
Intelligent Information Management, 2013, 5, 35-41
http://dx.doi.org/10.4236/iim.2013.52005 Published Online March 2013 (http://www.scirp.org/journal/iim)

A Comparison of Several Performance
Dashboards Architectures

Mohamed Abdelfattah
Information System Department, Faculty of Computers and Information, Benha University, Benha, Egypt

Email: drmohabdo@yahoo.com

Received February 8, 2013; revised March 10, 2013; accepted March 19, 2013

ABSTRACT

A performance dashboard is a full-fledged business information system that is built on a business-intelligence and data-
integration infrastructure. It has been one of the most hot research topics. Now many corporations have involved in the
performance dashboard Architectures related techniques and many performance dashboard Architectures have been put
forward. This is a favorable situation to study and application of performance dashboard related techniques. Though
interesting, there are also some problems for so many Architectures forms. For to a novice or user with little knowledge
about performance dashboard Architectures, it is still very hard to make a reasonable choice. What differences are there
for different performance dashboard Architectures and what characteristics and advantages each has? To answer these
problems, the characteristics, architectures and applications of several popular performance dashboard Architectures are
analyzed and discussed in detail. From the comparison of these Architectures, users can better understand the different
performance dashboard Architectures and more reasonably choose what they want.

Keywords: Dashboard; Dashboard Architecture; Data Federation

1. Introduction

A performance dashboard is a layered information deliv-
ery system that parcels out information, insights, and
alerts to users on demand so they can measure, moni-
tor, and manage business performance more effec-
tively.

Although dashboards seem to have caught on as a ma-
nagement tool, the scientific literature has failed to keep
pace with the developments. While textbooks [1,2] and
articles in business press [3,4] on dashboards abound,
only a handful of studies can be found in academic jour-
nals, providing little guidance for practitioners [5] and
researchers. The few scientific studies on dashboards
have looked at the motivation [6], implementation stages
of dashboards [6], and selection of metrics [5], which left
the critical issue regarding their design essentially unad-
dressed. However, there does not seem to be a simple
solution to dashboard design. For example, the literature
on information presentation format, which dashboards
draw on, is in disagreement over the techniques of visual
representations that should be used to improve decision
making [6]. It is against this backdrop that we believe a
review of the current literature that dashboards draw on
as well as the development of an agenda for dashboard
research could offer value to both practitioners and re-
searchers. The dashboard architecture consists of the com-
ponents that comprise the performance dashboard. The

components in each layer represent a superset of func-
tionality. Developers select one or more components (or
buy a dashboard with the requisite combination of func-
tionality) that best serves the needs of the stakeholders [7].

More papers [7] focused on dashboards from a design
perspective in this paper; we will focus on the technical
challenges and difficulties involved in integrating dash-
boards with legacy systems and applications that feed
data into them. Also, if performance is an issue, an
optimum data refresh rate would need to be estab-
lished, which would depend on the needs and roles of
the users.

The architecture of performance dashboards have fol-
lowed the trajectory of software architectures in general,
from mainframe computing to client/server computing to
Web-based architectures. Today, rich Internet applica-
tions (RIAs) are gaining in popularity because they sup-
port dazzling multimedia and visual effects, boosting the
appeal and usability of performance dashboards. RIAs,
such as Adobe Flash, enable Web-based applications to
exhibit the richness and interactivity of desktop applica-
tions.

The architecture of any software product involves weav-
ing together three distinct sets or layers of functionality:
1) user interface; 2) application logic; and 3) data proc-
essing.

These functions typically are processed on one or

Copyright © 2013 SciRes. IIM

M. ABDELFATTAH 36

more tiers of computers. Knowing where and how these
layers are processed in your performance dashboard ar-
chitecture is the key to understanding whether the system
will meet the unique requirements of your organization.
In the early days of computing, all three layers were pro-
cessed by a single machine, the mainframe computer. By
the 1990s, the layers were distributed across multiple
machines in various types of client/server configura-
tions.

