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ABSTRACT 

A performance dashboard is a full-fledged business information system that is built on a business-intelligence and data- 
integration infrastructure. It has been one of the most hot research topics. Now many corporations have involved in the 
performance dashboard Architectures related techniques and many performance dashboard Architectures have been put 
forward. This is a favorable situation to study and application of performance dashboard related techniques. Though 
interesting, there are also some problems for so many Architectures forms. For to a novice or user with little knowledge 
about performance dashboard Architectures, it is still very hard to make a reasonable choice. What differences are there 
for different performance dashboard Architectures and what characteristics and advantages each has? To answer these 
problems, the characteristics, architectures and applications of several popular performance dashboard Architectures are 
analyzed and discussed in detail. From the comparison of these Architectures, users can better understand the different 
performance dashboard Architectures and more reasonably choose what they want. 
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1. Introduction 

A performance dashboard is a layered information deliv-
ery system that parcels out information, insights, and 
alerts to users on demand so they can measure, moni-
tor, and manage business performance more effec-
tively. 

Although dashboards seem to have caught on as a ma- 
nagement tool, the scientific literature has failed to keep 
pace with the developments. While textbooks [1,2] and 
articles in business press [3,4] on dashboards abound, 
only a handful of studies can be found in academic jour-
nals, providing little guidance for practitioners [5] and 
researchers. The few scientific studies on dashboards 
have looked at the motivation [6], implementation stages 
of dashboards [6], and selection of metrics [5], which left 
the critical issue regarding their design essentially unad-
dressed. However, there does not seem to be a simple 
solution to dashboard design. For example, the literature 
on information presentation format, which dashboards 
draw on, is in disagreement over the techniques of visual 
representations that should be used to improve decision 
making [6]. It is against this backdrop that we believe a 
review of the current literature that dashboards draw on 
as well as the development of an agenda for dashboard 
research could offer value to both practitioners and re- 
searchers. The dashboard architecture consists of the com- 
ponents that comprise the performance dashboard. The 

components in each layer represent a superset of func- 
tionality. Developers select one or more components (or 
buy a dashboard with the requisite combination of func- 
tionality) that best serves the needs of the stakeholders [7]. 

More papers [7] focused on dashboards from a design 
perspective in this paper; we will focus on the technical 
challenges and difficulties involved in integrating dash- 
boards with legacy systems and applications that feed 
data into them. Also, if performance is an issue, an 
optimum data refresh rate would need to be estab-
lished, which would depend on the needs and roles of 
the users. 

The architecture of performance dashboards have fol- 
lowed the trajectory of software architectures in general, 
from mainframe computing to client/server computing to 
Web-based architectures. Today, rich Internet applica- 
tions (RIAs) are gaining in popularity because they sup- 
port dazzling multimedia and visual effects, boosting the 
appeal and usability of performance dashboards. RIAs, 
such as Adobe Flash, enable Web-based applications to 
exhibit the richness and interactivity of desktop applica- 
tions. 

The architecture of any software product involves weav- 
ing together three distinct sets or layers of functionality: 
1) user interface; 2) application logic; and 3) data proc- 
essing. 

These functions typically are processed on one or 
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more tiers of computers. Knowing where and how these 
layers are processed in your performance dashboard ar-
chitecture is the key to understanding whether the system 
will meet the unique requirements of your organization. 
In the early days of computing, all three layers were pro- 
cessed by a single machine, the mainframe computer. By 
the 1990s, the layers were distributed across multiple 
machines in various types of client/server configura-
tions. 

Typically, the user interface was rendered by a desktop 
machine; the application logic was distributed between 
the desktop machine and one or more application servers; 
and data was processed by a relational database man- 
agement system [8]. 

There are many the performance dashboards architect- 
tures, each has its own characteristics and advantages, 
how to make a reasonable choice is a big issue. To this 
problem, a detailed introduction and comparison of sev- 
eral popular performance dashboards architectures is pre- 
sented in this paper. From the analysis and comparison, 
users will be clearer to make their decisions. This paper 
focuses on a few key architectural issues that consider 
when deploying a performance dashboard. Specifically, 
it examines the performance implications of various user 
interface technologies and illustrates a half-dozen data 
architectures that are most commonly used to support 
dashboard implementations and products. 

