
Journal of Information Security, 2010, 1, 45-55
doi:10.4236/jis.2010.12006 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

Extending the Strand Space Method with Timestamps:

Part I the Theory
*

Yongjian Li
1,2
, Jun Pang

3

1
Chinese Academy of Sciences, Institute of Software, Laboratory of Computer Science, Beijing, China

2
The State Key Laboratory of Information Security, Beijing, China

3
University of Oldenburg, Department of Computer Science, Safety-critical Embedded Systems, Oldenburg, Germany

E-mail: lyj238@ios.ac.cn, jun.pang@informatik.uni-oldenburg.de

Received June 23, 2010; revised September 14, 2010; accepted July 12, 2010

Abstract

In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include

time and timestamps to model security protocols with timestamps: we relate a key to a crack time and com-

bine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this

new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea

is to introduce a new relation a to model the causal relation between one primary protocol session and one

of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authen-

tication test.

Keywords: Strand Space, Kerberos V, Theorem Proving, Verification, Isabelle/HOL

1. Introduction

The strand space model [1] is a formal approach to rea-

soning about security protocols. For a legitimate regular

participant, a strand s represents a sequence of mes-

sages that the participant would receive or send as part of

a run as his/her role of the protocol. A typical message

has the form of { }
K

h denoting the encryption of h

using key K . An element of the set of messages is

called a term. A term 't is a subterm of t is written as

tt '⊏ . Usually, we call a strand element node. Nodes can

be either positive, representing the transmission of a term,

or negative, representing the reception of a term. For the

penetrator, the strand represents atomic deductions. More

complex deductions can be formed by connecting several

penetrator strands. Hence, a strand space is simply a set

of strands with a trace mapping. Two kinds of causal

relation (arrow), → and ⇒ , are introduced to impose

a graphic structure on the nodes of the space. The rela-

tion � is defined to be the reflexive and transitive clo-

sure of these two arrows, modelling the causal order of

the events in the protocol execution. The formal analysis

based on strand spaces can be carried on the notion of

bundles. A bundle is a causally well-founded set of

nodes and the two arrows, which sufficiently formalizes

a session of a protocol. In a bundle, it must be ensured

that a node is included only if all nodes that proceed it

are already included. For the strand corresponding to a

principal in a given protocol run, we construct all possi-

ble bundles containing nodes of the strand. In fact, this

set of bundles encodes all possible interactions of the

environment with that principal in the run. Normally,

reasoning about the protocol takes place on this set of

bundles.

However, the original strand space model has its se-

mantical limitations to analyze the real-world protocols

such as Kerbeoros protocols. First, it does not include

timestamps as formalized message components, and

therefore can not model security protocols with time-

stamps. In fact, the strand space model [1] as given by

Thayer Fábrega, Herzog, and Guttman is only bench-

marked on nonce-based protocols such as the Needham-

Schroeder protocol and the Otway-Rees protocol. But

many modern protocols use timestamps to prevent replay

attacks, so this deficiency of the strand space theory

makes it difficult to analyze these protocols. Second, it

*This is a revised and extended version of the homonymous paper

appearing in the Proceedings the Eighth International Conference on
Parallel and Distributed Computing, Applications and Technologies

(PDCAT 2007, IEEE Computer Society). The main modifications have

been made on the presentation of the technical material, with the pur-
pose of having full details. The first author is supported by grants

(No.60833001, 60496321, 60421001) from National Natural Science

Foundation of China.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

46

does not address issues of the protocol dependency when

several protocols are mixed together. Many real-world

protocols are divided into causally related multiple phas-

es (or subprotocols), such as the Kerberos and Neu-

man-Stubblebine protocols. One phase may be used to

retrieve a ticket from a key distribution center, while a

second phase is used to present the ticket to a security-

aware server. To make matters more complex, many

protocols such as Kerbeors use timestamps to guarantee

the recency of these tickets, that is, such tickets are only

valid for an interval, and multiple sub-protocol sessions

can start in parallel by the same agent using the same

ticket if the ticket does not expire. Little work has been

done to formalize the causal relation between protocols

in a protocol mixture environment.

The aim of this paper is twofold. The first aim is to

extend the strand space theory to cover the aforemen-

tioned two semantical features. Briefly, we include time

and timestamps to model security protocols with time-

stamps: we relate a key to a crack time and combine it

with timestamps in order to define a notion of recency.

Therefore, we can check replay attacks in this new

framework. We also extend the classic strand space

theory to model protocol mixture: a new relation a is

introduced to model the causal relation between one

primary protocol session and one of its following sec-

ondary protocol session. Despite the extensions, we hope

that the extended theory still maintains the simple and

powerful mechanism to reason about protocols. The

second aim is practical. We hope to apply the extended

theory to the analysis of some real-world protocols. Here

we select Kerberos V as our case study. Kerberos V is

appropriate because it covers both timestamps and pro-

tocol mixture semantical features.

2. Motivations

2.1. A Short Introduction to Kerberos V

The first version of Kerberos protocol was developed in

the mid eighties as part of project Athena at MIT [2].

Over twenty years, different versions of Kerberos proto-

cols have evolved. Kerberos V (Figure 1 and Figure 2)

is the latest version released by the Internet Engineering

Task Force (IETF) [4]. It is a password-based system for

authentication and authorization over local area networks.

It is designed with the following aims: once a client au-

thenticates himself to a network machine, the process of

obtaining authorization to access another network service

should be completely transparent to him. Namely, the

client only needs enter his password once during the au-

thentication phase. In order to access some network ser-

vice, the client needs to communicate with two trusted

Figure 1. The layout of Kerberos V.

Figure 2. Kerberos V: message exchanging.

servers Kas and Tgs . Kas is an authentication server

(or the key distribution center) and it provides keys for

communication between clients and ticket granting serv-

ers. Tgs is a ticket granting server and it provides keys

for communication between clients and application serv-

ers. The full protocol has three phases each consisting of

two messages between the client and one of the servers

in turn. Messages 2 and 4 are different from those in

Kerberos IV [2,4] in that nested encryption has been

cancelled. Later we will show that this change does not

affect goals of the protocol.

