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ABSTRACT 

This paper presents an approach for extending the constraint model defined for conformity testing of a given method of 
class to its overriding method in subclass using inheritance principle. The first objective of the proposed work is to find 
the relationship between the test model of an overriding method and its overridden method using the constraint propa- 
gation. In this context the approach shows that the test cases developed for testing an original method can be used for 
testing its overriding method in a subclass and then the number of test cases can be reduced considerably. The second 
objective is the use of invalid data which do not satisfy the precondition constraint and induce valid output values for 
introducing a new concept of test called secure testing. The implementation of this approach is based on a random gen- 
eration of test data and analysis by formal proof. 
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1. Introduction 

The principle of testing is to apply input events to the 
Implementation under Test (IUT) and to compare the 
observed output events to the expected results. A set of 
input events and its corresponding results is generally 
called test case and can be generated from the IUT speci- 
fication. The purpose of testing methods is to find the 
failures that are not detected during system normal op- 
eration and to define the relationship between the speci- 
fications and implementations of entities under test. In- 
deed, in object oriented modeling, a formal specification 
defines operations by collections of equivalence relations 
and is often used to constrain class and type, to define the 
constraints on the system states, to describe the pre- and 
post-conditions on operations and methods, and to give 
constraints of navigation in a class diagram. The object 
oriented constraints (OOC) are specified by formal lan-
guages as OCL [1] and JML [2], and are used for gen- 
erating test data from formal specifications [3]. The pro- 
posed test oracles in the industry are satisfied with the 
conformity test methods, and are carried out by generat- 
ing test data that conform to the pre-condition constraint. 
However, a false pre-condition may induce both valid 
post-condition and invariant at the same time. A correctly 

implemented testing method should eliminate cases of 
invalid data which lead to valid results. 

In this context, this paper introduces in the first in- 
stance an optimizing approach to minimize the test se- 
quences used for testing the conformity of an overriding 
method in object oriented models. The main idea of this 
work is the use of a technique that generates test data by 
exploiting the existing test sequences. Indeed, it is im- 
portant to reuse the test result of overridden methods for 
testing the conformity of the overriding methods during 
inheritance operation. That is why our approach specifies 
all cases of conformity of an overriding method by using 
data extracted from conformity testing of the original 
methods. The second contribution of our approach is the 
definition of a security testing based on the generation of 
invalid input data which induce valid output values. In- 
deed, in this paper we show how we can use the valid 
data extracted from the pre-condition constraint to test 
the conformity of an overriding method, and how the 
data which does not satisfy the precondition can be used 
to test the security of similar methods. Our test oracle 
enables to detect anomalies in invalid inputs that imply 
valid results. 

The work presented in this paper allows to extend the 

Copyright © 2013 SciRes.                                                                                   JIS 



K. BENLHACHMI, M. BENATTOU 114 

constraint model defined in [4] for modeling the specifi- 
cation of an overriding method in subclass using inheri- 
tance principle. This work is based on our model of 
similarity concept [5,6] for testing the conformity and the 
security of overriding methods from test results of the 
original methods. The main objective is to reduce the 
number of test cases by using the test result developed in 
parent classes, and to integrate the invalid data in test 
process. We present firstly, the relationship between the 
test model of overridden and overriding methods, and we 
show how to use the constraint model for extracting the 
possible cases of test values. Secondly, we show how it 
is possible to exploit the invalid data that do not satisfy 
the precondition constraint and induce valid post-condi- 
tions. 

This paper is organized as follows: in Section 2 we 
present related works and similar approaches for gener- 
ating test data from a formal specification, in Section 3 
we describe theoretical aspects of our test process, and 
we define our test formal model of constraints, in Section 
4 we present how the testing formal model can be used to 
generate data for testing the conformity of overriding 
methods during inheritance operation, in Section 5 we 
present our approach of security testing that strengthens 
the conformity testing, and we show how the security 
testing of an overriding method can be deduced from its 
overridden method in parent class. Finally, in Section 6 
we describe our approach with an example of conformity 
and security testing for an object oriented model. 

2. Related Works 

Most works have studied the problem of relating types 
and subtypes with behavioral specification in an object 
oriented paradigm. These proposed works show how the 
contracts are inherited during method overriding and how 
the testing process can use the formal specification. In 
[4], we have presented the definition of a formal model 
of constraint, illustrating the relationship between 
pre-conditions, post-conditions and invariants of methods, 
and we have formalized a generic constraint of a given 
individual method of class that contains all constraints 
into a single logical predicate. The given model translates 
algebraically the contract between the user and the called 
method. 

In [5], we have developed a basic model for the con- 
cept of methods similarity, the test is based only on a 
random generation of input data. In [6], we have gener- 
alized the basic model of similarity using analysis of par- 
tition and formal proof. In [7], the authors propose a 
randomly generation of test data from a JML specifica- 
tion of class objects. They classify the methods and con- 
structors according to their signature (basic, extended 
constructors, mutator, and observer) and for each type of 

individual method of class, a generation of test data is 
proposed. In [8], the paper describes specially the fea- 
tures for specifying methods, related to inheritance 
specification; it shows how the specification of inheri- 
tance in JML forces behavioral sub-typing. 

