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Abstract 

 
In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include 

time and timestamps to model security protocols with timestamps: we relate a key to a crack time and com-

bine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this 

new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea 

is to introduce a new relation a  to model the causal relation between one primary protocol session and one 

of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authen-

tication test. 
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1. Introduction 
 
The strand space model [1] is a formal approach to rea-

soning about security protocols. For a legitimate regular 

participant, a strand s  represents a sequence of mes-

sages that the participant would receive or send as part of 

a run as his/her role of the protocol. A typical message 

has the form of { }
K

h  denoting the encryption of h  

using key K . An element of the set of messages is 

called a term. A term 't  is a subterm of t  is written as 

tt '⊏ . Usually, we call a strand element node. Nodes can 

be either positive, representing the transmission of a term, 

or negative, representing the reception of a term. For the 

penetrator, the strand represents atomic deductions. More 

complex deductions can be formed by connecting several 

penetrator strands. Hence, a strand space is simply a set 

of strands with a trace mapping. Two kinds of causal 

relation (arrow), →  and ⇒ , are introduced to impose 

a graphic structure on the nodes of the space. The rela-

tion �  is defined to be the reflexive and transitive clo-

sure of these two arrows, modelling the causal order of 

the events in the protocol execution. The formal analysis 

based on strand spaces can be carried on the notion of 

bundles. A bundle is a causally well-founded set of 

nodes and the two arrows, which sufficiently formalizes 

a session of a protocol. In a bundle, it must be ensured 

that a node is included only if all nodes that proceed it 

are already included. For the strand corresponding to a 

principal in a given protocol run, we construct all possi-

ble bundles containing nodes of the strand. In fact, this 

set of bundles encodes all possible interactions of the 

environment with that principal in the run. Normally, 

reasoning about the protocol takes place on this set of 

bundles. 

However, the original strand space model has its se- 

mantical limitations to analyze the real-world protocols 

such as Kerbeoros protocols. First, it does not include 

timestamps as formalized message components, and 

therefore can not model security protocols with time- 

stamps. In fact, the strand space model [1] as given by 

Thayer Fábrega, Herzog, and Guttman is only bench- 

marked on nonce-based protocols such as the Needham- 

Schroeder protocol and the Otway-Rees protocol. But 

many modern protocols use timestamps to prevent replay 

attacks, so this deficiency of the strand space theory 

makes it difficult to analyze these protocols. Second, it 
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Foundation of China. 
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does not address issues of the protocol dependency when 

several protocols are mixed together. Many real-world 

protocols are divided into causally related multiple phas-

es (or subprotocols), such as the Kerberos and Neu- 

man-Stubblebine protocols. One phase may be used to 

retrieve a ticket from a key distribution center, while a 

second phase is used to present the ticket to a security- 

aware server. To make matters more complex, many 

protocols such as Kerbeors use timestamps to guarantee 

the recency of these tickets, that is, such tickets are only 

valid for an interval, and multiple sub-protocol sessions 

can start in parallel by the same agent using the same 

ticket if the ticket does not expire. Little work has been 

done to formalize the causal relation between protocols 

in a protocol mixture environment. 

The aim of this paper is twofold. The first aim is to 

extend the strand space theory to cover the aforemen- 

tioned two semantical features. Briefly, we include time 

and timestamps to model security protocols with time-

stamps: we relate a key to a crack time and combine it 

with timestamps in order to define a notion of recency. 

Therefore, we can check replay attacks in this new 

framework. We also extend the classic strand space 

theory to model protocol mixture: a new relation a  is 

introduced to model the causal relation between one 

primary protocol session and one of its following sec-

ondary protocol session. Despite the extensions, we hope 

that the extended theory still maintains the simple and 

powerful mechanism to reason about protocols. The 

second aim is practical. We hope to apply the extended 

theory to the analysis of some real-world protocols. Here 

we select Kerberos V as our case study. Kerberos V is 

appropriate because it covers both timestamps and pro- 

tocol mixture semantical features. 

 
2. Motivations 
 
2.1. A Short Introduction to Kerberos V 
 
The first version of Kerberos protocol was developed in 

the mid eighties as part of project Athena at MIT [2]. 

Over twenty years, different versions of Kerberos proto-

cols have evolved. Kerberos V (Figure 1 and Figure 2) 

is the latest version released by the Internet Engineering 

Task Force (IETF) [4]. It is a password-based system for 

authentication and authorization over local area networks. 

It is designed with the following aims: once a client au-

thenticates himself to a network machine, the process of 

obtaining authorization to access another network service 

should be completely transparent to him. Namely, the 

client only needs enter his password once during the au-

thentication phase. In order to access some network ser-

vice, the client needs to communicate with two trusted 

 

Figure 1. The layout of Kerberos V. 

 

 

Figure 2. Kerberos V: message exchanging. 

 

servers Kas and Tgs . Kas is an authentication server 

(or the key distribution center) and it provides keys for 

communication between clients and ticket granting serv- 

ers. Tgs  is a ticket granting server and it provides keys 

for communication between clients and application serv- 

ers. The full protocol has three phases each consisting of 

two messages between the client and one of the servers 

in turn. Messages 2 and 4 are different from those in 

Kerberos IV [2,4] in that nested encryption has been 

cancelled. Later we will show that this change does not 

affect goals of the protocol. 