2.2. Timestamps

Timestamps are heavily used in the Kerberos protocols

to guarantee the recency of messages. The strand space

model cannot express security protocols with timestamps,

although Guttman [5] provided a notion of recency and

he used it to analyze replay attacks of a variant of the

Yahalom protocol, it is still impossible to analyze secu-

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

47

rity protocols with timestamps. Timestamps are mainly

used to avoid replay attacks in the literature of security

protocols. Usually such attacks occur in protocols that

involve a message encrypted by a session key, and the

session key itself is sent as a part of a message which is

encrypted by a long-term key. Although penetrators can

never obtain a long-term key K if K is not sent as a

part of a message, it is usually assumed that m will be

obtained from { }
K

m via cryptanalysis by a penetrator

after some time t , especially if a session key SK is a

component of m , then it will be compromised after the

time t . Here, we say that the time t is the crack time

of K , and every key will be related to a crack time.

Although the penetrator cannot obtain m from { }
K

m

during a protocol session provided that { }
K

m did not

occur in any old session and K ’s crack time is longer

than the time of a session allowed, he still may replay

stale messages and use the old compromised session

keys to launch attacks if some message of the protocol

does not contain necessary information to indicate its

recency.

For example, in the Needham-Schroeder symmetric

key protocols (see Figure 3), when B receives the third

message { },
BK

A K , although B can infer that it was

generated by S , he is not certain of its recency because

no such information is available. Perhaps { },
BK

A K

has occurred in an old session, and a penetrator has

cryptanalyzed the conversation to obtain the session K .

In that case, the penetrator can start a session by resend-

ing { },
BK

A K , and later return { }1b K
N + . Denning

and Sacco [6] pioneered the use of timestamps to fix the

flaw of the protocol. A timestamp t , which is a number,

is employed in the ticket { }, ,
BK

A K t by S to mark

the time of issue, and will be compared with the current

time by the receiver B to check whether the ticket is

recent. In this paper, we will assume that all agents are

synchronized via a global clock, so an agent knows the

time when receiving or sending a message.

Figure 3. Needham-Schroeder symmetric key protocol.

In this paper, we extend the strand space model with

such features. A crack time is attached to every key. The

crack-time of a key K is the time needed by a penetra-

tor to break an encrypted message { }
K

m .
1
 We model a

timestamp in the same way as atomic messages. A regu-

lar agent can attach a timestamp in a message to indicate

when it sends the message, and check whether a received

message encrypted by a key K is recent by comparing

the timestamp in the message with the current time and

the crack time of K . Once a message { }
K

m is no longer

recent, a penetrator can break the message to obtain m .

2.3. Protocol Mixture

Another important feature of Kerberos, which is difficult

to model in strand space, is protocol mixture. Kerberos

protocol comprises three protocol phases: authentication,

authorization, and service protocol phases. Once a client

has passed an authentication phase and obtained an au-

thentication ticket, then he can use the ticket to start mul-

tiple sessions of the authorization protocol phases in pa-

rallel to obtain different service tickets to access the ser-

vices he needs provided that the authentication ticket

does not expire. Similarly, once the client has gone

through a session of the authorization phase, then he can

use the service ticket obtained to access the service serv-

er for many times provided that the service ticket does

not expire. Usually we refer to a protocol as one primary

protocol, and the protocol following it as a secondary

protocol. We note that other researchers have discussed

the problem of protocols mixture [7,8], but they empha-

sized more on independency between two protocols.

Namely, if they have disjoint encryption, then the first

protocol is independent of the second. By this they mean

that if the first protocol can achieve a security goal (ei-

ther an authentication goal or a secrecy goal) when ex-

ecuted in isolation, then it still achieves the same security

goal when executed in combination with the second pro-

tocol. In their theory, one primary and one secondary

strands are rather independent of each other.

However, in Kerberos protocols, a secondary strand

cannot be independent of its primary strand, and the

events of a secondary strand has temporal relation with

the events of the primary strand. For example, assuming

that a client A runs a session 's of an authorization

phase of Kerberos V, then he must have passed an au-

thentication phase s . When A receives the second mes-

sage in the session 's , he must ensure that the current

time should be before the ticket { }, , ,
Tgs

a K
A Tgs authK T

expires, so A needs know the time aT when the ticket

is created, and checks how much time has elapsed until

now. This side condition cannot be expressed without the

semantical specification of s , because in the intended
1It is not the time to obtain K from {| m|}K.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

48

case the ticket is a term encrypted with Tgs ’s long-term

key, which is unintelligible to A , A cannot know aT

from the ticket. Then A can only know the time aT

from the previous authentication phase s . Therefore, we

need to formalize the facts that 's follows s , and A

holds all the knowledge of s when he runs 's , and

there should be causal relation between events in s and

those in 's . Such semantical features are not covered in

[7,8].

In order to model the aforementioned causal relation

between a primary strand and its following secondary

strands, we introduce a new relation a between

strands. 'ss a holds if s is a primary protocol strand

and 's is a subsequent secondary protocol strand. E.g.,

let s and 's be client strands in an authentication

phase and authorization phase in Kerberos V respectively,
'ss a means that a client runs an authentication ses-

sion s , and subsequently starts an authorization session
's . In practice, if 'ss a , then s and 's may be two

different processes started by the same client, and when

the client starts 's , he knows all the events which have

occurred in s . This knowledge is useful for the client to

perform actions in 's . E.g., when a client starts an au-

thorization session, he uses an authentication ticket

which is obtained in the preceding authentication session,

and he knows the time when the ticket is created. So a

causal relation should be imposed on two events which

occur in a primary strand and its subsequent secondary

strand.