The work presented in [9] shows how to enforce con- 
tracts if components are manufactured from class and 
interface hierarchies in the context of Java. It also over- 
comes the problems related to adding behavioral con- 
tracts to Object Oriented Languages, in particular, the 
contracts on overriding methods that are improperly 
synthesized from the original contracts of programmer in 
all of the existing contract monitoring systems. The work 
is based on the notion of behavioral sub-typing; it dem- 
onstrates how to integrate contracts properly, according 
to the notion of behavioral sub-typing into a contract 
monitoring tool for java. In [10], the authors treat the 
problem of types and subtypes with behavioral specifica- 
tions in object oriented world. They present a way of 
specification types that makes it convenient to define the 
subtype relation. They also define a new notion of the 
subtype relation based on the semantic properties of the 
subtype and super-type. In [11], they examine various 
notions of behavioral sub-typing proposed in the litera- 
ture for objects in component-based systems, where rea- 
soning about the events that a component can raise is 
important. 

All the proposed works concerning the generation of 
test data from formal specification or to test the confor- 
mity of a given method implementation, use only the 
constraint propagation from super to subclass related to 
subtype principle and do not exploit the test results of the 
original method. As an example, several test oracles used 
in industry as JML compiler can generate the conformity 
test of an overriding method even if its original method 
in the parent class does not conform to its specification. 
Our approach shows that this type of test is unnecessary 
and can be removed, and presents how we can reduce the 
test cases by using the test values developed for testing 
the original methods in a parent class. The main differ- 
ence between our work and other related works is the 
definition of the security testing. Indeed, the test methods 
have focused only on valid inputs satisfying the pre- 
condition, and do not integrate the invalid data in test 
process. Our approach shows how we can use the valid 
and invalid data extracting from the pre-condition to test 
the conformity and the security of overridden and over- 
riding methods. 

3. Formal Model of Constraint 

This section presents a formal model of the generalized 
constraint defined in [4] which provides a way for mod- 
eling the specification of an overriding method by in- 
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heritance from a super-class. Indeed, we establish a se- 
ries of theoretical concepts in order to create a solid basis 
for testing the conformity of overriding methods in sub- 
classes using the test result of the original methods. 

3.1. Constraint Propagation in Inheritance 

In [4] we have presented the definition of a formal model 
of constraint, illustrating the relationship between the 
pre-condition P, the post-condition Q of a method m and 
the invariant Inv of the class C: this constraint H is a 
logical property of the pair (x,o) (x is the vector of pa- 
rameters  1 2( , , , )nx x x x  and o is the receiver object) 
such that: 

         , : , , , , cH x o P x o Q x o Inv o x o E I       

where Ic is the set of instances of the class C and E the 
set of input vectors of m. 

Indeed, the invocation of a method m is generally done 
by reference to an object o and consequently, m is identi- 
fied by the couple (x,o). The logical implication in the 
proposed formula means that: each call of method with 
(x,o) satisfying the precondition P and the invariant be- 
fore the call, (x,o) must necessarily satisfy the post-con- 
dition Q and the invariant Inv after the call. In the context 
of this work, we assume that the object which invokes 
the method under test is valid (satisfying the invariant of 
its class), thus, the objects used at the input of the method 
under test are generated from a valid constructor. This 
justifies the absence of predicate Inv of the object o be- 
fore the call to m in the formula H (Figure 1). 

The purpose of this paragraph is to establish a series of 
theoretical rules in order to evolve the constraint H of a 
method m of a super-class during the operation of inheri- 
tance. We consider a method m of a class C2 which inher- 
its from the class C1 such that m overrides a method of C1. 
The original method and its overriding method in the 
subclass C2 will be denoted respectively by m(1), m(2). 
(P(1),Q(1)) denote respectively the pre-condition, the 
post-condition of the method m(1), and Inv(1) the invariant 
of C1; and  2 2,P Q   denote respectively the specific 
pre-condition, post-condition of the overriding method 
m(2), and 2Inv  the specific invariant of the class C2. (P

(2), 
Q(2)) denote respectively the pre-condition, the post- 
condition of the method m(2), and Inv(2) the invariant of 
C2 (Figure 2). 

The results of this paragraph are based on the works of 
Liskov, Wing [12] and Meyer [13] who have studied the 
problem relating to types and subtypes with behavioral 

 

m

 
 Input : P x,o     : ,Output Q x o Inv o

 

Figure 1. Specification of a method m. 

specification in an object oriented (OO) paradigm. In- 
deed, a derived class obeys the Liskov Substitution Prin- 
ciple (LSP) if for each overriding method m(2), the 
pre-condition P(2) is weaker than the pre-condition P(1) of 
the overridden method     1P P

 

2 , the post-condition 
Q(2) is stronger than the post-condition Q(1) of the over- 
ridden method   2 1QQ , and the class invariant 
Inv(2)

 of the subclass C2 must be equal to or stronger than 
the class invariant Inv(1) of the C1 