Typically, the user interface was rendered by a desktop
machine; the application logic was distributed between
the desktop machine and one or more application servers;
and data was processed by a relational database man-
agement system [8].

There are many the performance dashboards architect-
tures, each has its own characteristics and advantages,
how to make a reasonable choice is a big issue. To this
problem, a detailed introduction and comparison of sev-
eral popular performance dashboards architectures is pre-
sented in this paper. From the analysis and comparison,
users will be clearer to make their decisions. This paper
focuses on a few key architectural issues that consider
when deploying a performance dashboard. Specifically,
it examines the performance implications of various user
interface technologies and illustrates a half-dozen data
architectures that are most commonly used to support
dashboard implementations and products.

2. Dashboards: Data Architectures

Different types of performance dashboards employ dif-
ferent architectures. Operational dashboards tend to
query source systems directly and apply minimal trans-
formations, while tactical dashboards query both histori-
cal and current data from a data warehouse. Strategic
dashboards often create a local data mart to cache time-
series data for specific metrics. This section provides a
high-level examination of various data architectures that
support performance dashboards, including benefits and
drawbacks.

2.1. Direct Query

These tools are ideal for creating operational dashboards
where users want to view current data from multiple sys-
tems in one place and don ’ t need to perform a lot of drill-
downs or analysis, or create reports. Direct query tools
generally support interfaces to a variety of SQL and online
analytical processing (OLAP) databases as well as various
file types and packaged applications. Since these tools
usually don’t have a semantic layer, dashboard designers
typically hand-code the SQL, embed it in dashboard ob-
jects (e.g., charts or tables), and define when the queries
execute (e.g., on demand, at predefined intervals, ac-
cording to a schedule) Data Transformations typically are

done on the fly using SQL in memory on the server using
Excel or a lightweight transformation engine Figure 1.
The tools generally don’t store data locally, although
many have some sort of snapshot capability that can create
a time-series data set, if needed [9].

The benefits of a direct query architecture is that it is
fast to deploy and fairly inexpensive and offers flexible
data access. There is no semantic layer or elaborate secu-
rity schemes to implement, no need to define facts or
attributes, or to create hierarchies. The tools make it easy
for developers to pull information from multiple systems
and display it in one place so users don’t have to hunt for
the data on their own.

On the downside, the tools aren’t dimensionally aware,
so to create hierarchies, drill paths, or summaries, need to
write scripting. The queries are generally hard-wired so
that if a source system changes, it will break the queries,
which will have to be rewritten. Also, the dashboard is-
sues queries to a remote database to populate metrics with
data or perform a drill-down. If the queries are complex or
require lots of transformation, developers will need to
rerun queries and cache the results or create aggregate
tables in a data mart or data warehouse (DW) to ensure
adequate performance. As a result, the tools generally
require an IT developer to configure and run.

2.2. BI Tools

A BI tools architecture see Figure 2. issues queries via a
semantic layer that simplifies data access by converting
database schema into business-oriented dashboard objects
(e.g., metrics, attributes, dimensions) that users can drag
and drop onto a dashboard canvas to build dashboard
pages BI tools are great for building an enterprise BI en-
vironment on a common set of data. BI report developers
generally build dashboards using the BI tool’s reporting
module or a specialized dashboard module. The reporting
module enables developers to create reports in a dash-
board format. Each chart in a report can link to more
detailed data in the report or, if supported, link to an
OLAP module that enables users to analyze the data di-
mensionally. Typically, BI tools run against a DW or data
mart designed with a star or snowflake schema. However,
in recent years, BI vendors have expanded the data access
capabilities of their tools so that their semantic layers can
query and join data from multiple sources. In some cases,
the data are joined on the BI server via a transformation
function while in other cases the tools support a federated
query capability [9].