2. Dashboards: Data Architectures 

Different types of performance dashboards employ dif-
ferent architectures. Operational dashboards tend to 
query source systems directly and apply minimal trans-
formations, while tactical dashboards query both histori-
cal and current data from a data warehouse. Strategic 
dashboards often create a local data mart to cache time- 
series data for specific metrics. This section provides a 
high-level examination of various data architectures that 
support performance dashboards, including benefits and 
drawbacks. 

2.1. Direct Query 

These tools are ideal for creating operational dashboards 
where users want to view current data from multiple sys- 
tems in one place and don ’ t need to perform a lot of drill- 
downs or analysis, or create reports. Direct query tools 
generally support interfaces to a variety of SQL and online 
analytical processing (OLAP) databases as well as various 
file types and packaged applications. Since these tools 
usually don’t have a semantic layer, dashboard designers 
typically hand-code the SQL, embed it in dashboard ob- 
jects (e.g., charts or tables), and define when the queries 
execute (e.g., on demand, at predefined intervals, ac- 
cording to a schedule) Data Transformations typically are 

done on the fly using SQL in memory on the server using 
Excel or a lightweight transformation engine Figure 1. 
The tools generally don’t store data locally, although 
many have some sort of snapshot capability that can create 
a time-series data set, if needed [9]. 

The benefits of a direct query architecture is that it is 
fast to deploy and fairly inexpensive and offers flexible 
data access. There is no semantic layer or elaborate secu- 
rity schemes to implement, no need to define facts or 
attributes, or to create hierarchies. The tools make it easy 
for developers to pull information from multiple systems 
and display it in one place so users don’t have to hunt for 
the data on their own. 

On the downside, the tools aren’t dimensionally aware, 
so to create hierarchies, drill paths, or summaries, need to 
write scripting. The queries are generally hard-wired so 
that if a source system changes, it will break the queries, 
which will have to be rewritten. Also, the dashboard is- 
sues queries to a remote database to populate metrics with 
data or perform a drill-down. If the queries are complex or 
require lots of transformation, developers will need to 
rerun queries and cache the results or create aggregate 
tables in a data mart or data warehouse (DW) to ensure 
adequate performance. As a result, the tools generally 
require an IT developer to configure and run. 

2.2. BI Tools 

A BI tools architecture see Figure 2. issues queries via a 
semantic layer that simplifies data access by converting 
database schema into business-oriented dashboard objects 
(e.g., metrics, attributes, dimensions) that users can drag 
and drop onto a dashboard canvas to build dashboard 
pages BI tools are great for building an enterprise BI en- 
vironment on a common set of data. BI report developers 
generally build dashboards using the BI tool’s reporting 
module or a specialized dashboard module. The reporting 
module enables developers to create reports in a dash- 
board format. Each chart in a report can link to more 
detailed data in the report or, if supported, link to an 
OLAP module that enables users to analyze the data di-
mensionally. Typically, BI tools run against a DW or data 
mart designed with a star or snowflake schema. However, 
in recent years, BI vendors have expanded the data access 
capabilities of their tools so that their semantic layers can 
query and join data from multiple sources. In some cases, 
the data are joined on the BI server via a transformation 
function while in other cases the tools support a federated 
query capability [9]. 

The benefits of BI tools are generally dimensionally 
aware, enabling full drill-down/across and slice/dice ca-
pabilities, as long as the toolset seamlessly integrates 
reporting and OLAP navigation capabilities. Also, if or-
ganization has already deployed a BI platform and a DW 
and most of the data that dashboard users want to see 
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Figure 1. Direct query architecture. 
 

 

Figure 2. BI tools architecture. 
 
already exist in the DW, it is very quick and inexpensive 
to build new dashboards. On the downside, BI tools issue 
queries to a remote database to populate metrics with 
data or perform a drill-down. If the queries are complex 
or require lots of transformation, developers will need to 
prerun queries and cache the results or create aggregate 
tables in a data mart or DW to ensure adequate perform- 
ance. 

2.3. Mashboards 

Mashboards enable power users to drag and drop prede- 
fined content from a BI tool and external Web pages onto 
a dashboard canvas and “mash” them together. Mash- 
boards are ideal for creating ad hoc dashboards for them- 
selves. 