    2 1Inv Inv . 
As a result of LSP: 
The pre-condition P(2) of m(2) is the disjunction of P(1) 

and the specific pre-condition  of m(2) (Figure 2): 2P
    2 1

2P P   P               (1) 

The post-condition Q(2) of m(2) is the conjunction of the 
post-condition Q(1) of m(1) and the specific post-condition 

2Q of m(2) (Figure 2): 

    2 1
2Q Q Q               (2) 

The invariant Inv(2) of the class C2 is the conjunction of 
the invariant Inv(1) of C1 and the specific invariant 2Inv  
of C2 (Figure 2): 

    2 1
2Inv Inv Inv            (3) 

Based on the definition of the generalized constraint, 
we have: 

The constraint of m(1): 

               
 

1

1 1 1 1, : , ,

, c

,H x o P x o Q x o Inv o

x o E I

   
   

The constraint of m(2): 

               
 

2

2 2 2 2, : , ,

, c

,H x o P x o Q x o Inv o

x o E I

   
   

Using (1), (2), (3) the constraint of m(2) will have the 
following form: 

       2 1 1 1
2 2: 2H P P Q Inv Q Inv              

In our approach, the specification       2 2 2, ,P Q Inv  
of m(2) is constituted by : 

Two inputs: the Basic Input 
 

and the Spe- 
cific Input 

  1BI P 
 2SI P

 
Two outputs: Basic Output 

of m(2). 
     1 1Inv,BO Q

 
and 

the Specific Output   2 2, Inv SO Q
 This induces 4 possible combinations of I-O: (BI,BO), 

(BI,SO), (SI,BO), (SI,SO). 

of m(2). 

3.2. Constraint Model of Overriding Methods 

The aim of this paragraph is to construct a formal model 
of an overriding method by generalizing the constraint  
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1Class C  

2Class C  

 (1) (1) (1) (1)m : P , Q , Inv  

 (2) (2) (2) (2)m : P , Q , Inv  

(1) '
2P P  (1) '

2Q Q  (1) '
2Inv Inv  

Figure 2. Constraints of m(1) and m(2). 
 
model of the original methods. In achieving this goal, we 
should define a specific constraint of inheritance and also 
study the compatibility between the overriding methods 
and original methods in the parent class. 

In this sense, we had proposed in [5,6] the definition 
of similarity concept for assuring if the overriding me- 
thod m(2) has the same behavior as its original version m(1) 
in the super-class relatively to their common specifica- 
tion . Indeed, the implementation in the 
subclass must override the implementation in the super 
class by providing a method m(2) that is similar to m(1). 
We propose firstly the definition of a constraint H(SI,SO) 
allowing a partial view of the overriding method m(2) in 
the class C2. Secondly, we determine the relationship 
between the constraints H(2), H(1) and H(SI,SO). 

      1 1 1, ,P Q Inv 

The constraint H(SI,SO) specifies the logical relationship 
between the input specific predicate 2  of m(2) and the 
output predicates 

P
 2 2,Q Inv   specific to m(2): 

Definition 1: (Constraint H(SI,SO)) 
We define the constraint H(SI,SO) of an overriding 

method m(2) of a sub-class C2 as a logical property of the 
pair  

2
, Cx o E I   such that: 

         2 2 2, , : , ,SI SOH x o P x o Q x o Inv o       

where 
2CI is the set of instances of C2, and E is the set of 

parameters vector of m(2). 
The logical implication in the proposed formula means 

that: each call of method with (x,o) satisfying the specific 
precondition 2  before the call, (x,o) must necessarily 
satisfy the specific post-condition and the specific 
invariant 

P

2Q
2Inv  after the call. 

In the same way, we put: 

           1
2 2, , : , ,BI SOH x o P x o Q x o Inv o      

And 

             1 1
2, , : , ,SI BOH x o P x o Q x o Inv o      

The relationship between H(1) and H(2) for the two 
similar methods m(1) and m(2) in classes C1 and C2 is 
shown in the following theorem: 

Theorem 1: 
   

    2 1
,SI SOH H H R     

Proof: Using the following result: 

   
      

a b c d

a c a d b c b d

    
          

 

We have: 

          
            

        

1 1 1
2 2

1 1 1 1
2 2

1 1
2 2 2

P P Q Inv Q Inv

P Q Inv P Q Inv

P Q Inv P Q Inv

        
       



2

2



         

 

Therefore, we have the following result: 

   
      2 1

, , ,BI SO SI BO SI SOH H H H H       

In principle, the method m(2) is not intended to provide 
the services (SI,BO) and (BI,SO) however m(2) must 
guarantee the services (BI,BO) (Figure 3) and (SI,SO) 
(Figure 4). Consequently, we put:  , 1BI SOH   and 

 ,SI BO 1H  . 
Finally, (R) is equivalent to  

   
  2 1

,SI SOH H H    . 

The constraints H(1), H(SI,SO), and the relation (R) form 
the theoretical basis that will be used to test the confor- 
mity of overriding methods in subclasses from the test 
result of their original methods in the parent classes. 