The benefits of BI tools are generally dimensionally
aware, enabling full drill-down/across and slice/dice ca-
pabilities, as long as the toolset seamlessly integrates
reporting and OLAP navigation capabilities. Also, if or-
ganization has already deployed a BI platform and a DW
and most of the data that dashboard users want to see

Copyright © 2013 SciRes. IIM

M. ABDELFATTAH 37

Figure 1. Direct query architecture.

Figure 2. BI tools architecture.

already exist in the DW, it is very quick and inexpensive
to build new dashboards. On the downside, BI tools issue
queries to a remote database to populate metrics with
data or perform a drill-down. If the queries are complex
or require lots of transformation, developers will need to
prerun queries and cache the results or create aggregate
tables in a data mart or DW to ensure adequate perform-
ance.

2.3. Mashboards

Mashboards enable power users to drag and drop prede-
fined content from a BI tool and external Web pages onto
a dashboard canvas and “mash” them together. Mash-
boards are ideal for creating ad hoc dashboards for them-
selves.

A mashboard is effectively a dashboard container for
predefined BI content (e.g., charts and tables), various
types of controls (e.g., radio buttons, tabs, selectors, pick
lists), and external Web pages. Each mashboard object
can pull data from a different source and be updated at
different intervals Figure 3.

Mashboards don’t require a DW or data mart, just a BI
tool that can create reports and convert them into report
“parts” or gadgets. Gadgets are mini-applications that run
inside a container environment and have associated func-
tions (e.g., a toolbar for sorting, filtering, charting, etc.)
and services, such as the ability to communicate with
other gadgets. For instance, gadgets may synchronize
their displays automatically using a common filter with-
out scripting.

The downside of mashboards architecture is first im-
plement a BI environment and write reports using pro-
fessional report writers, this can take time and cost a sig-
nificant amount of money. Also, mashboards generally
limit users to using existing BI content; finally, mash-
boards may not support all the functionality offered in
the complete BI platform.

2.4. In-Memory Dashboards

In-memory dashboards have become quite popular lately
because they are quick to deploy, affordable, and fast.
The tools load all data into memory, providing speed-of-
thought visual analysis. (See Figure 4) Also known as
visual analysis tools, in-memory tools are ideal for de-
partmental dashboards without stringent data freshness
requirements. Originally, visual analysis tools were de-
signed for business analysts who wanted to explore and
manipulate small- to medium-size sets of data in a visual
manner. The tools excel at rapidly filtering data with lots
of variables and displaying results using a variety of
chart and table types. The tools make it easy for analysts
to explore data quickly, identify trends and outliers, cre-
ate custom groups, and apply regression and other statis-
tical functions. Although most data sets are loaded into
memory in a batch job at night, most visual analysis tools
have a query engine so users can, if they desire, add data
to their data set [9].

Figure 3. Mashboards architecture [9].

Figure 4. In-memory dashboards architecture.

Copyright © 2013 SciRes. IIM

M. ABDELFATTAH 38

Today, visual analysis tools have become popular with
casual users because of their highly visual, interactive
interface. Typically, a business analyst creates an analy-
sis or “dashboard” using the desktop tools and then
“publishes” the view to a server where others can access
and interact with the live view. Analysts generally sim-
plify the display and turn off more advanced functions to
make the tools more accessible to casual users. And vis-
ual analysis vendors have added features that make it
easier to create and publish analytical output as depart-
mental dashboards. Because of their in-memory archi-
tecture, visual analysis tools can’t easily scale beyond the
amount of data that the desktop or server machine can
hold in memory. Users must be careful not to exceed the
size of allowable in-memory storage, or they could lose
data unless the tool has a mechanism to spill lightly ac-
cessed data to disk automatically. Visual analysis tools
aren’t dimensionally aware and support lightweight trans-
formations only. If you need to clean, transform, or inte-
grate data derived from complex database schemas or
create complex drill-downs or aggregations, you are go-
ing to do a lot of scripting.