A mashboard is effectively a dashboard container for 
predefined BI content (e.g., charts and tables), various 
types of controls (e.g., radio buttons, tabs, selectors, pick 
lists), and external Web pages. Each mashboard object 
can pull data from a different source and be updated at 
different intervals Figure 3. 

Mashboards don’t require a DW or data mart, just a BI 
tool that can create reports and convert them into report 
“parts” or gadgets. Gadgets are mini-applications that run 
inside a container environment and have associated func- 
tions (e.g., a toolbar for sorting, filtering, charting, etc.) 
and services, such as the ability to communicate with 
other gadgets. For instance, gadgets may synchronize 
their displays automatically using a common filter with- 
out scripting. 

The downside of mashboards architecture is first im- 
plement a BI environment and write reports using pro- 
fessional report writers, this can take time and cost a sig- 
nificant amount of money. Also, mashboards generally 
limit users to using existing BI content; finally, mash- 
boards may not support all the functionality offered in 
the complete BI platform. 

2.4. In-Memory Dashboards 

In-memory dashboards have become quite popular lately 
because they are quick to deploy, affordable, and fast. 
The tools load all data into memory, providing speed-of- 
thought visual analysis. (See Figure 4) Also known as 
visual analysis tools, in-memory tools are ideal for de- 
partmental dashboards without stringent data freshness 
requirements. Originally, visual analysis tools were de- 
signed for business analysts who wanted to explore and 
manipulate small- to medium-size sets of data in a visual 
manner. The tools excel at rapidly filtering data with lots 
of variables and displaying results using a variety of 
chart and table types. The tools make it easy for analysts 
to explore data quickly, identify trends and outliers, cre-
ate custom groups, and apply regression and other statis-
tical functions. Although most data sets are loaded into 
memory in a batch job at night, most visual analysis tools 
have a query engine so users can, if they desire, add data 
to their data set [9]. 
 

 

Figure 3. Mashboards architecture [9]. 
 

 

Figure 4. In-memory dashboards architecture. 
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Today, visual analysis tools have become popular with 
casual users because of their highly visual, interactive 
interface. Typically, a business analyst creates an analy- 
sis or “dashboard” using the desktop tools and then 
“publishes” the view to a server where others can access 
and interact with the live view. Analysts generally sim- 
plify the display and turn off more advanced functions to 
make the tools more accessible to casual users. And vis- 
ual analysis vendors have added features that make it 
easier to create and publish analytical output as depart- 
mental dashboards. Because of their in-memory archi- 
tecture, visual analysis tools can’t easily scale beyond the 
amount of data that the desktop or server machine can 
hold in memory. Users must be careful not to exceed the 
size of allowable in-memory storage, or they could lose 
data unless the tool has a mechanism to spill lightly ac- 
cessed data to disk automatically. Visual analysis tools 
aren’t dimensionally aware and support lightweight trans- 
formations only. If you need to clean, transform, or inte- 
grate data derived from complex database schemas or 
create complex drill-downs or aggregations, you are go- 
ing to do a lot of scripting. 

2.5. Data Federation 

Data federation uses distributed query technology and a 
global semantic layer to query and join data from multi- 
ple sources on the fly and display the results in one or 
more objects on a dashboard screen. (See Figure 5) Data 
federation is ideal for creating dashboards when the data 
are spread across multiple systems yet users want a con-
solidated view of information. Many BI tools now embed 
data federation capabilities to provide more flexible data 
access. Data federation integrates data from multiple, 
disparate sources inside or outside the organization on 
the fly. It provides business users and application devel-
opers a single, easy-to-use interface to access heteroge-
neous sources, making remote data appear as if it resides 
in a single local database. When users submit a query, 
data federation software behind the scenes calculates the 
optimal way to fetch and join the remote data and return 
the result [9]. Often the tools ship data from one database 
to another to perform a join. The ability to shield users 
and application developers from the complexities of dis-
tributed SQL query calls and back-end data sources is 
why some vendors call this technology data virtualization 
software. Data federation is ideal to create a full-fledged 
data mart or DW. Some federation architectures leverage 
XML and Web. On the downside, data federation works 
only when source systems are available and have enough 
capacity to handle streams of ad hoc queries without 
bogging down transaction processing tasks. Generally, 
the tools work best with small volumes of data that are 
clean, consistent, and don’t require much transformation. 
To obtain the best performance, it’s best to use data fed-

eration to support short, tactical queries on current data 
rather than strategic queries against large volumes of 
historic data. 