 
2.2. Timestamps 
 
Timestamps are heavily used in the Kerberos protocols 

to guarantee the recency of messages. The strand space 

model cannot express security protocols with timestamps, 

although Guttman [5] provided a notion of recency and 

he used it to analyze replay attacks of a variant of the 

Yahalom protocol, it is still impossible to analyze secu- 
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rity protocols with timestamps. Timestamps are mainly 

used to avoid replay attacks in the literature of security 

protocols. Usually such attacks occur in protocols that 

involve a message encrypted by a session key, and the 

session key itself is sent as a part of a message which is 

encrypted by a long-term key. Although penetrators can 

never obtain a long-term key K  if K  is not sent as a 

part of a message, it is usually assumed that m  will be 

obtained from { }
K

m  via cryptanalysis by a penetrator 

after some time t , especially if a session key SK  is a 

component of m , then it will be compromised after the 

time t . Here, we say that the time t  is the crack time 

of K , and every key will be related to a crack time. 

Although the penetrator cannot obtain m  from { }
K

m  

during a protocol session provided that { }
K

m  did not 

occur in any old session and K ’s crack time is longer 

than the time of a session allowed, he still may replay 

stale messages and use the old compromised session 

keys to launch attacks if some message of the protocol 

does not contain necessary information to indicate its 

recency. 

For example, in the Needham-Schroeder symmetric 

key protocols (see Figure 3), when B  receives the third 

message { },
BK

A K , although B  can infer that it was 

generated by S , he is not certain of its recency because 

no such information is available. Perhaps { },
BK

A K  

has occurred in an old session, and a penetrator has 

cryptanalyzed the conversation to obtain the session K . 

In that case, the penetrator can start a session by resend- 

ing { },
BK

A K , and later return { }1b K
N + . Denning 

and Sacco [6] pioneered the use of timestamps to fix the 

flaw of the protocol. A timestamp t , which is a number, 

is employed in the ticket { }, ,
BK

A K t  by S  to mark 

the time of issue, and will be compared with the current 

time by the receiver B  to check whether the ticket is 

recent. In this paper, we will assume that all agents are 

synchronized via a global clock, so an agent knows the 

time when receiving or sending a message. 

 

 

Figure 3. Needham-Schroeder symmetric key protocol. 

In this paper, we extend the strand space model with 

such features. A crack time is attached to every key. The 

crack-time of a key K  is the time needed by a penetra- 

tor to break an encrypted message { }
K

m .
1
 We model a 

timestamp in the same way as atomic messages. A regu- 

lar agent can attach a timestamp in a message to indicate 

when it sends the message, and check whether a received 

message encrypted by a key K  is recent by comparing 

the timestamp in the message with the current time and 

the crack time of K . Once a message { }
K

m  is no longer 

recent, a penetrator can break the message to obtain m . 

 
2.3. Protocol Mixture 
 
Another important feature of Kerberos, which is difficult 

to model in strand space, is protocol mixture. Kerberos 

protocol comprises three protocol phases: authentication, 

authorization, and service protocol phases. Once a client 

has passed an authentication phase and obtained an au-

thentication ticket, then he can use the ticket to start mul-

tiple sessions of the authorization protocol phases in pa-

rallel to obtain different service tickets to access the ser-

vices he needs provided that the authentication ticket 

does not expire. Similarly, once the client has gone 

through a session of the authorization phase, then he can 

use the service ticket obtained to access the service serv-

er for many times provided that the service ticket does 

not expire. Usually we refer to a protocol as one primary 

protocol, and the protocol following it as a secondary 

protocol. We note that other researchers have discussed 

the problem of protocols mixture [7,8], but they empha-

sized more on independency between two protocols. 

Namely, if they have disjoint encryption, then the first 

protocol is independent of the second. By this they mean 

that if the first protocol can achieve a security goal (ei-

ther an authentication goal or a secrecy goal) when ex-

ecuted in isolation, then it still achieves the same security 

goal when executed in combination with the second pro-

tocol. In their theory, one primary and one secondary 

strands are rather independent of each other. 

However, in Kerberos protocols, a secondary strand 

cannot be independent of its primary strand, and the 

events of a secondary strand has temporal relation with 

the events of the primary strand. For example, assuming 

that a client A  runs a session 's  of an authorization 

phase of Kerberos V, then he must have passed an au-

thentication phase s . When A receives the second mes-

sage in the session 's , he must ensure that the current 

time should be before the ticket { }, , ,
Tgs

a K
A Tgs authK T  

expires, so A  needs know the time aT  when the ticket 

is created, and checks how much time has elapsed until 

now. This side condition cannot be expressed without the 

semantical specification of s , because in the intended 
1It is not the time to obtain K from {| m|}K. 
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case the ticket is a term encrypted with Tgs ’s long-term 

key, which is unintelligible to A , A  cannot know aT  

from the ticket. Then A  can only know the time aT  

from the previous authentication phase s . Therefore, we 

need to formalize the facts that 's  follows s , and A  

holds all the knowledge of s  when he runs 's , and 

there should be causal relation between events in s  and 

those in 's . Such semantical features are not covered in 

[7,8]. 