Figure 4 illustrates a possible protocol execution of

Kerberos V using the relation .a A client runs an in-

stance in authentication phase, which is represented by

the strand 1i . Following the primary protocol instance,

the same client may run three authorisation subprotocol

instances in parallel, which are showed in the strands 21i ,

,22i and 23i respectively. 21Tr is a subtree which is a

collection of client strands in the service phase. 22Tr

and 23Tr are similar to 21Tr . Note that the semantics of

the relation a means that 21i and 22i and 23i inhe-

rits all the same knowledge from ,1i so they shares the

same ,authTicket authK , Tgs , aT , etc. Therefore,

if () { }{ }1,1 = , , , ,
A

a K
term i authTicket A Tgs authK T then

then it must be the case that

() { }{ }{11 1 1,1 = , , ,
authK

term i authTicket A t B

and

() { }{ }{13 2 2,1 = , , ,
authK

term i authTicket A t B

for some 1t , 2t , 1B and .2B Here
1 1
()t B can be

different from).(22 Bt This means that the client use the

same authTicket to obtain two different server tickets

for accessing servers 1B and .2B Without the relation

Figure 4. An illustration of protocol mixture.

,a 21i and 1i are independent, therefore the know-

ledge inherence relation between them can not be im-

posed.

We extend the relation ⇒ in the strand space model

in the way that 21 nn ⇒ holds if),(=1 isn and

1),(=2 +isn , or 1)))((,(=1 −strlengthsn and ,0)(=2

'sn

and 'ss a . Namely, the edge means either that 1n is

an immediate causal predecessor of 2n on the same

strand s or that 1n is the last event in a primary strand

s and 2n is the first event in the subsequent secondary

strand 's .

Structure of the Paper. In Section 3, we present the
theory of the strand space method with our two exten-

sions. We devote Section 5 to a new definition of unsoli-

cited authentication test. We discuss related work and

conclude the paper in Section 6.

3. Preliminaries

3.1. Messages and Actions

The set of messages is defined as the following BNF

notation:

{ }),(|,|

)(|)(|

)(|)(::=

21 Khhh

tK

nAh

enc

timestampkey

noncename

where A is an element from a set of agents, n from a

set of nonces, K from a set of keys, and t from a set

of times. Here we assume that Time is the set of all nat-

ural numbers. 21 < tt means that the time 1t is earlier

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

49

than 2t . We represent a timestamp by marking t as

timestamp(t). Except this extension, the definitions of

other kinds of messages are the same as those in the

classic strand space theory. We call a key symmetric if

KK =1− . Otherwise, K is a public key and 1−K is

private. For each K , we define)(Kcracktime as the

crack time of K . { }1 2,h h is called a composed mes-

sage. We will write { }{ }1 2 3, ,h h h as { }1 2 3, ,h h h .

{ } { }1 2 1 2, ,' 'h h h h= if and only if 'hh 11 = and 'hh 22 = .

We abbreviate),(Khenc as { }Kh , denoting the en-

cryption of h using key K . In our formulation, we use

AK to define a long-term key shared between an agent

(also called a client) A and a server, and clients have

distinct keys. An element of the set of messages is also

called a term. Terms of the form name(A), nonce(n),

timestamp(t), or key(K) are said to be atomic.
2
 The set

of all messages is denoted by Message. A message h is

a text message if Kh ≠ for any K . The set of all

atomic text messages is denoted by T . We frequently

need the subterm relation on messages. A term 'g is a

subterm of g is written as gg '
⊏ .

Definition 1 The subterm relation ⊏ is defined induc-

tively as the smallest relation such that gg⊏ , { }
K

g h⊏

if hg⊏ , and { }1 2,g h h⊏ if 1hg⊏ or 2hg⊏ .

In our extended strand space model, we need to revise

the definition of actions. The main point is to record the

time when an action takes place. The transmission of a

term g at time t is denoted by),,(gt + , and the re-

ception of a term g at t is denoted by),,(gt − . Both

are the possible actions that participants and a penetrator

can take. We represent the set of finite sequences of ac-

tions by (Time, ±, Message)*.

3.2. Strands and Strand Spaces

A strand space Σ is a set of strands with a trace map-

ping *),(: MessageTime ±→Σ ,tr . A strand element is

called a node.),(is is the i -th node on strand s

()(<0 slengthi≤). We use sn∈ to denote that a node
n belongs to the strand s . The set of all the nodes is

denoted by N . If),(= isn and),,(=)(gtstr i σ ,

then we define)(ntime and)(nterm and)(nsign to

be the occurring time, the term and the sign of the node

n , respectively. Namely, tntime =)(, gnterm =)(, and

σ=)(nsign . We call a node positive if its term has sign

+ , and negative if its term has sign − . A strand is a

protocol history from the point of view of a single par-

ticipant in a protocol run, so we explicitly define an

attribute function Aattr →Σ: to indicate which

agent’s peer a strand is. Namely, asattr =)(means that

a is the agent who performs actions of the strand s in

the run.

As mentioned in Section 2, we introduce a relation

a between strands to model protocol mixture, and
'ss a holds if s is a primary protocol strand, and 's

is a subsequent secondary protocol strand. To make our

theory sound, we also restrict the relation a to be a

tree-like one with the following principles. First, a is

irreflexive, i.e. ss a/ . Second, every strand has at most

one a predecessor, meaning if ''ss a and ''' ss a ,

then 'ss = . The two restrictions are consistent with our

intuition on protocol mixture. The first principle says that

one protocol session can not follow itself, this simply

means that the primary protocol session and any one of

its following secondary protocol sessions are different.

The second principle shows that one secondary protocol

session follows a unique primary protocol session.