4. Conformity Testing 

The formal model of test proposed in [4] defines the no- 
 

(1)

B asic Inpu t :

P (x , o ) (1) (1)

Basic Output :

Q (x, o) Inv ( )o

(2)m

 

Figure 3. Constraint BI-BO of an overriding method. 
 

(2)m  
2

S p e c if ic  In p u t :

P (x , o )
2 2

Specific Output :

Q (x, o) Inv ( )o 

 

Figure 4. Constraint SI-SO of an overriding method. 

Copyright © 2013 SciRes.                                                                                   JIS 



K. BENLHACHMI, M. BENATTOU 117

tion of method validity in a basic class and constitutes a 
way to generate test data for conformity. In a conformity 
test, the input data must satisfy the precondition of the 
method under test. In this context, we are particularly 
interested in valid input values (i.e. the pairs (x,o) that 
satisfy the precondition P). The conformity test for a 
method means that if a pre-condition is satisfied at the 
input, the post-condition and the invariant must be satis- 
fied at the output. The purpose of this section is to gener- 
alize the model of [4-6] in order to test the conformity of 
an overriding method m(2) in a derived class by using the 
elements of conformity test of its original method m(1) in 
the super-class. 

In [4], we have tested the conformity of methods in a 
basic class without taking into account the inheritance 
relationship: the model of test generates random data at 
the input of a method using elements of the valid domain 
which satisfy the precondition of the method under test. 
This test stops when the constraint H becomes False 

  , 0H x o   or when the maximum threshold of the 
test is reached with H satisfied. 

Definition 2: (Valid method) 
A method m of class C is valid or conforms to its 

specification if for each  , cx o E I 
 , : ,cI H x o

, the constraint H 
is satisfied:   x o E  1

In other words, for a valid method:  , cx o E I   : 
If (x,o) satisfies the precondition P then this (x,o) must 
satisfy the post-condition Q and the invariant Inv. 

The conformity test of m(2) requires the following 
steps: 
 Step 1: a conformity test of a basic constructor of 

class C2. This step is necessary for using valid objects 
at the input of the method under test. 

 Step 2: a similarity test of m(1) and m(2) relatively to 
.       1 1 1, ,P Q Inv

We assume that the test of step 2 showed that m(1) and 
m(2) are similar. 

The conformity test process of the overriding method 
m(2) relatively to H(2) is based on the test result of m(1) 
relatively to H(1) and the test result of m(2) relatively to 
H(SI,SO) (Theorem1). 

The conformity test of m(1) induces two cases: m(1) 
conforms to its specification or m(1) is not in conformity 
with its specification: 
 Case 1: The method m(1) is not in conformity with its 

specification 
We have the following result: 
Theorem 2: 
If the overridden method m(1) in parent class C  is not 

in conformity with its specification  
then any similar method m(2) in a subclass is not in con- 
formity with its specification 

1
      1 1 1, ,P Q Inv

 


    2 2P Q 2, , Inv . 

Proof: 
We assume that the method m(1) is not in conformity 

with its specification. This means (Def. 2) that: 

  (1)
0 0 0 0, : ,cx o E I H x o  0     

The object o0 is an instance of the class C1. We con- 
sider an object 0o  of the subclass C2 that has the same 
values as the object o0 for attributes of C1 And therefore, 
the object 0o  has the same behavior as o0 in a context 
of C1 and consequently: 

     
2

1
0 0 0 0, : ,Cx o E I H x o  0     

We apply the relationship (R) (Theorem 1) on the pair 
 0 0,x o  of the domain : 

2CE I

          
   

2
0 0 0 0,

2
0 0

, 0 ,

, 0

SI SOR H x o H x o

H x o

     
     

This means:      2
0 0, : ,cx o E I H x o  0

2 0 0     
This shows (Def. 2) that the method m(2) is not in con-

formity with its specification. 
 Case 2: The method m(1) conforms to its specification 

In this case, we have (Def. 2):  

     
1

1, : ,cx o E I H x o 1   
 

Using  2cE I E I  

 
1

   
2

1, : ,cx o E I H x o

c

1

, we have:  

     

The relationships (R) in theorem1implies: 

            2
, ,, 1 , ,SI SO SI SOH x o H x o H x o          

Therefore, we must to test m(2) relatively to :  ,SI SOH
 m(2) is not in conformity with H  (SI,SO)

We have in this case, the following result: 
Theorem 3: 
If the overriding method m(2) of the subclass C2 is not 

in conformity relatively to its specific constraints 
 2 2 2, ,P Q Inv   , then the method m(2) is not in conformity 
with its global specification 

 
      2 2 2, ,P Q Inv . 

Proof: 
We assume that the method m(2) does not satisfy its 

specific constraint H(SI,SO): 

     
20 0 0 0,, : ,c SI SOx o E I H x o 0     

Applying the relationship (R): 

        
   

2 1
0 0 0 0

2
0 0

, ,

, 0

H x o H x o

H x o

0   
   

 

and consequently:      2, : ,x o E I H x o 0
20 0 0 0c     

This induces that m(2) is not in conformity with its 
global specification (Def. 2) . 
 m(2) conforms to its specific constraint H(SI,SO) 

We have in this case, the following result: 
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Theorem 4: 
If the overridden method m(1) of the class C1 conforms 

to its specification, and its similar method m(2) in the 
subclass C2 conforms to the specific constraint H(SI,SO), 
we deduce that the overriding method m(2) conforms to 
its global specification. 