In order to model the aforementioned causal relation 

between a primary strand and its following secondary 

strands, we introduce a new relation a  between 

strands. 'ss a  holds if s  is a primary protocol strand 

and 's  is a subsequent secondary protocol strand. E.g., 

let s  and 's  be client strands in an authentication 

phase and authorization phase in Kerberos V respectively, 
'ss a  means that a client runs an authentication ses-

sion s , and subsequently starts an authorization session 
's . In practice, if 'ss a , then s  and 's  may be two 

different processes started by the same client, and when 

the client starts 's , he knows all the events which have 

occurred in s . This knowledge is useful for the client to 

perform actions in 's . E.g., when a client starts an au-

thorization session, he uses an authentication ticket 

which is obtained in the preceding authentication session, 

and he knows the time when the ticket is created. So a 

causal relation should be imposed on two events which 

occur in a primary strand and its subsequent secondary 

strand. 

Figure 4 illustrates a possible protocol execution of 

Kerberos V using the relation .a  A client runs an in-

stance in authentication phase, which is represented by 

the strand 1i . Following the primary protocol instance, 

the same client may run three authorisation subprotocol 

instances in parallel, which are showed in the strands 21i , 

,22i  and 23i  respectively. 21Tr  is a subtree which is a 

collection of client strands in the service phase. 22Tr  

and 23Tr  are similar to 21Tr . Note that the semantics of 

the relation a  means that 21i  and 22i  and 23i  inhe-

rits all the same knowledge from ,1i  so they shares the 

same ,authTicket  authK , Tgs , aT , etc. Therefore,  

if ( ) { }{ }1,1 = , , , ,
A

a K
term i authTicket A Tgs authK T  then 

then it must be the case that 

( ) { }{ }{11 1 1,1 = , , ,
authK

term i authTicket A t B  

and 

( ) { }{ }{13 2 2,1 = , , ,
authK

term i authTicket A t B  

for some 1t , 2t , 1B  and .2B  Here 
1 1
( )t B  can be 

different from ).( 22 Bt  This means that the client use the 

same authTicket  to obtain two different server tickets 

for accessing servers 1B  and .2B Without the relation 

 

Figure 4. An illustration of protocol mixture. 

 

,a  21i  and 1i  are independent, therefore the know-

ledge inherence relation between them can not be im-

posed. 

We extend the relation ⇒  in the strand space model 

in the way that 21 nn ⇒  holds if ),(=1 isn  and 

1),(=2 +isn , or 1)))((,(=1 −strlengthsn  and ,0)(=2

'sn  

and 'ss a . Namely, the edge means either that 1n  is 

an immediate causal predecessor of 2n  on the same 

strand s  or that 1n  is the last event in a primary strand 

s  and 2n  is the first event in the subsequent secondary 

strand 's . 

 
Structure of the Paper. In Section 3, we present the 
theory of the strand space method with our two exten-

sions. We devote Section 5 to a new definition of unsoli-

cited authentication test. We discuss related work and 

conclude the paper in Section 6. 
 
3. Preliminaries 
 
3.1. Messages and Actions 
 
The set of messages is defined as the following BNF 

notation: 

{ } ),(|,|

)(|)(|

)(|)(::= 

21 Khhh

tK

nAh

enc

timestampkey

noncename

 

where A  is an element from a set of agents, n  from a 

set of nonces, K  from a set of keys, and t  from a set 

of times. Here we assume that Time is the set of all nat-

ural numbers. 21 < tt  means that the time 1t  is earlier 
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than 2t . We represent a timestamp by marking t  as 

timestamp(t). Except this extension, the definitions of 

other kinds of messages are the same as those in the 

classic strand space theory. We call a key symmetric if 

KK =1− . Otherwise, K  is a public key and 1−K  is 

private. For each K , we define )(Kcracktime  as the 

crack time of K . { }1 2,h h  is called a composed mes-

sage. We will write { }{ }1 2 3, ,h h h  as { }1 2 3, ,h h h . 

{ } { }1 2 1 2, ,' 'h h h h=  if and only if 'hh 11 =  and 'hh 22 = . 

We abbreviate ),( Khenc  as { }Kh , denoting the en-

cryption of h  using key K . In our formulation, we use 

AK  to define a long-term key shared between an agent 

(also called a client) A  and a server, and clients have 

distinct keys. An element of the set of messages is also 

called a term. Terms of the form name(A), nonce(n), 

timestamp(t), or key(K) are said to be atomic.
2
 The set 

of all messages is denoted by Message. A message h  is 

a text message if Kh ≠  for any K . The set of all 

atomic text messages is denoted by T . We frequently 

need the subterm relation on messages. A term 'g  is a 

subterm of g  is written as gg '
⊏ . 

Definition 1 The subterm relation ⊏  is defined induc-

tively as the smallest relation such that gg⊏ , { }
K

g h⊏  

if hg⊏ , and { }1 2,g h h⊏  if 1hg⊏  or 2hg⊏ . 