2.5. Data Federation

Data federation uses distributed query technology and a
global semantic layer to query and join data from multi-
ple sources on the fly and display the results in one or
more objects on a dashboard screen. (See Figure 5) Data
federation is ideal for creating dashboards when the data
are spread across multiple systems yet users want a con-
solidated view of information. Many BI tools now embed
data federation capabilities to provide more flexible data
access. Data federation integrates data from multiple,
disparate sources inside or outside the organization on
the fly. It provides business users and application devel-
opers a single, easy-to-use interface to access heteroge-
neous sources, making remote data appear as if it resides
in a single local database. When users submit a query,
data federation software behind the scenes calculates the
optimal way to fetch and join the remote data and return
the result [9]. Often the tools ship data from one database
to another to perform a join. The ability to shield users
and application developers from the complexities of dis-
tributed SQL query calls and back-end data sources is
why some vendors call this technology data virtualization
software. Data federation is ideal to create a full-fledged
data mart or DW. Some federation architectures leverage
XML and Web. On the downside, data federation works
only when source systems are available and have enough
capacity to handle streams of ad hoc queries without
bogging down transaction processing tasks. Generally,
the tools work best with small volumes of data that are
clean, consistent, and don’t require much transformation.
To obtain the best performance, it’s best to use data fed-

eration to support short, tactical queries on current data
rather than strategic queries against large volumes of
historic data.

2.6. Data Marts

Data marts create a local store of data explicitly to sup-
port the performance dashboard [10]. Data marts are de-
signed to ensure adequate performance for dashboard
metrics and ancillary applications that go beyond basic
metrics monitoring. These marts include strategy maps,
time-series charts, multidimensional analysis, what-if
modeling, collaboration, text-based annotation, and re-
porting. (See Figure 6) Typically, designers create a
logical data model or schema in a relational or multidi-
mensional database that supports the dashboard’s metrics
and applications. Then developers create source-to-tar-
get transformation code that populates the data mart with
the correct data, usually in a batch operation at night. The
data mart then accumulates data over time to support
time-series and other historical analyses and calculations.
Some data marts may store only summarized data, but
others especially those supporting operational and tacti-
cal dashboards [9] may contain detailed data. And some
direct query and in-memory tools maintain a local store
of transformed data to support hierarchical drill-

Figure 5. Data federation.

Figure 6. Data marts.

Copyright © 2013 SciRes. IIM

M. ABDELFATTAH 39

downs, dimensionalized queries, and what-if modeling.
Data marts often are used to support strategic dashboards
(i.e., balanced scorecards) that require elaborate data
models to support unique features, such as strategy maps,
initiatives tracking, and text documents. A strategic
dashboard model typically includes tables for objectives,
metrics, people, organizational structures and hierarchies,
and initiatives. The main benefit of data mart architecture
is that it minimizes the risk of poor performance when
data are scattered across multiple systems. Instead of
trying to query remote databases on demand, as other
architectures do, a data mart consolidates the data up
front and stores them in a form that is conducive to fast
queries. A data mart can prejoin and preaggregate data to
support metrics and views in the dashboard so the query
and transformation logic doesn’t have to do this on the
fly. A data mart is also needed to support application
modules, such as strategy maps, initiative tracking, and
metrics maps, among other things, that require complex
joins among multiple tables. On the downside, a data
mart, like its DW big brother, assumes that you know in
advance what metrics, applications, and data you are
going to use in the dashboard. Also, it is harder to sup-
port near-real-time data delivery in a data mart since data
transformation and query execution are separate jobs, not
part of a single query stream, as in other architectures.

