
 InterestRate = InterestRate/2;}
}

Figure 7. Account1 and Account2 classes.

the method withdraw(1) (Figure 7). As a result thereof,
withdraw(2) and withdraw(1) are similar on the valid do-
main CVD.

The second test concerns the conformity testing of
withdraw(2) that is based on the conformity testing of
withdraw(1):
 Conformity Testing for withdraw (1)

In order to test the conformity of withdraw (1) in class
Account1, we generate randomly x1 and the balance val-
ues in the interval (‒200,200) with N =100 (Table 2):

The test result shows that for 100 iterations the con-
straint H(1) is always true   1 1H  , we can deduce that
the withdraw(1) method is valid (Table 2). In this case it
is necessary to test the method withdraw(2) relatively to
its own constraint H(SI,SO):
 Conformity testing for withdraw(2) relatively to

H(SI,SO)
In order to test the method withdraw(2) relatively to the

constraint H(SI,SO), we use an analysis with proof. The
testing by proof of the method withdraw(2) relatively to
the constraint H(SI,SO) is used to strengthen the randomly
testing .Indeed, we must have for satisfying the specific
output (SO) :
◦ The specific post-condition Q must be satisfied. 2

◦ The specific invariant 2Inv must be satisfied.
The constraint 2Q is always satisfied (Figures 7 and

8), however we must proof that 2Inv is satisfied.
For each created object o0 ,we have : (0 ≤ InterestRate0

≤ 0.3) where InterestRate0 is the initial value assigned to
InterestRate when creating the object o0, and Intere-
stRate(n) is the value of InterestRate after n operations of
type withdraw(2) in an execution sequence.

We have:

 
 1InterestRate

InterestRate , 1
2

n

n n
 

   
  

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU

Copyright © 2013 SciRes. JIS

121

Table 2. Result of a conformity test of withdraw(1)

Iteration number: x o P(1)(x,o) H(1)(x,o)

1 29 Account1(70) 1 1

2 42 Account1(93) 1 1

3 79 Account1(187) 1 1

… … … … …

…. …. …. …. ….

….. ….. ….. ….. …..

98 31 Account1(104) 1 1

99 18 Account1(86) 1 1

100 68 Account1(151) 1 1

  
(1)

(1) (1) (1)

Withdraw :

P Q Inv 

 (1)
1

b a l a n c e (o)
P x , o : 0

2
x

   
 

   (1)
() ()Q x , o : b a la n c e (o) b a lan ce (o)a b

   (1)I n v o : b a la n c e (o) 0

 '
2I n v (o) : 0 I n t e r e s t R a t e (o) 0 . 3 

  
   

(a) (b) 1
'
2

(a) (b) 1

balance(o) = balance(o) - x
Q (x,o) :

balance(o) = balance(o) - (1+ InterestRate) x

 
 
   

'
2 1

b a la n c e (o) 3 b a la n c e (o)
P (x , o) : x

2 4

   
 







  
(2)

(2) (2) (2)

Withdraw :

P Q Inv 

Figure 8. Constraints of withdraw(1) and withdraw(2).

where n is number of withdrawals (Figure 7).

The geometric series proposed is written in the general
case as follows:

 
 

 

0

0

InterestRate
InterestRate ,

2

with 0 and 0 InterestRate 0.3

n n

n





  







We deduce that:

 : 0 InterestRate 0.3nn  

And consequently, the specific invariant is always sat-
isfied (Figure 8). This leads to the conclusion that the

method withdraw(2) is in conformity to H(SI,SO), and we
can deduce that withdraw(2) is in conformity with its
global specification.
 Security testing for withdraw(2) and withdraw(1)

For security testing, we test firstly the similarity of
withdraw methods on the common invalid domain CID

        2

1
2, / ,CCID x o E I P P x o     0

For this we generate randomly x1 and the balance val-
ues in the interval (‒200,200) with the threshold limit N
=100 (Table 3).

The test result shows that for 100 iterations the size of
the similarity set Sim is exactly the threshold limit of the

K. BENLHACHMI, M. BENATTOU 122

test. We can conclude that the methods withdraw(2) and
withdraw(1) are similar on the domain CID relatively to

      1 1 1, ,P Q Inv (Table 3).

In the last paragraph, we have showed that withdraw(2)

and withdraw(1) are in conformity with their specifica-
tions and are similar on the common invalid domain. For
testing the security of the overriding method with-
draw(2), we must testing the security of the overridden
method withdraw(1) (Figure 6):
 Security Testing for withdraw(1) relatively to

       1 1 1, ,P Q Inv
We generate in the Table 4 the security test cases for

the overridden method withdraw(1) relatively to
:       1 1 1, ,P Q Inv

For the first four iterations, we have:

   
1

balance
 balance

2

o
x o  ,

i.e. and it induces to a false invariant    1 ,P x o 


0
 balance 0o  at the output, i.e.    1 ,securtyH x o 1 . In

the iteration 5, we have for

    , 137, 1 180x o Account :

   1

balance
balance

2

o
x o  ,

Table 3. Similarity test of the withdraw methods on CID.

Itration
number

x o    1

2 ,P P x o  ,x o 

1 117 Account2(96,0.24) 0 Sim

2 94 Account2(83,0.18) 0 Sim

3 173 Account2(147,0.01) 0 Sim

… … … … …

…. …. …. … ….

….. ….. ... … …..

98 102 Account2(120,0.17) 0 Sim

99 88 Account2(72,0.1) 0 Sim

100 131 Account2(159,0.22) 0 Sim

Table 4. Security test of withdraw(1)/(P(1), Q(1),Inv(1)).