In our extended strand space model, we need to revise 

the definition of actions. The main point is to record the 

time when an action takes place. The transmission of a 

term g  at time t  is denoted by ),,( gt + , and the re-

ception of a term g  at t  is denoted by ),,( gt − . Both 

are the possible actions that participants and a penetrator 

can take. We represent the set of finite sequences of ac-

tions by (Time, ±, Message)*. 

 
3.2. Strands and Strand Spaces 
 
A strand space Σ  is a set of strands with a trace map-

ping *),(: MessageTime ±→Σ ,tr . A strand element is 

called a node. ),( is  is the i -th node on strand s  

( )(<0 slengthi≤ ). We use sn∈  to denote that a node 
n  belongs to the strand s . The set of all the nodes is 

denoted by N . If ),(= isn  and ),,(=)( gtstr i σ , 

then we define )(ntime  and )(nterm  and )(nsign  to 

be the occurring time, the term and the sign of the node 

n , respectively. Namely, tntime =)( , gnterm =)( , and 

σ=)(nsign . We call a node positive if its term has sign 

+ , and negative if its term has sign − . A strand is a 

protocol history from the point of view of a single par-

ticipant in a protocol run, so we explicitly define an 

attribute function Aattr →Σ:  to indicate which 

agent’s peer a strand is. Namely, asattr =)(  means that 

a  is the agent who performs actions of the strand s  in 

the run. 

As mentioned in Section 2, we introduce a relation 

a  between strands to model protocol mixture, and 
'ss a  holds if s  is a primary protocol strand, and 's  

is a subsequent secondary protocol strand. To make our 

theory sound, we also restrict the relation a  to be a 

tree-like one with the following principles. First, a  is 

irreflexive, i.e. ss a/ . Second, every strand has at most 

one a  predecessor, meaning if ''ss a  and ''' ss a , 

then 'ss = . The two restrictions are consistent with our 

intuition on protocol mixture. The first principle says that 

one protocol session can not follow itself, this simply 

means that the primary protocol session and any one of 

its following secondary protocol sessions are different. 

The second principle shows that one secondary protocol 

session follows a unique primary protocol session. 

Two kinds of causal relation (arrow), →  and ⇒ , 

are introduced to impose a graph structure on the nodes 

of Σ . To be more precise, the relation 'nn⇒  holds 

between nodes n  and 'n  if ),(= isn  and 1),(= +isn'  

and ),()( 'ntimentime ≤  or ( )( )( )1,= −strlengthsn  and 

,0)(= '' sn  and 'ss a  and )()( 'ntimentime ≤ . This 

relation means that the event 'n  immediately follows 

n . On the other hand, the relation 'nn →  holds for 

nodes n  and 'n  if gntermnterm ' =)(=)(  for some term 

g , +=)(nsign  and −=)( 'nsign , and )()( 'ntimentime ≤ . 

This represents that n  sends a message g  and 'n  

receives the message at a later time. Obviously, here we 

require that the two relations must respect the order of 

time. The relation �  is defined to be the reflexive and 

transitive closure of →  and ⇒ , modelling the causal 

order of the events in the protocol execution. We say that 

a term g  originates at a node n  if and only if n  is 

positive, ),(ntermg⊏  and there is no node 'n  such 

that nn' +
⇒  and )( 'ntermg⊏  ; We say that g  uni-

quely originates if and only if there exists an unique node 

n  such that g  originates from node n . Nonces and 

other recently generated terms such as session keys are 

usually uniquely originated. 

 
3.3. Penetrator Strands 
 
The symbol Bad is defined to denote the set of all the 

penetrators, and if an agent is not in Bad, then it is regu-

lar. There is a set of keys that are known initially to all 

the penetrators, denoted as 
P

K . 
P

K  usually contains 

all the public keys, all the private keys of all the penetra-

tors, and all the symmetric keys initially shared between 

all the penetrators and principals playing by the protocol 

rules. It can also contain some keys to model known-key 

attacks. In this paper, we only need the fact that if an 

agent is not a penetrator then his shared key cannot be 

penetrated, which is formalized as follows. 

2For convenience, we often write A, n, K and t instead of name (A), 

nonce (n), key (K), and timestamp (t). 
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Axiom 1 If Bad∉A , then 
P

K∉AK . 

In the classic strand space theory, a penetrator can in-

tercept messages, generate messages that are computable 

from its initial knowledge and the messages it intercepts. 

These actions are modelled by a set of penetrator strands, 

and they represent atomic deductions. More complex 

deduction actions can be formed by connecting several 

penetrator strands. In our extension, we assume that pe-

netrators share their initial knowledge and can cooperate 

each other by composing their strands. Besides the beha-

viors inherited from classic strand space theory, a pene-

trator has the ability to crack an encrypted message once 

the message is no longer recent (see hKKC ,  strand). 

Definition 2 A penetrator’s trace relative to 
P

K  is one 

of the following, where Time∈321 ,,, tttt  and 321 ttt ≤≤ : 

• Mg (text message): )],,[( gt + , where Tg ∈ . 

• KK (key): )],,[( Kt + , where 
P

K∈K . 

• Cgh (concatenation): { })],,,(),,,(),,,[( 321 hgthtgt +−− . 

• Sg,h (separation): { } ,,(),,,(),,,,[( 321 ++− tgthgt )]h . 

• Eh,K (encryption): ,,(),,,(),,,[( 321 +−− thtKt { } )]
K

h . 