2.6. Data Marts 

Data marts create a local store of data explicitly to sup-
port the performance dashboard [10]. Data marts are de-
signed to ensure adequate performance for dashboard 
metrics and ancillary applications that go beyond basic 
metrics monitoring. These marts include strategy maps, 
time-series charts, multidimensional analysis, what-if 
modeling, collaboration, text-based annotation, and re-
porting. (See Figure 6) Typically, designers create a 
logical data model or schema in a relational or multidi-
mensional database that supports the dashboard’s metrics 
and applications. Then developers create source-to-tar- 
get transformation code that populates the data mart with 
the correct data, usually in a batch operation at night. The 
data mart then accumulates data over time to support 
time-series and other historical analyses and calculations. 
Some data marts may store only summarized data, but 
others especially those supporting operational and tacti-
cal dashboards [9] may contain detailed data. And some 
direct query and in-memory tools maintain a local store 
of transformed data to support hierarchical drill- 
 

 

Figure 5. Data federation. 
 

 

Figure 6. Data marts. 
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downs, dimensionalized queries, and what-if modeling. 
Data marts often are used to support strategic dashboards 
(i.e., balanced scorecards) that require elaborate data 
models to support unique features, such as strategy maps, 
initiatives tracking, and text documents. A strategic 
dashboard model typically includes tables for objectives, 
metrics, people, organizational structures and hierarchies, 
and initiatives. The main benefit of data mart architecture 
is that it minimizes the risk of poor performance when 
data are scattered across multiple systems. Instead of 
trying to query remote databases on demand, as other 
architectures do, a data mart consolidates the data up 
front and stores them in a form that is conducive to fast 
queries. A data mart can prejoin and preaggregate data to 
support metrics and views in the dashboard so the query 
and transformation logic doesn’t have to do this on the 
fly. A data mart is also needed to support application 
modules, such as strategy maps, initiative tracking, and 
metrics maps, among other things, that require complex 
joins among multiple tables. On the downside, a data 
mart, like its DW big brother, assumes that you know in 
advance what metrics, applications, and data you are 
going to use in the dashboard. Also, it is harder to sup-
port near-real-time data delivery in a data mart since data 
transformation and query execution are separate jobs, not 
part of a single query stream, as in other architectures. 

2.7. Complex Event Processing 

Complex event processing (CEP) captures and filters real- 
time events and triggers actions based on predefined 
rules. CEP is ideal for supporting operational dashboards 
that are used to monitor real-time processes, such as 
trading systems, sensor data from pipelines, global posi- 
tioning systems, or radio-frequency identification chips, 
or traffic data from computer networks, transportation 
systems, and Web sites, among other things. Most CEP 
systems contain: a data acquisition engine that captures 
events streaming off a messaging backbone as well as 
historical data from a DW or external sources; a calcula- 
tion engine that aggregates events over time and holds 
them in memory; and a rules engine that defines targets 
and actions to take when an event object exceeds a pre- 
defined threshold (See Figure 7) [9]. CEP is like an in- 
telligent sensor that takes a continuous reading of activity 
generated by one or more interrelated business processes 
and detects patterns that trigger automated responses. 
The systems are designed so that business users can 
build the rules for creating objects and triggering re-
sponses [9]. 

The main advantage of CEP is that it provides built-in 
support for real-time monitoring so that you don’t have 
to re-architect a DW to support trickle feeds or near-real- 
time refreshes. But CEP is not just for real-time data; it 
can extract historical data from a warehouse and 

 

Figure 7. Complex event processing. 
 
use it to compare to current data when executing rules. 
Some small-and medium-size businesses have deployed 
their DWs using CEP, giving them real-time capabilities 
from the start. On the downside, the systems have a lot of 
moving parts and require technical expertise to set up and 
maintain. Plus, from an analytical perspective, because 
they cannot store large volumes of historical data, they 
are more appropriate for niche applications rather than a 
large DW. Also, users require significant training to set 
up and manage rules to ensure that the system doesn’t 
spit out lots of irrelevant alerts or, conversely, fail to no-
tify appropriate users about significant events. 