Two kinds of causal relation (arrow), → and ⇒ ,

are introduced to impose a graph structure on the nodes

of Σ . To be more precise, the relation 'nn⇒ holds

between nodes n and 'n if),(= isn and 1),(= +isn'

and),()('ntimentime ≤ or ()()()1,= −strlengthsn and

,0)(= '' sn and 'ss a and)()('ntimentime ≤ . This

relation means that the event 'n immediately follows

n . On the other hand, the relation 'nn → holds for

nodes n and 'n if gntermnterm ' =)(=)(for some term

g , +=)(nsign and −=)('nsign , and)()('ntimentime ≤ .

This represents that n sends a message g and 'n

receives the message at a later time. Obviously, here we

require that the two relations must respect the order of

time. The relation � is defined to be the reflexive and

transitive closure of → and ⇒ , modelling the causal

order of the events in the protocol execution. We say that

a term g originates at a node n if and only if n is

positive,),(ntermg⊏ and there is no node 'n such

that nn' +
⇒ and)('ntermg⊏ ; We say that g uni-

quely originates if and only if there exists an unique node

n such that g originates from node n . Nonces and

other recently generated terms such as session keys are

usually uniquely originated.

3.3. Penetrator Strands

The symbol Bad is defined to denote the set of all the

penetrators, and if an agent is not in Bad, then it is regu-

lar. There is a set of keys that are known initially to all

the penetrators, denoted as
P

K .
P

K usually contains

all the public keys, all the private keys of all the penetra-

tors, and all the symmetric keys initially shared between

all the penetrators and principals playing by the protocol

rules. It can also contain some keys to model known-key

attacks. In this paper, we only need the fact that if an

agent is not a penetrator then his shared key cannot be

penetrated, which is formalized as follows.

2For convenience, we often write A, n, K and t instead of name (A),

nonce (n), key (K), and timestamp (t).

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

50

Axiom 1 If Bad∉A , then
P

K∉AK .

In the classic strand space theory, a penetrator can in-

tercept messages, generate messages that are computable

from its initial knowledge and the messages it intercepts.

These actions are modelled by a set of penetrator strands,

and they represent atomic deductions. More complex

deduction actions can be formed by connecting several

penetrator strands. In our extension, we assume that pe-

netrators share their initial knowledge and can cooperate

each other by composing their strands. Besides the beha-

viors inherited from classic strand space theory, a pene-

trator has the ability to crack an encrypted message once

the message is no longer recent (see hKKC , strand).

Definition 2 A penetrator’s trace relative to
P

K is one

of the following, where Time∈321 ,,, tttt and 321 ttt ≤≤ :

• Mg (text message):)],,[(gt + , where Tg ∈ .

• KK (key):)],,[(Kt + , where
P

K∈K .

• Cgh (concatenation): { })],,,(),,,(),,,[(321 hgthtgt +−− .

• Sg,h (separation): { } ,,(),,,(),,,,[(321 ++− tgthgt)]h .

• Eh,K (encryption): ,,(),,,(),,,[(321 +−− thtKt { })]
K

h .

• Dh,K (decryption): { })],,(),,,(),,,[(32

1

1 hthtKt
K

+−−
−

.

• KCK,h (key-crack): { })],,(),,,[(21 htht
K

+− , where

21 <)(tKcracktimet + .

In our theory, if a strand s belongs to a penetrator,

namely, ()attr s ∈Bad , then s must be a penetrator

strand. If a strand is not a penetrator strand, then it is

regular. A node is called regular if it is not in the pene-

trator strands. Except the key crack strand (hKKC ,), our

penetrator model is similar to the one in [1]. Here

gM (or KK) does not imply that a penetrator can issue

any unguessable terms which are not in his initial know-

ledge such as nonces and session keys. Because when we

introduce secrecy or authentication properties about an

unguessable term t for all penetrators, we usually as-

sume that t uniquely originates from a regular strand,

and this implicitly eliminates the possibility that any pe-

netrator can originate t . Intuitively, we use a to

model regular agents to start a primary protocol session

and then starts multiple parallel secondary protocol ses-

sions, so a penetrator strand cannot be mixed with any

other strand. To be more precise, for all penetrator

strands s and all strands 's , we have that 'ss a/ and

ss' a/ . This implies that a penetrator strand can only be

composed with other strands by the relation → .

3.4. Bundles

The formal analysis based on strand spaces is carried on

the notion of bundles, which represents the protocol ex-

ecution under some configuration. A bundle is a causally

well-founded graph, which sufficiently formalizes a ses-

sion of a protocol.

Definition 3 Suppose ()(),,
BBB

�B ⇒∪→N ,⊆→→
B

and .⊆⇒⇒
B

 B is a bundle if

•
B

N and
B

→ and
B

⇒ are finite;

• If the sign of a node n is − , and
B

Nn∈ , then

there is a unique positive node 'n such that
B

Nn' ∈

and nn'

B
→ ;

• If nn'
⇒ and

B
Nn∈ , then

B
Nn' ∈ and

nn'

B
⇒ ;

• B is acyclic.

Suppose B is a bundle, we say B∈n if n is a

node in
B

N , and use
B
� to denote the reflexive and

transitive closure of the relation → and ⇒ in B . In

a bundle, it must be ensured that a node is included only

if all nodes that proceed it are already included. So a

bundle B has the following properties:

Lemma 1 (Bundle well foundedness) Let B be a

bundle. Then
B
� is a partial order, i.e. a reflexive,

antisymmetric, transitive relation. Every non-empty sub-

set of the nodes in B has
B
� minimal members.

We have formalized the above extended strand space

theory in the theorem prover Isabelle/HOL [9]. See [10]

for details.

4. Penetrator’s Knowledge Closure Property

In this section, we will describe a useful property on pe-

netrator strands. This property specifies what knowledge

can be obtained from some special message set. First we

need to define a key is regular w.r.t. a node m in a

bundle.

Definition 4 A key K is regular w.r.t. a node m in

a bundle B , denoted by ()B,,mkregular , if and only if

the following condition holds: for any node n in B , if

Knterm =)(and)()(mtimentime ≤ , then n must be

regular.