• Dh,K (decryption): { } )],,(),,,(),,,[( 32

1

1 hthtKt
K

+−−
−

. 

• KCK,h (key-crack): { } )],,(),,,[( 21 htht
K

+− , where 

21 <)( tKcracktimet + . 

In our theory, if a strand s  belongs to a penetrator, 

namely, ( )attr s ∈Bad , then s  must be a penetrator 

strand. If a strand is not a penetrator strand, then it is 

regular. A node is called regular if it is not in the pene-

trator strands. Except the key crack strand ( hKKC ,  ), our 

penetrator model is similar to the one in [1]. Here 

gM (or KK ) does not imply that a penetrator can issue 

any unguessable terms which are not in his initial know-

ledge such as nonces and session keys. Because when we 

introduce secrecy or authentication properties about an 

unguessable term t  for all penetrators, we usually as-

sume that t  uniquely originates from a regular strand, 

and this implicitly eliminates the possibility that any pe-

netrator can originate t . Intuitively, we use a  to 

model regular agents to start a primary protocol session 

and then starts multiple parallel secondary protocol ses-

sions, so a penetrator strand cannot be mixed with any 

other strand. To be more precise, for all penetrator 

strands s  and all strands 's , we have that 'ss a/  and 

ss' a/ . This implies that a penetrator strand can only be 

composed with other strands by the relation → . 

 
3.4. Bundles 
 
The formal analysis based on strand spaces is carried on 

the notion of bundles, which represents the protocol ex-

ecution under some configuration. A bundle is a causally 

well-founded graph, which sufficiently formalizes a ses-

sion of a protocol. 

Definition 3 Suppose ( )( ),,
BBB

�B ⇒∪→N  ,⊆→→
B

 

and .⊆⇒⇒
B

 B  is a bundle if 

• 
B

N  and 
B

→  and 
B

⇒  are finite; 

• If the sign of a node n  is − , and 
B

Nn∈ , then 

there is a unique positive node 'n  such that 
B

Nn' ∈  

and nn'

B
→ ; 

• If nn'
⇒  and 

B
Nn∈ , then 

B
Nn' ∈  and 

nn'

B
⇒ ; 

• B  is acyclic. 

Suppose B  is a bundle, we say B∈n  if n  is a 

node in 
B

N , and use 
B
�  to denote the reflexive and 

transitive closure of the relation →  and ⇒  in B . In 

a bundle, it must be ensured that a node is included only 

if all nodes that proceed it are already included. So a 

bundle B  has the following properties: 

Lemma 1 (Bundle well foundedness) Let B  be a 

bundle. Then 
B
�  is a partial order, i.e. a reflexive, 

antisymmetric, transitive relation. Every non-empty sub-

set of the nodes in B  has 
B
�  minimal members.  

We have formalized the above extended strand space 

theory in the theorem prover Isabelle/HOL [9]. See [10] 

for details. 

 
4. Penetrator’s Knowledge Closure Property 
 
In this section, we will describe a useful property on pe-

netrator strands. This property specifies what knowledge 

can be obtained from some special message set. First we 

need to define a key is regular w.r.t. a node m  in a 

bundle. 

Definition 4 A key K  is regular w.r.t. a node m  in 

a bundle B , denoted by ( )B,,mkregular , if and only if 

the following condition holds: for any node n  in B , if 

Knterm =)(  and )()( mtimentime ≤ , then n  must be 

regular. 

This definition is about K ’s secrecy w.r.t. a node m  

in a bundle B , which means that K  cannot be penetrated 

before m  in the bundle. In most of the cases, we only 

consider security properties for a protocol in a given bun-

dle, so it is natural for us to just consider whether a key 

can potentially be penetrated in this bundle. Besides, we 

also need consider temporal restriction )()( mtimentime ≤  

because we discuss K ’s secrecy a timed framework. 

Definition 5 Let m  be a node in a bundle .B  A 

message ,t  is a component w.r.t. m  in bundle ,B  

denoted by ( )B,,mtcomponent , if 

1) g∀(  { });,. hgth ≠  

2) { } ( )( )( )B,,=.
1
mkregularhtkh

k

−
→∀  

Intuitively, ( )B,,mtcomponent  means that t  basic 

unit that can not be analyzed in B  by penetrators. 

Namely, t  can not be detached because t  is not a 

concatenated form; and if t  is an encrypted form of 
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{ }
K

h  t  can not be decrypted before m  in B  be-

cause 1−k  can not be penetrated before m . 

Definition 6 Let m  be a node in a bundle .B  a  is 

a message which uniquely originates at some node n . A 

message set M  is a test suite for a  w.r.t. m  in ,B  

denoted by ( )B,,,, nmaMsuite  if 

1) →∈∀ taMt ⊏.  ( )B,,mtcomponent  

2) (. →∈∀ taMt ⊏ { }
k

hthk =.∀  →  )(mtime  ≤  

))()( kcracktimentime +  

3) ;. Mttat ∈→/∀ ⊏  

Intuitively, ( )B,,,, nmaMsuite  means that for any 

Mt∈  such that ,ta⊏  t  can not be detached or de-

crypted before m  because such t  is a component w.r.t. 
m  in bundle B ; furthermore, if t  contains a  and is 

of the form { }
K

h  for some k  and ,h  t  can not be 

cracked before m  because the duration between m  

and n  is less than k ’s crack time, and this is guaran-

teed by (2). Recall that )(ntime  is the first time when 
a  occurs because a  uniquely originates at .n  

Now we need introduce a function synth  on a mes-

sage set H , which captures the “building up” aspect of 

penetrator's ability [4,11]. ( )Hsynth  is defined to be the 

least set that includes H , agents, timestamps and is 

closed under pairing, and encryption. 