Proof: 
In this case, we have: 

     
2

1, : ,cx o E I H x o   1  and    , , 1SI SOH x o   

The relationships (R) implies:       2 , 1 1H x o   

This means:       
2

2, : ,cx o E I H x o   1

We deduce that the overriding method m(2) conforms 
to its global specification (Def. 2). 

5. Security Testing 

5.1. Formal Model of Security Testing 

The realized tests for conformity consider that the input 
data satisfy the precondition. However, a false pre-con- 
dition may induce both a post-condition and an invariant 
which are valid. A correctly testing of implementation of 
a method should reject cases of invalid data which pro- 
vide valid results. Most of test oracles do not integrate 
the invalid data in test process. This section presents a 
complementary test aimed to study the invalid inputs of a 
method that conforms to its specification. Indeed, an 
anomaly difficult to be detected arises when a couple (x,o) 
does not satisfy the pre-condition P is accepted and in- 
duces both a post-condition Q and invariant Inv that are 
valid at the output. Our approach allows resolving these 
anomalies by the introduction of a complementary test 
for each method m that conforms to its specification. On 
the theoretical level, we are looking for strengthening the 
current constraint H in order to integrate this type of test. 

Consider a method m of class C such that: o the re-
ceiver object and x the vector of parameters. 

Definition 3: (Secure method) 
The method m is secure relatively to its specification if 

it satisfies the following conditions: 
 It conforms to its specification. 
 For each invalid couple (x,o) of input (does not satisfy 

the pre-condition:  , 0P x o  ), the post-condition Q 
and the invariant Inv should not be both valid in out- 
put:     , 0nv o Q x o I . 

As is shown in Table 1, the constraint H defined 
above for conformity test takes in the security test the 
following form: 

       , : , ,cx o E I P x o Q x o Inv o        

We note: 

       , : , ,securityH x o P x o Q x o Inv o 

Table 1. Truth cases of H and Hsecurity. 

P Q Inv   :  H P Q Inv    :  securityH P Q Inv 

1 1 1 1 1 

1 1 0 0 0 

1 0 1 0 0 

1 0 0 0 0 

0 0 0 1 1 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 1 0 

 
In this test, we assume that with an invalid input, we 

can expect only an invalid result: any valid result coming 
from an invalid input indicates the presence of a security 
problem into the method implementation. 

Theorem 5: The method m is secure relatively to its 
specification, if:   , : ,c securityx o E I H x o 1    . 

5.2. Algorithm of Security Testing 

The main aim of security testing algorithm is the use of 
the proposed security testing model for checking if the 
method under test is secure relatively to its specification. 
We assume that the method under test is conforming to 
its specification. The test data generation requires that the 
input values generated must not satisfy the pre-condition 
 0P  . The execution of each security test algorithm 
stops when the constraint Hsecurity becomes false 

  , 0H x o 
1securityH
 security or when we reach the threshold of 

test with  . In the Figure 5, the constant N is an 
input value and (A21, A22, A23, A24) is the partition of the 
invalid input domain of the method m: 

           
21

, / , , , , 0,0,0c

A

x o E I P x o Q x o Inv o



    

           
22

, / , , , , 0,0,1c

A

x o E I P x o Q x o Inv o



    

           
23

, / , , , , 0,1,0c

A

x o E I P x o Q x o Inv o



    

           
24

, / , , , , 0,1,1c

A

x o E I P x o Q x o Inv o



    

5.3. Security Testing in Inheritance 

The purpose of this paragraph is to test the security of an 
overriding method m(2) relatively to its global specifica-  

  
tion       2 2 2, ,P Q Inv  in a derived class C2 using the 
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do{  
    do{ 
for ( xi in set of parameters of m) 
{xi=generate(Ei);}  
x= (x1,x2,…,xn);o = generate_object(); 
      }while(P(x,o)); 
invoke"o.m(x)" 
if( !Q(x,o)&& !Inv(o)) 
A21.add(x,o); 
elseif( !Q(x,o)&&Inv(o))  
A22.add(x,o);  
elseif( Q(x,o)&& !Inv(o))  
A23.add(x,o); 
else A24.add(x,o) 
}while(A21.size()<N && A22.size()<N && A23.size()<N  
&& A24.isEmpty()); 

 

Figure 5. Security test algorithm of the method m. 
 
elements of security test of its original method m(1) in the 
super-class C1. 

Definition 4: (Security of m(2) relatively to  
       1 1 1, ,P Q Inv

An overriding method m(2) is secure relatively to its 
inherited specification  if:       1 1 1, ,P Q Inv
 m(2) conforms to its inherited specification  

.       1 1 1, ,P Q Inv
 For each couple (x,o) in the invalid input domain of 

m(2) 0 , the post-condition Q(1) 
and the invariant Inv(1) should not be both valid in 
output of m(2)    . 