2.7. Complex Event Processing

Complex event processing (CEP) captures and filters real-
time events and triggers actions based on predefined
rules. CEP is ideal for supporting operational dashboards
that are used to monitor real-time processes, such as
trading systems, sensor data from pipelines, global posi-
tioning systems, or radio-frequency identification chips,
or traffic data from computer networks, transportation
systems, and Web sites, among other things. Most CEP
systems contain: a data acquisition engine that captures
events streaming off a messaging backbone as well as
historical data from a DW or external sources; a calcula-
tion engine that aggregates events over time and holds
them in memory; and a rules engine that defines targets
and actions to take when an event object exceeds a pre-
defined threshold (See Figure 7) [9]. CEP is like an in-
telligent sensor that takes a continuous reading of activity
generated by one or more interrelated business processes
and detects patterns that trigger automated responses.
The systems are designed so that business users can
build the rules for creating objects and triggering re-
sponses [9].

The main advantage of CEP is that it provides built-in
support for real-time monitoring so that you don’t have
to re-architect a DW to support trickle feeds or near-real-
time refreshes. But CEP is not just for real-time data; it
can extract historical data from a warehouse and

Figure 7. Complex event processing.

use it to compare to current data when executing rules.
Some small-and medium-size businesses have deployed
their DWs using CEP, giving them real-time capabilities
from the start. On the downside, the systems have a lot of
moving parts and require technical expertise to set up and
maintain. Plus, from an analytical perspective, because
they cannot store large volumes of historical data, they
are more appropriate for niche applications rather than a
large DW. Also, users require significant training to set
up and manage rules to ensure that the system doesn’t
spit out lots of irrelevant alerts or, conversely, fail to no-
tify appropriate users about significant events.

3. A Comparison the Architecture of
Performance Dashboards

Currently, there are kinds of the architecture of perform-
ance dashboards; each has its own characteristics and
advantages. To better understand these architectures, we
analyze in detail and give a comparison from different
implementation aspects. Direct Query is ideal for creating
operational dashboards compared to other architectures
but isn’t data dimensionally. Mashboards generally limit
users to using existing BI content compared to other
dashboard architecture. Data Federation, Data Marts and
Complex Event Processing are more strength in built in
dashboard architecture that have many characteristics
such as Data Federation built on distributed query tech-
nology and a global semantic layer to query and join data
from multiple sources on the fly and display the results in
one or more objects on a dashboard screen; Data Marts
often are used to support strategic dashboards (i.e., bal-
anced scorecards) that require elaborate data models to
support unique features; CEP is that it provides built-in
support for real-time monitoring so that you don’t have to
re-architect a DW to support trickle feeds or near-real-
time refreshes. The characteristics and implementation of
these architectures are summarized as Table 1 shows. From

Copyright © 2013 SciRes. IIM

M. ABDELFATTAH

Copyright © 2013 SciRes. IIM

40

Table 1. Comparison of dashboard data architecture.

 Direct Query BI Tools Mashboards
In Memory
Dashboards

Data Federation
Complex Event
Processing

Data Marts

Mechanisms

Screen
elements
linked
directly to
individual
queries

Query objects
that represent a
database in
business terms
for users.

Drag and drop predefined
content from a BI tool and
external Web pages onto a
dashboard canvas and
“mash” them together.

Queries
populate a
queryable cache

An EII tool
dynamically
queries data from
multiple sources
to populate
screen elements

captures and filters
real-time events and
triggers actions based
on predefined rules

Dashboard queries
its own persistent
data mart loaded in
batch.

Deploy
quickly

Abstract query
objects

Ad hoc dashboards. Deploy quickly Multiple sources
built-in support for
real-time
monitoring

Multiple sources

Low cost
Dimensional
views

Don’ t require a DW or data
mart, just a BI tool that can
create reports and convert
them into report “parts” or
gadgets.