Definition 7 Consider a message set ,H  )(Hsynth  

is a message set which is defined inductively as follows: 

1) )(HsynthA∈  if A  is an agent name; 

2) )(Hsyntht ∈  if t  is a timestamp; 

3) )(Hsynthm ∈  if Hm∈ ; 

4) { } ),(Hsynthh
k

∈  if )(Hsynthh∈  and ;Hk ∈  

5) { } ),(, Hsynthhg ∈  if )(Hsynthg ∈  and 

).(Hsynthh ∈  

In the context of this paper, we usually assume that a  

is an unguessable atomic message such as a nonce, 

which is uniquely originated from a regular strand and 

encrypted in a message. Let },|{=0 MttatM ∈∧⊏  in 

later discussions we usually assume that 0M  is the set 

of messages which is emitted by some regular strands. f 

M  is a test suite for a  w.r.t. m  in b , then the set 

synth ( )M  is a knowledge closure which penetrators 

can synthesize in the bundle b  from .M  Namely, if 

the messages received in a penetror strand are in 

synth ( )M , then the messages sent in the strand must 

still be in synth ( ).M  

Before we prove the closure property, we need two 

useful lemmas, as shown below: 

Lemma 2 If M  is a test suite for a  w.r.t. m  in 

,B  and { }∈hg, synth ( ),M  then ∈g synth ( )M  and 

∈h synth ( ).M   

Lemma 3 If { } ( ),Msynthh
K

∈  then ( )Msynthh∈  

or { } .Mh
K

∈  

Let a  be an atomic message that uniquely originates 

at some node n , m  be a positive penetrator node in a 

bundle B  such that and ( ).mterma⊏  Suppose M  is 

a test suite for a  w.r.t. m  in the bundle B , if any 

message that the penetrator can receive in the strand is in 

( ),Msynth  then the penetrator can only send a term 

which is still in ( )Msynth . Figure 5 illustrates such 

behaviors of penetrators on knowledge, where (a) shows 

the cases for ,,hgC  ,,KhE  and ;,KhD  (b) shows the 

case for ;,hgS  and (c) shows the case for .,hKKC  

Lemma 4 Let m  be a positive penetrator node in a 

 

 

Figure 5. Penetrator’s knowledge closure property. 
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bundle ,B  a  be an atomic message that uniquely ori- 

ginates at a regular node n , M  be a message set such 

that ( ),,,,, BnmaMsuite  and ( ) ( )Msynthmterm ' ∈  for 

any node such that ,mm' +
⇒  then ( ) ( ).Msynthmterm ∈   

Proof. For convenience, the assumption that 

( ) ( )Msynthmterm ∈  for any node such that nm +
⇒  is 

referred as (1) in the proof as follows. 

By case analysis on the form of penetrator strand, we 

can easily exclude the cases when m  is in a strand 

gM , .KK  If thus, we can conclude that a  originates 

at .m  This contradicts with the fact that uniquely origi-

nates at a regular node .n  Therefore, m  is in a strand 

i  such that i  is hgC , , ,,hgS  ,,KhE  ,,KhD  or 

hKKC , . 