    1
2( ) ,P P x o

   Q x o  1 1, 0Inv o 
Definition 5: (Security of an overriding method m(2) 

relatively to  2 2 2, ,P Q Inv   ). 
An overriding method m(2) is secure relatively to its 

own specification  2 2 2, ,P Q Inv    if: 
 m(2) conforms to its own specification  2 2 2, ,P Q Inv   . 
 For each couple (x,o) in the invalid input domain of 

m(2)  , the post-condition 2Q     1
2 , 0P P x o   

and the invariant 2Inv  sh
 2Q x o

ould not be both valid in 
output of m(2)  .    , 0Inv o 2

Definition 6: (Security of an overriding method m(2) 

relatively to its global specification       2 2 2, ,P Q Inv ) 
An overriding method m(2) is secure relatively to its 

global specification       2 2 2, ,P Q Inv  if and only if: 
 m(2) is secure relatively to its inherited specification 

.       1 1 1, ,P Q Inv
 m(2) is secure relatively to its own specification 

 2 2 2, ,P Q Inv   . 
Theorem 6: 
An overriding method m(2) is secure relatively to its 

global specification       2 2 2, ,P Q Inv  if: 
 m(2) conforms relatively to its global specification 

      2 2 2, ,P Q Inv . 
 For each invalid couple (x,o) of input (does not satisfy 

the pre-condition     2 , 0P x o  , the post-condition 
Q(2) and the invariant Inv(2) should not be both valid in 

output of m(2)         2 2, 0Q x o Inv o 

 

. 
Theorem 7: 
An overriding method m(2) (that conforms to its global 

specification) is not secure relatively to this specification 
if 

    
2

1
2, :CE I P P x o,x o  0       

in input of m(2) and  

         2 2, 1x o Q Inv x  1 1 , 1Q Inv o        
 

in output of m(2). 
The security test of m(2) relatively to its global specifi- 

cation       2 2P Q 2, , Inv
   

 is performed only if the con- 
formity test of m(2) relatively to   2 2P Q

    

2, , Inv  is 
validated. We consider that m(1) and m(2) are in confor- 
mity with their specifications, and we assume that the 
security test of m(2) starts when the security testing of m(1) 
is completed. Indeed, the security test of m(1) induces two 
cases: m(1) is secure relatively to its specification or m(1) is 
not secure relatively to its specification: 
 Case 1: m(1) is not secure relatively to its specification. 

We assume that the method m(1) is not secure relatively 
to its specification. This means (Def. 3 and Th. 5) that: 

 0 0 ,x o
1

1
0 0, :C securityE I H x o 0  

o

  

The object o0 is an instance of the class C1. We con-
sider an object 0  of the subclass C2 that has the same 
values as the object o0 for attributes of C1 and therefore, 
the object 0o  has the same behavior as o0 in a context 
of C1 and consequently:  

      0 0 ,x o
2

1
0 0, :C securityE I H x o  0  

   

    

1 1
0 0

1 1
0 0

0 in input of  and

, 1 in output of 

o m

nv x o

   

  

i.e. 

 

   1

,P x

Q I m




    

 

m(1) and m(2) are similar, then we have: 

 

   2

,P x

Q I m






   

    

1 2
0 0

1 1
0 0

0 in input of  and

, 1 in output of 

o m

nv x o

   

    

 

We have two cases:  2 0 0, 0P x o    or  2 0 0, 1P x o    
  2 0 0, 0  .P x o   

In this case, we have: 

     

    

1 2
2 0 0

1 1
0 0

, 0 in input of 

, 1 in output of 

x o m

nv x o

    
   2

 andP P

Q I m




    

 

Consequently the method m(2) is not secure relatively 
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to  (Def. 4).       1 1 1, ,P Q Inv
Finally, this shows (Th. 7) that the method m(2) is not 

secure relatively to its global specification  
      2 2 2, ,P Q Inv

 2 0 0, 1P x o  
. 

  

In this case, we have:      1
2 0 0, 1P P x o     

Consequently the couple  0 0,x o is in the valid input 
domain: the security of m(2) cannot be deduced from the 
security test of m(1) (Figure 6). 
 Case 2: m(1) is secure relatively to its specification. 

In this case, we must test the method m(2) relatively to 
its own specification  2 2 2, ,P Q Inv    (Figure 6). 

6. Evaluation 

We evaluate the correctness of our approach by imple- 
menting the algorithm of conformity and security testing 
for inheritance. We consider for example of conformity 
and security testing the methods withdraw(1) and with- 
draw(2) of the class Account1 and Account2 (Figure 7). 