This definition is about K ’s secrecy w.r.t. a node m

in a bundle B , which means that K cannot be penetrated

before m in the bundle. In most of the cases, we only

consider security properties for a protocol in a given bun-

dle, so it is natural for us to just consider whether a key

can potentially be penetrated in this bundle. Besides, we

also need consider temporal restriction)()(mtimentime ≤

because we discuss K ’s secrecy a timed framework.

Definition 5 Let m be a node in a bundle .B A

message ,t is a component w.r.t. m in bundle ,B

denoted by ()B,,mtcomponent , if

1) g∀({ });,. hgth ≠

2) { } ()()()B,,=.
1
mkregularhtkh

k

−
→∀

Intuitively, ()B,,mtcomponent means that t basic

unit that can not be analyzed in B by penetrators.

Namely, t can not be detached because t is not a

concatenated form; and if t is an encrypted form of

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

51

{ }
K

h t can not be decrypted before m in B be-

cause 1−k can not be penetrated before m .

Definition 6 Let m be a node in a bundle .B a is

a message which uniquely originates at some node n . A

message set M is a test suite for a w.r.t. m in ,B

denoted by ()B,,,, nmaMsuite if

1) →∈∀ taMt ⊏. ()B,,mtcomponent

2) (. →∈∀ taMt ⊏ { }
k

hthk =.∀ →)(mtime ≤

))()(kcracktimentime +

3) ;. Mttat ∈→/∀ ⊏

Intuitively, ()B,,,, nmaMsuite means that for any

Mt∈ such that ,ta⊏ t can not be detached or de-

crypted before m because such t is a component w.r.t.
m in bundle B ; furthermore, if t contains a and is

of the form { }
K

h for some k and ,h t can not be

cracked before m because the duration between m

and n is less than k ’s crack time, and this is guaran-

teed by (2). Recall that)(ntime is the first time when
a occurs because a uniquely originates at .n

Now we need introduce a function synth on a mes-

sage set H , which captures the “building up” aspect of

penetrator's ability [4,11]. ()Hsynth is defined to be the

least set that includes H , agents, timestamps and is

closed under pairing, and encryption.

Definition 7 Consider a message set ,H)(Hsynth

is a message set which is defined inductively as follows:

1))(HsynthA∈ if A is an agent name;

2))(Hsyntht ∈ if t is a timestamp;

3))(Hsynthm ∈ if Hm∈ ;

4) { }),(Hsynthh
k

∈ if)(Hsynthh∈ and ;Hk ∈

5) { }),(, Hsynthhg ∈ if)(Hsynthg ∈ and

).(Hsynthh ∈

In the context of this paper, we usually assume that a

is an unguessable atomic message such as a nonce,

which is uniquely originated from a regular strand and

encrypted in a message. Let },|{=0 MttatM ∈∧⊏ in

later discussions we usually assume that 0M is the set

of messages which is emitted by some regular strands. f

M is a test suite for a w.r.t. m in b , then the set

synth ()M is a knowledge closure which penetrators

can synthesize in the bundle b from .M Namely, if

the messages received in a penetror strand are in

synth ()M , then the messages sent in the strand must

still be in synth ().M

Before we prove the closure property, we need two

useful lemmas, as shown below:

Lemma 2 If M is a test suite for a w.r.t. m in

,B and { }∈hg, synth (),M then ∈g synth ()M and

∈h synth ().M

Lemma 3 If { } (),Msynthh
K

∈ then ()Msynthh∈

or { } .Mh
K

∈

Let a be an atomic message that uniquely originates

at some node n , m be a positive penetrator node in a

bundle B such that and ().mterma⊏ Suppose M is

a test suite for a w.r.t. m in the bundle B , if any

message that the penetrator can receive in the strand is in

(),Msynth then the penetrator can only send a term

which is still in ()Msynth . Figure 5 illustrates such

behaviors of penetrators on knowledge, where (a) shows

the cases for ,,hgC ,,KhE and ;,KhD (b) shows the

case for ;,hgS and (c) shows the case for .,hKKC

Lemma 4 Let m be a positive penetrator node in a

Figure 5. Penetrator’s knowledge closure property.

Journal of Information Security, 2010, 1, 45-55
doi:10.4236/jis.2010.12006 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

bundle ,B a be an atomic message that uniquely ori-

ginates at a regular node n , M be a message set such

that (),,,,, BnmaMsuite and () ()Msynthmterm ' ∈ for

any node such that ,mm' +
⇒ then () ().Msynthmterm ∈

Proof. For convenience, the assumption that

() ()Msynthmterm ∈ for any node such that nm +
⇒ is

referred as (1) in the proof as follows.

By case analysis on the form of penetrator strand, we

can easily exclude the cases when m is in a strand

gM , .KK If thus, we can conclude that a originates

at .m This contradicts with the fact that uniquely origi-

nates at a regular node .n Therefore, m is in a strand

i such that i is hgC , , ,,hgS ,,KhE ,,KhD or

hKKC , .