Case 1: i  is in ,,hgC  then ( ) 2,=mindex  ( ) ,=,0 giterm  

( ) ,=,1 hiterm  and ( ) { }hgmterm ,=  for some g , ,h  

and ( ) ,=,0 −isign  and ( ) −=,1isign . From the assump-

tion (1), we have ( ) ( )Msynthiterm ∈,0  and ( )∈,1iterm  

( ),Msynth  then ( )Msynthg ∈ and ( );Msynthh ∈  By 

the definition of synth  operator, { } ( ), ,g h synth M∈  

then ( ) ( ).Msynthmterm ∈  

Case 2: i  is in ,,hgS  then ( ) 1,=mindex  or ( ) 2,=mindex  

( ) { },,=,0 hgiterm  ( ) ,=,1 giterm  and ( )=mterm  h  

for some g , .h  From the assumption (1),  we have 

( ) ( )Msynthiterm ∈,0 , { }∈hg, synth ( ),M  by Lemma 

4, we have ( )Msynthg ∈  and ( ).Msynthh ∈  So 

( )∈mterm  ( ).Msynth  

Case 3: i  is in ,,KhE  then ( ) 2,=mindex  

( ) ,=,0 Kiterm  ( ) ,=,1 hiterm  and ( ) { }
K

' hmterm =  

for some K , ,h  and ( ) ,=,0 −isign  and ( ) .=,1 −isign  

From the assumption (1) , ( ) ( )Msynthiterm ∈,0  and 

( ) ( ),,1 Msynthiterm ∈  then ( )MsynthK ∈  and 

( );Msynthh∈  by the definition of synth , we have 

{ } ( ),Msynthh
K

∈  then ( ) ( ).Msynthmterm ∈  

Case 4: i  is in ,,KhD  then ( ) 2,=mindex  ( ) ,=,0 1−Kiterm  

( ) { } ,=,1
K

hiterm  and ( ) hmterm =  for some K , ,h  

and ( ) ,=,0 −isign  and ( ) .=,1 −isign  From the assumption 

(1), we have ( ) ( )Msynthiterm ∈,0  and ( ) ( ),,1 Msynthiterm ∈  

therefore ( )MsynthK ∈−1  and { } ( ),Msynthh
K

∈  by 

Lemma 4, we have either (4-1) ( ) ( )Msynthhmterm ∈=  

or (4-2) { } .Mh
K

∈  From (4-1), the lemma can be 

proved at once. For the case (4-2), there are also two 

subcases, either (4-2-1) { }
K

ha⊏/  or (4-2-2) { } .
KK

ha⊏  

From (4-2-1), we have ,ha⊏/  by M  is a test suite for 

a  in b , so ,Mh∈  then h  ∈  synth M , then term 
'm  ∈  synth .M  From (4-2-2), then by M  is a test 

suite for a  in b , we have component { }
K

h  ,b  then 

we have ( ).,,1 BmKregular −  From this and ( ) B∈,0i  

and ( ) ,=,0 1−Kiterm  then i  is regular, but this contra-

dicts with that m  is in a penetrator strand. 

Case 5: i  is in ,,hKKC  then ( ) 1,=mindex  

( ) ,=,1 hiterm  ( ) { } ,=,0
K

hiterm  (2)  

( ) ( ).,1<)(,0 itermKcracktimeiterm +  From the assump-

tion (1),  we have { } ( ).Msynthh
K

∈  From this, by 

Lemma 3, we have either (5-1) ( )Msynthh∈  or (5-2) 

{ } .Mh
K

∈  From (5-1), the lemma can be proved at once. 

For the case (5-2), there are also two subcases, either 

(5-2-1) { }
K

ha⊏/  or (5-2-2) { } .
K

ha⊏  From (5-2-1), we 

have ,ha⊏/  by the definition of ( )B,,,, nmaMsuite , so 

,Mh∈  then ( ).Msynthh∈  From (5-2-2), then by the 

definition of ( )B,,,, nmaMsuite , we have (3) 

).()()( kcracktimentimemtime +≤  From ( ),,0iterma⊏  and 

a  uniquely originates at ,n  we have ,0).()( itimentime ≤  

Then we have  

),(,0)()()( kcracktimeitimekcracktimentime +≤+  

with (3), we have ).(,0)()( kcracktimeitimemtime +≤  

But this contradicts with (2). 

On the other side, a strand’s receiving nodes get mes-

sages which are all in ( ),Msynth  but a new message, 

which is not in ( )Msynth , is sent in the strand, then the 

strand must be regular because a penetrator strand can 

not create such a term. The result can be simply inferred 

from Lemma 4. 

Lemma 5 Let mbe a positive node in a bundle ,B  a  

be an atomic message that uniquely originates at a reg-

ular node n , M  be a message set such that 

( ),,,,, BnmaMsuite  and ( ) ( )Msynthmterm ' ∈  for any 

node such that ,mm' +
⇒  and ( ) ( ),Msynthmterm ∉  then 

m  is regular .  

For Lemma 4 and 5, we have two comments: 

1) Lemma 4 characterizes the knowledge closure 

properties of a penetrator’s operations on messages. It 

says that if a penetrator only receives messages in 

( ),Msynth  where M  is a test suite for some atomic 

message ,a  then the augmented knowledge of the pe-

netrator is still in ( )Msynth  after the receiving actions. 

2) Lemma 5 provides a key technique to prove the au-

thentication guarantee that m  is regular. Intuitively, 

condition (1) of suite  requires the secrecy of the in-

verse key 1−k  for any key k  which is used to encrypt 

any message in M  containing a ; condition (2) of op-

erator suite  is a recency restriction that these encrypted 

messages containing a  can not be cracked until .m  

Therefore this lemma provides a means of using secrecy 

and recency restriction to prove authentication guarantee. 

We will see this result is very useful for us to check 

whether a strand is regular in the next sections. 

Note that the two lemmas relates the algebraic opera-

tor synth  in trace theory [4,11] with penetrator’s strand 

ability to deduce knowledge, which is the most important 
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one which differs our work from the classical strand 

space theory. Such closure properties are not available in 

the classical strand space theory because message alge-

bra operators such as synth  are not formalized. 

5. Unsolicited Tests 
 
In [12] (Subsection 4.2.3), a negative node n  is an un-

solicited test for { }
K

h , if { }
K

h  is a test component 

for any atomic text a  in n , and K  cannot be pene-

trated in the strand space. Then an unsolicited test for 

{ }
K

h  in a bundle B  can guarantee the existence of a 

positive regular node of which { }
K

h  is a component. 