The constraints H(1) and H(2) of withdraw(1) and with- 
draw(2) in an algebraic specification are shown in the 
Figure 8 (x = x1, o(a) and o(b) are respectively the object o 

after and before the call of the method): 
 Conformity testing for withdraw(2) and withdraw(1) 

We test firstly the similarity of withdraw(2) and with- 
draw(1) on the common valid domain C D  V

      1, , 1CVD x o E I P x o   


2C : for each (x ,o) 

that satisfy the common precondition of withdraw(1) and 
withdraw(2) , the condition of the block if 
{…} (method withdraw(2) in Figure 7) is not satisfied, 
and thus the block if {…} is not executed, this means that 
the method withdraw(2) does exactly the same thing as  

    1 , 1P x o 

 

(m(2) is secure relatively to(P2’ ,Q2’ ,Inv2’)) 

(m(1) is secure relatively to (P(1),Q(1),Inv(1))) 

-m(2) is secure relatively to (P(2),Q(2),Inv(2)) 

-m(2) is not secure relatively to (P(2),Q(2),Inv(2)) 

-Generate (x0 ,o0)E×IC1 / Hsecurity
(1)(x0 , o0)=0  

-Generate (x0 ,o0
’)E×IC2 / o0

’ has the same attributes 
values as o0 

If 
If 

Else 

EndIf 

Else 

EndIf 

If 

Else 

EndIf 

(P2’(x0 ,o0
’)=0) 

-Indeterminate Form

- m(2) is not secure relatively to (P(2),Q(2),Inv(2)) 

 

Figure 6. Security test cases for an overriding method. 

class Account1 
{    protected double bal; 
 /* bal is the account balance */ 
 public Account1(double x1) 
 {this.bal=x1;} 
 public void withdraw (int x1) 
 {this.bal=this.bal - x1;} 
} 
class Account2 extends Account1 
{    private double InterestRate;  
 public Account2(double x1, double x2)  
 {super(x1); this.InterestRate=x2;} 
 public void withdraw (int x1) 
 {super.withdraw(x1); 
   if ((x1>bal) && (x1<(bal/InterestRate))) 
   this.bal=this.bal-(this.InterestRate)*x1; 
   InterestRate = InterestRate/2;} 
} 

 

Figure 7. Account1 and Account2 classes. 
 
the method withdraw(1) (Figure 7). As a result thereof, 
withdraw(2) and withdraw(1) are similar on the valid do- 
main CVD. 

The second test concerns the conformity testing of 
withdraw(2) that is based on the conformity testing of 
withdraw(1): 
 Conformity Testing for withdraw (1) 

In order to test the conformity of withdraw (1) in class 
Account1, we generate randomly x1 and the balance val- 
ues in the interval (‒200,200) with N =100 (Table 2): 

The test result shows that for 100 iterations the con- 
straint H(1) is always true   1 1H  , we can deduce that 
the withdraw(1) method is valid (Table 2). In this case it 
is necessary to test the method withdraw(2) relatively to 
its own constraint H(SI,SO): 
 Conformity testing for withdraw(2) relatively to 

H(SI,SO) 
In order to test the method withdraw(2) relatively to the 

constraint H(SI,SO), we use an analysis with proof. The 
testing by proof of the method withdraw(2) relatively to 
the constraint H(SI,SO) is used to strengthen the randomly 
testing .Indeed, we must have for satisfying the specific 
output (SO) : 
◦ The specific post-condition Q  must be satisfied. 2

◦ The specific invariant 2Inv  must be satisfied. 
The constraint 2Q  is always satisfied (Figures 7 and 

8), however we must proof that 2Inv  is satisfied. 
For each created object o0 ,we have : (0 ≤ InterestRate0 

≤ 0.3) where InterestRate0 is the initial value assigned to 
InterestRate when creating the object o0, and Intere- 
stRate(n) is the value of InterestRate after n operations of 
type withdraw(2) in an execution sequence. 

We have:  

 
 1InterestRate

InterestRate  , 1
2

n

n n
 

   
    
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Table 2. Result of a conformity test of withdraw(1)  

Iteration number: x  o P(1)(x,o) H(1)(x,o) 

1 29 Account1(70) 1 1 

2 42 Account1(93) 1 1 

3 79 Account1(187) 1 1 

… … … … … 

…. …. …. …. …. 

….. ….. ….. ….. ….. 

98 31 Account1(104) 1 1 

99 18 Account1(86) 1 1 

100 68 Account1(151) 1 1 

 

  
(1)

(1) (1) (1)

Withdraw :

P Q Inv 

 ( 1 )
1

b a l a n c e ( o )
P x , o : 0

2
x

   
 

   (1 )
( ) ( )Q x , o : b a la n c e (o ) b a lan ce (o )a b

   ( 1 )I n v o : b a la n c e ( o ) 0

 '
2I n v ( o ) : 0 I n t e r e s t R a t e ( o ) 0 . 3 

  
   

(a) (b) 1
'
2

(a) (b) 1

balance(o ) = balance(o ) - x
Q (x,o) : 

balance(o ) = balance(o ) - (1+ InterestRate) x

 
 
   

 

'
2 1

b a la n c e (o ) 3 b a la n c e (o )
P (x , o ) : x

2 4

   
 

 







  
(2)

(2) (2) (2)

Withdraw :

P Q Inv 

 

Figure 8. Constraints of withdraw(1) and withdraw(2). 
 
where n is number of withdrawals (Figure 7). 