Iteration
number x1 O    1 ,P x o    1 ,securityH x o

1 113 Account1(87) 0 1

2 176 Account1(138) 0 1

3 91 Account1(42) 0 1

4 101 Account1(73) 0 1

5 137 Account1(180) 0 0

i.e.    1 ,P x o 0 , and this induces    1 ,Q x o 1 and

   1 , 1x oInv  , i.e. . Indeed, our im-

plementation cannot reject this situation and cones-
quently the overridden method withdraw(1) under test
which is conforming to its specification, is considered
not secure relatively to the same specification.

   1 ,securtyH x o  0

 Security Testing for withdraw(2) relatively to
      2 2 2, ,P Q Inv

According to the Figure 6, we have for (x,o) =
  137, 1 180Account the method withdraw(1) is not

secure, we consider for example the object o’ of the class
Account2 that has the same balance value

  2 180,0.19o Account  and we must determinate

the truth value of  2 ,P x o (Figure 6).
We have:

1 3
180 137 180 is false

2 4

               

i.e.  2 ,P x o 0 (Figure 8).
Finally, we can deduce that withdraw(2) is not secure

relatively to       2 2 2, ,P Q Inv (Figure 6).

7. Conclusions

This paper introduces an approach to reduce the test se-
quences used for testing the conformity of an overriding
method during inheritance operation in object oriented
models. The key idea of this work is the use of a tech-
nique that generates test data by exploiting the existing
test sequences. Indeed, for the sub-classes methods that
have the same behavior as their corresponding methods
in a parent class, it is possible to reuse the data extracted
from the conformity testing of an overridden method for
testing the conformity of its overriding method.

The main contribution of our approach is the definition
of a security testing that generates invalid input values not
satisfying the precondition constraint. Indeed, the test
methods have focused only on valid inputs satisfying the
pre-condition, and do not integrate the invalid data in test
process. We think that a correctly implemented testing
method should eliminate cases of invalid data which lead
to valid results. Our approach shows how we can use the
valid and invalid data extracted from the pre-condition to
test the conformity and security of overridden and over-
riding methods.

We present firstly the relationship between the test
model of overridden methods and overriding methods,
and we show how the use of existing test sequences can
make the generation of the test data during inheritance
less expensive. Secondly, we present our approach of
security testing based on data not satisfying the precondi-
tion constraint.

Copyright © 2013 SciRes. JIS

K. BENLHACHMI, M. BENATTOU

Copyright © 2013 SciRes. JIS

123

REFERENCES
[1] B. K. Aichernig and P. A. P. Salas, “Test Case Genera-

tion by OCL Mutation and Constraint Solving,” Pro-
ceedings of the International Conference on Quality Soft-
ware, Melbourne, September 19-20, 2005, 2005, pp. 64-71.

[2] F. Bouquet, F. Dadeau, B. Legeard and M. Utting, “Sym-
bolic Animation of JML Specifications,” International
Conference on Formal Methods, Vol. 3582, Springer-
Verlag, 2005, pp. 75-90.

[3] M. Benattou, J.-M. Bruel and N. Hameurlain, “Generat-
ing Test Data from OCL Specification,” Proceedings of
the ECOOP’2002 Work-Shop on Integration and Trans-
formation of UML Models (WITUML’2002), 2002.

[4] K. Benlhachmi, M. Benattou and J.-L. Lanet, “Génération
de Données de Test Sécurisé à Partir d’une Spécification
Formelle par Analyse des Partitions et Classification,”
Proceedings of the International Conference on Network
Architectures and Information Systems Security (SAR-SSI
2011), La Rochelle, 18-21 May 2011, pp. 143-150.

[5] K. Benlhachmi and M. Benattou, “A Formal Model of Si-
milarity Testing for Inheritance in Object Oriented Soft-
ware,” Proceedings of the IEEE International Conference
(CIST’2012), Fez, 24-26 October 2012, pp. 38-42.

[6] K. Benlhachmi and M. Benattou, “Similarity Testing by
Proof and Analysis of Partition for Object Oriented Spe-
cifications,” Journal of Theoretical and Applied Informa-
tion Technology, Vol. 46, No. 11, 2012, pp. 461-470.

[7] Y. Cheon and C. E. Rubio-Medrano, “Random Test Data
Generation for Java Classes Annotated with JML Speci-
fications,” Proceedings of the 2007 International Con-
ference on Software Engineering Research and Practice,
Volume II, 25-28 June 2007, Las Vegas, pp. 385-392.

[8] G. T. Leavens, “JML’s Rich, Inherited Specification for
Behavioral Subtypes,” Iowa State University, Ames,
2006.

[9] R. B. Findler, M. Latendresse and M. Felleisen, “Behav-
ioral Contracts and Behavioral Subtyping,” Foundations
of Software Engineering, Rice University, Houston, 2001.

[10] B. H. Liskov and J. M. Wing, “A Behavioral Notion of
Subtyping,” MIT Laboratory for Computer Science, Car-
negie Mellon University, ACM Transactions on Program-
ming Languages and Systems, Vol. 16, No. 6, 1994, pp.
1811-1841.

[11] G. T. Leavens and K. K. Dhara, “Concepts of Behavioral
Subtyping and a Sketch of their Extension to Compo-
nent-Based Systems,” In: G. T. Leavens and M. Sitara-
man, Eds., Foundations of Component-Based Systems,
2000, pp. 113-135.

[12] B. H. Liskov and J. Wing, “Behavioral Subtyping Using
Invariants and Constraints,” Technical Report CMU
CS-99-156, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, 1999.

[13] B. Meyer, “Object Oriented Software Construction,”
Prentice Hall, Upper Saddle River, 1988.