Case 1: i is in ,,hgC then () 2,=mindex () ,=,0 giterm

() ,=,1 hiterm and () { }hgmterm ,= for some g , ,h

and () ,=,0 −isign and () −=,1isign . From the assump-

tion (1), we have () ()Msynthiterm ∈,0 and ()∈,1iterm

(),Msynth then ()Msynthg ∈ and ();Msynthh ∈ By

the definition of synth operator, { } (), ,g h synth M∈

then () ().Msynthmterm ∈

Case 2: i is in ,,hgS then () 1,=mindex or () 2,=mindex

() { },,=,0 hgiterm () ,=,1 giterm and ()=mterm h

for some g , .h From the assumption (1), we have

() ()Msynthiterm ∈,0 , { }∈hg, synth (),M by Lemma

4, we have ()Msynthg ∈ and ().Msynthh ∈ So

()∈mterm ().Msynth

Case 3: i is in ,,KhE then () 2,=mindex

() ,=,0 Kiterm () ,=,1 hiterm and () { }
K

' hmterm =

for some K , ,h and () ,=,0 −isign and () .=,1 −isign

From the assumption (1) , () ()Msynthiterm ∈,0 and

() (),,1 Msynthiterm ∈ then ()MsynthK ∈ and

();Msynthh∈ by the definition of synth , we have

{ } (),Msynthh
K

∈ then () ().Msynthmterm ∈

Case 4: i is in ,,KhD then () 2,=mindex () ,=,0 1−Kiterm

() { } ,=,1
K

hiterm and () hmterm = for some K , ,h

and () ,=,0 −isign and () .=,1 −isign From the assumption

(1), we have () ()Msynthiterm ∈,0 and () (),,1 Msynthiterm ∈

therefore ()MsynthK ∈−1 and { } (),Msynthh
K

∈ by

Lemma 4, we have either (4-1) () ()Msynthhmterm ∈=

or (4-2) { } .Mh
K

∈ From (4-1), the lemma can be

proved at once. For the case (4-2), there are also two

subcases, either (4-2-1) { }
K

ha⊏/ or (4-2-2) { } .
KK

ha⊏

From (4-2-1), we have ,ha⊏/ by M is a test suite for

a in b , so ,Mh∈ then h ∈ synth M , then term
'm ∈ synth .M From (4-2-2), then by M is a test

suite for a in b , we have component { }
K

h ,b then

we have ().,,1 BmKregular − From this and () B∈,0i

and () ,=,0 1−Kiterm then i is regular, but this contra-

dicts with that m is in a penetrator strand.

Case 5: i is in ,,hKKC then () 1,=mindex

() ,=,1 hiterm () { } ,=,0
K

hiterm (2)

() ().,1<)(,0 itermKcracktimeiterm + From the assump-

tion (1), we have { } ().Msynthh
K

∈ From this, by

Lemma 3, we have either (5-1) ()Msynthh∈ or (5-2)

{ } .Mh
K

∈ From (5-1), the lemma can be proved at once.

For the case (5-2), there are also two subcases, either

(5-2-1) { }
K

ha⊏/ or (5-2-2) { } .
K

ha⊏ From (5-2-1), we

have ,ha⊏/ by the definition of ()B,,,, nmaMsuite , so

,Mh∈ then ().Msynthh∈ From (5-2-2), then by the

definition of ()B,,,, nmaMsuite , we have (3)

).()()(kcracktimentimemtime +≤ From (),,0iterma⊏ and

a uniquely originates at ,n we have ,0).()(itimentime ≤

Then we have

),(,0)()()(kcracktimeitimekcracktimentime +≤+

with (3), we have).(,0)()(kcracktimeitimemtime +≤

But this contradicts with (2).

On the other side, a strand’s receiving nodes get mes-

sages which are all in (),Msynth but a new message,

which is not in ()Msynth , is sent in the strand, then the

strand must be regular because a penetrator strand can

not create such a term. The result can be simply inferred

from Lemma 4.

Lemma 5 Let mbe a positive node in a bundle ,B a

be an atomic message that uniquely originates at a reg-

ular node n , M be a message set such that

(),,,,, BnmaMsuite and () ()Msynthmterm ' ∈ for any

node such that ,mm' +
⇒ and () (),Msynthmterm ∉ then

m is regular .

For Lemma 4 and 5, we have two comments:

1) Lemma 4 characterizes the knowledge closure

properties of a penetrator’s operations on messages. It

says that if a penetrator only receives messages in

(),Msynth where M is a test suite for some atomic

message ,a then the augmented knowledge of the pe-

netrator is still in ()Msynth after the receiving actions.

2) Lemma 5 provides a key technique to prove the au-

thentication guarantee that m is regular. Intuitively,

condition (1) of suite requires the secrecy of the in-

verse key 1−k for any key k which is used to encrypt

any message in M containing a ; condition (2) of op-

erator suite is a recency restriction that these encrypted

messages containing a can not be cracked until .m

Therefore this lemma provides a means of using secrecy

and recency restriction to prove authentication guarantee.

We will see this result is very useful for us to check

whether a strand is regular in the next sections.

Note that the two lemmas relates the algebraic opera-

tor synth in trace theory [4,11] with penetrator’s strand

ability to deduce knowledge, which is the most important

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

53

one which differs our work from the classical strand

space theory. Such closure properties are not available in

the classical strand space theory because message alge-

bra operators such as synth are not formalized.

5. Unsolicited Tests

In [12] (Subsection 4.2.3), a negative node n is an un-

solicited test for { }
K

h , if { }
K

h is a test component

for any atomic text a in n , and K cannot be pene-

trated in the strand space. Then an unsolicited test for

{ }
K

h in a bundle B can guarantee the existence of a

positive regular node of which { }
K

h is a component.

We simplify this definition of unsolicited tests by the

following two aspects:

1) we consider a node n is an unsolicited test for

{ }
K

h in a bundle B ;

2) we only require that { }
K

h is a subterm of the

term of n , and K is regular w.r.t. n in the bundle

B instead of a strand space.

In our formulation, unsolicited authentication test is a

kind of regularity about an encrypted term { }
K

h , which

is a subterm of a node n where K cannot be pene-

trated before n in a bundle B . Then it can be ensured

that there is a positive regular node m originating

{ }
K

h as a subterm, i.e., m has { }
K

h as a subterm

and it also holds that { })('

K
mtermh ⊏/ for any node

mm'

B
� . Intuitively, the reason why m must be regular

lies in that K cannot be penetrated before m in B .

So the penetrator cannot create { }
K

h by encrypting h

with K .

Definition 8 Given a bundle B . A node n in B is

an unsolicited test for { }
K

h if { })(ntermh
K
⊏ , and

K is regular w.r.t. n in B .