The geometric series proposed is written in the general 
case as follows: 

 
 

 

0

0

InterestRate
InterestRate ,

2

with 0 and 0 InterestRate 0.3

n n

n





    







 

We deduce that: 

 : 0 InterestRate 0.3nn  
 

And consequently, the specific invariant is always sat- 
isfied (Figure 8). This leads to the conclusion that the 

method withdraw(2) is in conformity to H(SI,SO), and we 
can deduce that withdraw(2) is in conformity with its 
global specification. 
 Security testing for withdraw(2) and withdraw(1) 

For security testing, we test firstly the similarity of 
withdraw methods on the common invalid domain CID 

        2

1
2, / ,CCID x o E I P P x o     0  

For this we generate randomly x1 and the balance val-
ues in the interval (‒200,200) with the threshold limit N 
=100 (Table 3). 

The test result shows that for 100 iterations the size of 
the similarity set Sim is exactly the threshold limit of the 
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test. We can conclude that the methods withdraw(2) and 
withdraw(1) are similar on the domain CID relatively to  

      1 1 1, ,P Q Inv  (Table 3). 

In the last paragraph, we have showed that withdraw(2) 

and withdraw(1) are in conformity with their specifica- 
tions and are similar on the common invalid domain. For 
testing the security of the overriding method with- 
draw(2), we must testing the security of the overridden 
method withdraw(1) (Figure 6): 
 Security Testing for withdraw(1) relatively to 

       1 1 1, ,P Q Inv
We generate in the Table 4 the security test cases for 

the overridden method withdraw(1) relatively to 
:       1 1 1, ,P Q Inv

For the first four iterations, we have: 

   
1

balance 
 balance

2

o
x o  , 

i.e.  and it induces to a false invariant    1 ,P x o 


0
 balance 0o   at the output, i.e.    1 ,securtyH x o 1 . In 

the iteration 5, we have for  

    , 137, 1 180x o Account : 

   1

balance 
balance  

2

o
x o  , 

 
Table 3. Similarity test of the withdraw methods on CID. 

Itration  
number 

x o    1

2 ,P P x o   ,x o 

1 117 Account2(96,0.24) 0 Sim 

2 94 Account2(83,0.18) 0 Sim 

3 173 Account2(147,0.01) 0 Sim 

… … … … … 

…. …. …. … …. 

….. ….. ... … ….. 

98 102 Account2(120,0.17) 0 Sim 

99 88 Account2(72,0.1) 0 Sim 

100 131 Account2(159,0.22) 0 Sim 

 
Table 4. Security test of withdraw(1)/(P(1), Q(1),Inv(1)). 

Iteration 
number x1 O    1 ,P x o     1 ,securityH x o

1 113 Account1(87) 0 1 

2 176 Account1(138) 0 1 

3 91 Account1(42) 0 1 

4 101 Account1(73) 0 1 

5 137 Account1(180) 0 0 

i.e.    1 ,P x o 0 , and this induces    1 ,Q x o 1  and 

   1 , 1x oInv  , i.e. . Indeed, our im-

plementation cannot reject this situation and cones- 
quently the overridden method withdraw(1) under test 
which is conforming to its specification, is considered 
not secure relatively to the same specification. 

   1 ,securtyH x o  0

 Security Testing for withdraw(2) relatively to 
      2 2 2, ,P Q Inv  

According to the Figure 6, we have for (x,o) = 
  137, 1 180Account  the method withdraw(1) is not 

secure, we consider for example the object o’ of the class 
Account2 that has the same balance value 

  2 180,0.19o Account   and we must determinate  

the truth value of  2 ,P x o  (Figure 6). 
We have: 

1 3
180 137 180 is false

2 4

               
 

i.e.  2 ,P x o 0  (Figure 8). 
Finally, we can deduce that withdraw(2) is not secure 

relatively to       2 2 2, ,P Q Inv  (Figure 6). 

7. Conclusions 

This paper introduces an approach to reduce the test se- 
quences used for testing the conformity of an overriding 
method during inheritance operation in object oriented 
models. The key idea of this work is the use of a tech- 
nique that generates test data by exploiting the existing 
test sequences. Indeed, for the sub-classes methods that 
have the same behavior as their corresponding methods 
in a parent class, it is possible to reuse the data extracted 
from the conformity testing of an overridden method for 
testing the conformity of its overriding method. 

The main contribution of our approach is the definition 
of a security testing that generates invalid input values not 
satisfying the precondition constraint. Indeed, the test 
methods have focused only on valid inputs satisfying the 
pre-condition, and do not integrate the invalid data in test 
process. We think that a correctly implemented testing 
method should eliminate cases of invalid data which lead 
to valid results. Our approach shows how we can use the 
valid and invalid data extracted from the pre-condition to 
test the conformity and security of overridden and over- 
riding methods. 

We present firstly the relationship between the test 
model of overridden methods and overriding methods, 
and we show how the use of existing test sequences can 
make the generation of the test data during inheritance 
less expensive. Secondly, we present our approach of 
security testing based on data not satisfying the precondi- 
tion constraint. 
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