Fast
response

Semantic layer
abstraction

extract historical data
from a warehouse

Dimensional
model

Rapid
navigation

Quick to deploy Historical context

Pros

Prototype before
you persist

Fast complex
queries

No depth,
limited drill
down

Generic ODBC
connections

Take time and cost a
significant amount of money

Static data sets No history
cannot store large
volumes of historical
data

No right time data

No
dimensions

Primarily
historical data
in DW

Not support all the
functionality offered
in the complete BI platform

visual analysis
tools aren’t
dimensionally

Data quality
issues

fail to notify
appropriate users
about significant
events

Non-integrated
Cons

Hard-wired
queries

a lot of
scripting

Complexity

Table 1, it can figure out that the implementations of this
architecture of performance dashboards are quite differ-
ent, there are much common between them.

4. Conclusion

A dashboard is a new technology widely studied in re-
cent years. Now there are numerous ways to architect a
performance dashboard. How to understand and use
these architectures is a big issue. Each has its trade-offs,
and many companies use multiple approaches to support
their performance dashboards. The key to selecting the
right architecture understands user requirements and the
complexity of the metrics and applications the perform-
ance dashboard needs to support. Focused on the aspects
such as the architectures, characteristics, application and
so on, a detailed comparison has been presented in this
paper. From the analysis and summarization, users can
better understand the characteristics and better choose of
dashboard architecture. In future, we will measure the per-
formance of data-dashboard architectures and will de-
velop the optimal dashboard-data architecture.

REFERENCES
[1] S. Few, “Information Dashboard Design, the Effective

Visual Communication of Data,” O’Reilly Media, Inc.,

Sebastopol, 2006.

[2] N. Rasmussen, C. Y. Chen and M. Bansal, “Business
Dashboards, a Visual Catalogue for Design and Deploy-
ment,” John Wiley & Sons Inc., Hoboke, 2009.

[3] A. Miller and J. Cioffi, “Measuring Marketing Effective-
ness and Value: The Unisys Marketing Dashboard,” Jour-
nal of Advertising Research, Vol. 44, No. 3, 2004, pp.
237-243. doi:10.1017/S0021849904040334

[4] T. Kawamoto and B. Mathers, “Key Success Factors for a
Perfomance Dashboard,” DM Rev, 2007, pp. 20-21.
http://www.information-management.com/bnews/260036
6-1.html

[5] K. Pauwels, T. Ambler, H. C. Bruce, P. LaPointe, D. Reib-
stein, B. Skiera, et al., “Dashboards as a Service: Why,
What, How, and What Research Is Needed?” Journal of
Service Research, Vol. 12, No. 2, 2009, pp. 175-189.
doi:10.1177/1094670509344213

[6] E. O’Donnell and J. S. David, “How Information Systems
Influence User Decisions: A Research Framework and
Literature Review,” International Journal of Accounting
Information Systems, Vol. 1, No. 3, 2000, pp. 178-203.
doi:10.1016/S1467-0895(00)00009-9

[7] O. M. Yigitbasioglu and O. Velcu, “A Review of Dash-
boards in Perfomance Management: Implications for De-
sign and Research,” International Journal of Accounting
Information Systems, Vol. 13, No. 1, 2012, pp. 41-59.
doi:10.1016/j.accinf.2011.08.002

[8] L. Zeng, H. Lei, M. Dikun, H. Chang, K. Bhaskaran and J.

http://dx.doi.org/10.1017/S0021849904040334
http://dx.doi.org/10.1177/1094670509344213
http://dx.doi.org/10.1016/S1467-0895(00)00009-9
http://dx.doi.org/10.1016/j.accinf.2011.08.002

M. ABDELFATTAH 41

Frank, “Model-Driven Business Performance Manage-
ment,” IEEE International Conference on E-Business En-
gineering ICEBE05, Beijing, 2005, pp. 295-304.

[9] W. W. Eckerson, “Performance Dashboards Measuring, Mo-
nitoring, and Managing Your Business,” John Wiley &

Sons, Inc., Hoboken, 2011

[10] C. Vercellis, “Business Intelligence: Data Mining and Op-
timization for Decision Making,” John Wiley & Sons Ltd.,
Hoboken, 2009.

Copyright © 2013 SciRes. IIM