Lemma 6 (Unsolicited authentication test) B is a

given bundle. Let n be an unsolicited test for { }
K

h .

Then there exists a positive regular node m in B such

that nm
B
� and { })(mtermh

K
⊏ and { })('

K
mtermh ⊏/

for any node 'm such that mm'

B
� .

Proof. Let { })}(|{= xtermhnxxP
Kdf ⊏� ∧

B
. Ob-

viously, Pm∈ . By Lemma 1, there exists a node 'm

such that 'm is minimal in P , which means that

{ })('

K
mtermh ⊏ , nm'

B
� , and for all y such that

'my
B
� , Py∉ . Hence, { })(ytermh

K
⊏/ .

First, we prove that the sign of 'm is positive by

contradiction. If −=)('msign , then by the upward-

closed property of a bundle there must be another node
''m in B such that +=)(''msign and ''' mm → . Then

we have (a) ''' mm
B
� and (b))(=)(''' mtermmterm .

By (a) and nm'

B
� , we have nm ''

B
� . By (b) and

{ })('

K
mtermh ⊏ , we have { })(''

K
mtermh ⊏ . Hence,

Pm '' ∈ which contradicts with the minimality of 'm .

Second, we prove that 'm is regular. We show that a

contradiction can be derived if 'm is in a penetrator

strand. Here, we only analyze cases when 'm is in ei-

ther 'gg
C

,
 (concatenation strand), 'Kg

E
,

 (encryption

strand), or
g'K

KC
,
 (key crack strand). Other cases are

either straightforward or can be analyzed in a similar

way.

• 'm is in 'gg
Ci

,
∈ .

By the form of the strand 'gg
C

,
 and the fact that 'm

is a positive node, we have ,2)(= im' ,

{ }'' ggmterm ,=)(, giterm =,0)(, and 'giterm =,1)(

for some g , 'g . By the upwards-closed property of a

bundle, we have that nodes ,0)(i and ,1)(i must be in

B . By { } { }, '

K
h g g⊏ , we have either { }

K
h g¤ or

{ }
K

h g ′⊏ , i.e. { } ,0)(itermh
K
⊏ or { } ,1)(itermh

K
⊏ .

So either node Pi ∈,0)(, or node Pi ∈,1)(. Both cases

contradict with the minimality of 'm .

• 'm is in 'Kg
Ei

,
∈ .

By the form of the strand 'Kg
E

,
 and the fact that 'm

is a positive node, we have ,2)(= im' ,

{ } 'K

' gmterm =)(, 'Kiterm =,0)(, and giterm =,1)(

for some g and 'K . So { } { }
K K

h g′⊏ . Then it is

straightforward that either (1) { }
K

h g⊏ or (2) gh =

and 'KK = . For the first case, we have

{ } ,1)(itermh
K
⊏ . It is easy to derive a contradiction by

the same argument as before. For the second case, by the

definition of the relation ⇒ , we have (a)

,2)(,0)(itimeitime ≤ . And by definition of P , we also

have (b))()(ntimemtime ' ≤ . Hence,)(,0)(ntimeitime ≤ .

However, by the assumption that K must be regular

w.r.t. n in B , ,0)(iterm must be regular, and this

contradicts with the fact that i is a penetrator strand.

• 'm is in
g'K

KCi
,

∈ .

By the form of the strand
g'K

KC
,
, and the fact that

'm is a positive node, we have ,1)(= im' , gmterm
'
=)(,

{ } 'K
giterm =,0)(for some g and K ′ , and

)(<)(,0)('mtimeKcracktimeitime + .

By { } gmtermh '

K
=)(⊏ , so { } { } 'KK

gitermh =,0)(⊏ .

Obviously nmi '

BB
��,0)(. So Pi ∈,0)(, which contra-

dicts with the minimality of 'm .

The proof totally depends on the well-founded induc-

tion principle on bundles, and we have formalized the

proof of this lemma in Isabelle/HOL in our inductive

strand space model, and the proof scripts are available at

[10]. In fact, lemma 6 provides a useful proof method to

reason about authentication properties basing on secrecy

properties. Note that the premise that n is an unsoli-

cited test for { }
K

h requires that K is regular w.r.t.

n in B , which is an assumption on the secrecy of K .

And the conclusion is an authentication guarantee of the

existence of a regular node m . Besides, compared with

the original version of unsolicited test, our result also has

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

54

two extensions that nm
B
� and m is minimal (i.e.,

{ })('

K
mtermh ⊏/ for any node 'm such that)mm'

B
� .

We find that the extended version of unsolicited authen-

tication test is quite useful in many cases, especially in

the verification of authentication properties of symmetric

key based protocols. In [13], we have used a version of

unsolicited authentication test in the classical strand

space theory to give new proofs of authentication proper-

ties of the Otway-Rees protocol. In this work, we have

successfully applied unsolicited authentication test to our

study of the Kerberos V protocol in the next paper.

6. Conclusions and related Work

This work is an extension of [14]. We have added two

new semantical features in our new framework: time-

stamp and protocol mixture. In essence, our treatment of

timestamps is to add a global clock to the underlying

execution model, and to extend every action by a tem-

poral annotation. This allows us to align the timestamps

sent in the protocol messages with the actual occurrence

times of the corresponding actions. Although it is quite

straightforward, it gives a powerful mechanism to reason

about recency of a message. For protocol mixture, we

admit a realistic assumption that a regular agent can start

multiple parallel secondary sessions once he has finished

a primary protocol session, and he holds all the informa-

tion of the primary protocol session when he begins a

secondary protocol session. So we introduce a causal

relation a between strands to model the protocol de-

pendency. The above two semantical features are seldom

discussed in previous works of strand space literature.

Despite the aforementioned extensions in semantics,

the definition of a bundle, which is the cornerstone of the

strand space theory, remains unchanged. So the induction

principle on the well-foundedness of a bundle is still ef-

fective in our model. Based on this principle, we have

proved an extended result of the unsolicited authentica-

tion test.