3. A Comparison the Architecture of  
Performance Dashboards 

Currently, there are kinds of the architecture of perform- 
ance dashboards; each has its own characteristics and 
advantages. To better understand these architectures, we 
analyze in detail and give a comparison from different 
implementation aspects. Direct Query is ideal for creating 
operational dashboards compared to other architectures 
but isn’t data dimensionally. Mashboards generally limit 
users to using existing BI content compared to other 
dashboard architecture. Data Federation, Data Marts and 
Complex Event Processing are more strength in built in 
dashboard architecture that have many characteristics 
such as Data Federation built on distributed query tech-
nology and a global semantic layer to query and join data 
from multiple sources on the fly and display the results in 
one or more objects on a dashboard screen; Data Marts 
often are used to support strategic dashboards (i.e., bal-
anced scorecards) that require elaborate data models to 
support unique features; CEP is that it provides built-in 
support for real-time monitoring so that you don’t have to 
re-architect a DW to support trickle feeds or near-real- 
time refreshes. The characteristics and implementation of 
these architectures are summarized as Table 1 shows. From 

Copyright © 2013 SciRes.                                                                                  IIM 



M. ABDELFATTAH 

Copyright © 2013 SciRes.                                                                                  IIM 

40 

  
Table 1. Comparison of dashboard data architecture. 

 Direct Query BI Tools Mashboards 
In Memory 
Dashboards 

Data Federation
Complex Event  
Processing 

Data Marts 

Mechanisms 

Screen  
elements 
linked  
directly to 
individual 
queries  

Query objects 
that represent a 
database in  
business terms  
for users. 

Drag and drop predefined 
content from a BI tool and 
external Web pages onto a 
dashboard canvas and 
“mash” them together. 

Queries  
populate a  
queryable cache

An EII tool  
dynamically 
queries data from 
multiple sources 
to populate  
screen elements

captures and filters  
real-time events and  
triggers actions based 
on predefined rules 

Dashboard queries 
its own persistent 
data mart loaded in 
batch. 

Deploy 
quickly 

Abstract query 
objects 

Ad hoc dashboards. Deploy quickly Multiple sources
built-in support for 
real-time  
monitoring 

Multiple sources 

Low cost  
Dimensional 
views 

Don’ t require a DW or data 
mart, just a BI tool that can 
create reports and convert 
them into report “parts” or 
gadgets. 

Fast  
response 

Semantic layer 
abstraction 

extract historical data 
from a warehouse  

Dimensional 
model 

   
Rapid  
navigation 

Quick to deploy  Historical context

Pros 

    
Prototype before 
you persist  

 
Fast complex 
queries 

No depth, 
limited drill 
down 

Generic ODBC 
connections 

Take time and cost a  
significant amount of money

Static data sets No history 
cannot store large 
volumes of historical 
data 

No right time data

No  
dimensions 

Primarily  
historical data 
in DW  

Not support all the 
functionality offered 
in the complete BI platform

visual analysis 
tools aren’t  
dimensionally 

Data quality 
issues 

fail to notify  
appropriate users 
about significant 
events 

Non-integrated 
Cons 

Hard-wired 
queries 

  
a lot of  
scripting 

Complexity   

 
Table 1, it can figure out that the implementations of this 
architecture of performance dashboards are quite differ- 
ent, there are much common between them.  

4. Conclusion 

A dashboard is a new technology widely studied in re-
cent years. Now there are numerous ways to architect a 
performance dashboard. How to understand and use 
these architectures is a big issue. Each has its trade-offs, 
and many companies use multiple approaches to support 
their performance dashboards. The key to selecting the 
right architecture understands user requirements and the 
complexity of the metrics and applications the perform- 
ance dashboard needs to support. Focused on the aspects 
such as the architectures, characteristics, application and 
so on, a detailed comparison has been presented in this 
paper. From the analysis and summarization, users can 
better understand the characteristics and better choose of 
dashboard architecture. In future, we will measure the per- 
formance of data-dashboard architectures and will de-
velop the optimal dashboard-data architecture. 
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