In the literature, most of the existing approaches for

protocol analysis have not concentrated on timestamps

and replay attacks. These include the CSP model-

checking approach [15], the rank functions [16], and the

Multi-Set Rewriting formalism (MSR) [17]. Paulson and

Bella's inductive method [4,11] is one exception. They

not only have extended their method to model replay

attacks, but also have succeeded in applying their method

to the Yahalom protocol and the Kerberos IV protocol.

Recently, Bozga et al. [18] proposed an approach based

on timed automata, symbolic verification techniques and

temporal logic to analyze security protocols with time-

stamps. But they haven’t applied their approach to any

real-world security protocols.

For protocol mixture, there have been a few works to

reason rigorously about protocol interactions. For in-

stance, Meadows studied the Internet Key Exchange

protocol, emphasizing the potential interactions among

its specific sub-protocols [19]. The analysis work was

conducted in the NRL protocol analyzer. Recently, Cre-

mers discussed the feasibility of multi-protocol attacks,

and his work is done in the operational semantical frame-

work which considers a so-called type flaw attacks [20].

All these works, including [7], focus on protocol interac-

tions by message exchanging. Instead, our work empha-

sizes on the dependency between a primary protocol ses-

sion and a secondary protocol session. Here we assume

that when a regular agent starts a secondary protocol

session, he should be aware that he has finished a cor-

responding primary protocol session, and he maintains

all the information obtained in the primary protocol ses-

sion, such as tickets and the creation time of the tickets.

These modelling assumptions fit well with the real-world

environments where the Kerberos protocols run.

7. References

[1] F. Javier Thayer, J. C. Herzog and J. D. Guttman, “Strand

Spaces: Proving Security Protocols Correct,” Journal of

Computer Security, Vol. 7, No. 1, 1999, pp. 191-230.

[2] S. P. Miller, J. I. Neuman, J. I. Schiller and J. H. Saltzer,

“Kerberos Authentication and Authorisation System,”

Technical Report, Technical Plan Section E.2.1, MIT,

Athena, 1989.

[3] K. R. C. Neuman and S. Hartman, “The Kerberos Net-

work Authentication Service (v5),” Technical report, In-

ternet RFC 4120, July 2005.

[4] G. Bella, “Inductive Verification of Cryptographic Pro-

tocols,” PhD thesis, Cambridge University Computer

Laboratory, 2000.

[5] J. D. Guttman, “Key Compromise, Strand Spaces, and the

Authentication Tests,” Proceedings of 7th Conference on

the Mathematical Foundations of Programming Seman-

tics, ENTCS 45, 2001, pp. 1-21.

[6] D. Denning and G. Sacco, “Timestamps in Key Distribu-

tion Protocols,” Communications of the ACM, Vol. 24,

No. 8, 1981, pp. 533-536.

[7] F. Javier Thayer, J. C. Herzog and J. D. Guttman, “Mixed

Strand Spaces,” Proceedings of 12th IEEE Computer Se-

curity Foundations Workshop, 1999, pp. 72-82.

[8] J. D. Guttman and F. Javier Thayer, “Protocol Indepen-

dence through Disjoint Encryption,” Proceedings of 13th

IEEE Computer Security Foundations Workshop, 2000,

pp. 24-34.

[9] T. Nipkow, L. C. Paulson and M. Wenzel, “Isabelle/HOL—

A Proof Assistant for Higher-Order Logic,” LNCS 2283.

Spinger, 2002.

[10] Y. Li, “Strand Space and Security Protocols”. http://lcs.

ios.ac.cn/˜lyj238/strand.html

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

55

[11] L. C. Paulson, “The Inductive Approach to Verifying

Cryptographic Protocols,” Journal of Computer Security,

Vol. 6, No. 1-2, 1998, pp. 85-128.

[12] J. D. Guttman and F. Javier Thayer, “Authentication

Tests and the Structure of Bundles,” Theoretical Com-

puter Science, Vol. 283, No. 2, 2002, pp. 333-380.

[13] Y. Li and J. Pang, “Generalized Unsolicited Tests for

Authentication Protocol Analysis,” Proceedings of 7th

Conference on Parallel and Distributed Computing, 2006,

pp. 509-514.

[14] Y. Li, “The Inductive Approach to Strand Space,” Pro-

ceedings of 25th IFIP Conference on Formal Techniques

for Networked and Distributed Systems, LNCS 3731,

2005, pp. 547-552.

[15] G. Lowe, “Breaking and Fixing the Needham-Schroeder

Public-Key Protocol Using FDR,” Proceedings of 2nd

International Conference on Tools and Algorithms for the

10 Construction and Analysis of Systems, LNCS 1055,

pages 147-166, 1996.

[16] J. Heather and S. A. Schneider, “Toward Automatic Ve-

rification of Authentication Protocols on an Unbounded

Network,” Proceedings of 13th IEEE Computer Security

Foundations Workshop, 2000, pp. 132-143.

[17] F. Butler, I. Cervesato, A. Jaggard and A. Scedrov, “A

Formal Analysis of Some Properties of Kerberos 5 Using

MSR,” Proceedings of 15th IEEE Computer Security

Foundations Workshop, 2002, 175-190.

[18] L. Bozga, C. Ene and Y. Lakhnech, “A Symbolic Deci-

sion Procedure for Cryptographic Protocols with Time

Stamps,” Journal of Logic and Algebraic Programming,

Vol. 65, No. 1, 2005, pp. 1-35.

[19] C. Meadows, “Analysis of the Internet Key Exchange

Protocol Using the NRL Protocol Analyzer,” Proceedings

of 12th IEEE Computer Security Foundations Workshop,

1999, pp. 216-231.

[20] C. J. F. Cremers, “Feasibility of Multi-Protocol Attacks,”

Proceedings of 1st Conference on Availability, Reliability

and Security, 2006, pp. 287-294.