We simplify this definition of unsolicited tests by the 

following two aspects: 

1) we consider a node n  is an unsolicited test for 

{ }
K

h  in a bundle B ; 

2) we only require that { }
K

h  is a subterm of the 

term of n , and K  is regular w.r.t. n  in the bundle 

B  instead of a strand space. 

In our formulation, unsolicited authentication test is a 

kind of regularity about an encrypted term { }
K

h , which 

is a subterm of a node n  where K  cannot be pene-

trated before n  in a bundle B . Then it can be ensured 

that there is a positive regular node m  originating 

{ }
K

h  as a subterm, i.e., m  has { }
K

h  as a subterm 

and it also holds that { } )( '

K
mtermh ⊏/  for any node 

mm'

B
� . Intuitively, the reason why m  must be regular 

lies in that K  cannot be penetrated before m  in B . 

So the penetrator cannot create { }
K

h  by encrypting h  

with K . 

Definition 8 Given a bundle B . A node n  in B  is 

an unsolicited test for { }
K

h  if { } )(ntermh
K
⊏ , and 

K  is regular w.r.t. n  in B .  

Lemma 6 (Unsolicited authentication test) B  is a 

given bundle. Let n  be an unsolicited test for { }
K

h . 

Then there exists a positive regular node m  in B  such 

that nm
B
�  and { } )(mtermh

K
⊏  and { } )( '

K
mtermh ⊏/  

for any node 'm  such that mm'

B
� .  

Proof. Let { } )}(|{= xtermhnxxP
Kdf ⊏� ∧

B
. Ob-

viously, Pm∈ . By Lemma 1, there exists a node 'm  

such that 'm  is minimal in P , which means that 

{ } )( '

K
mtermh ⊏ , nm'

B
� , and for all y  such that 

'my
B
� , Py∉ . Hence, { } )(ytermh

K
⊏/ . 

First, we prove that the sign of 'm  is positive by 

contradiction. If −=)( 'msign , then by the upward- 

closed property of a bundle there must be another node 
''m  in B  such that +=)( ''msign  and ''' mm → . Then 

we have (a) ''' mm
B
�  and (b) )(=)( ''' mtermmterm . 

By (a) and nm'

B
� , we have nm ''

B
� . By (b) and 

{ } )( '

K
mtermh ⊏ , we have { } )( ''

K
mtermh ⊏ . Hence, 

Pm '' ∈  which contradicts with the minimality of 'm . 

Second, we prove that 'm  is regular. We show that a 

contradiction can be derived if 'm  is in a penetrator 

strand. Here, we only analyze cases when 'm  is in ei-

ther 'gg
C

,
 (concatenation strand), 'Kg

E
,

 (encryption 

strand), or 
g'K

KC
,
 (key crack strand). Other cases are 

either straightforward or can be analyzed in a similar 

way. 

• 'm  is in 'gg
Ci

,
∈ . 

By the form of the strand 'gg
C

,
 and the fact that 'm  

is a positive node, we have ,2)(= im' , 

{ }'' ggmterm ,=)( , giterm =,0)( , and 'giterm =,1)(  

for some g , 'g . By the upwards-closed property of a 

bundle, we have that nodes ,0)(i  and ,1)(i  must be in 

B . By { } { }, '

K
h g g⊏ , we have either { }

K
h g¤  or 

{ }
K

h g ′⊏ , i.e. { } ,0)(itermh
K
⊏  or { } ,1)(itermh

K
⊏ . 

So either node Pi ∈,0)( , or node Pi ∈,1)( . Both cases 

contradict with the minimality of 'm . 

• 'm  is in 'Kg
Ei

,
∈ . 

By the form of the strand 'Kg
E

,
 and the fact that 'm  

is a positive node, we have ,2)(= im' , 

{ } 'K

' gmterm =)( , 'Kiterm =,0)( , and giterm =,1)(  

for some g  and 'K . So { } { }
K K

h g′⊏ . Then it is 

straightforward that either (1) { }
K

h g⊏  or (2) gh =  

and 'KK = . For the first case, we have 

{ } ,1)(itermh
K
⊏ . It is easy to derive a contradiction by 

the same argument as before. For the second case, by the 

definition of the relation ⇒ , we have (a) 

,2)(,0)( itimeitime ≤ . And by definition of P , we also 

have (b) )()( ntimemtime ' ≤ . Hence, )(,0)( ntimeitime ≤ . 

However, by the assumption that K  must be regular 

w.r.t. n  in B , ,0)(iterm  must be regular, and this 

contradicts with the fact that i  is a penetrator strand. 

• 'm  is in 
g'K

KCi
,

∈ . 

By the form of the strand 
g'K

KC
,
, and the fact that 

'm  is a positive node, we have ,1)(= im' , gmterm
'
=)( , 

{ } 'K
giterm =,0)(  for some g  and K ′ , and  

)(<)(,0)( 'mtimeKcracktimeitime + . 

By { } gmtermh '

K
=)(⊏ , so { } { } 'KK

gitermh =,0)(⊏ . 

Obviously nmi '

BB
��,0)( . So Pi ∈,0)( , which contra-

dicts with the minimality of 'm . 

The proof totally depends on the well-founded induc-

tion principle on bundles, and we have formalized the 

proof of this lemma in Isabelle/HOL in our inductive 

strand space model, and the proof scripts are available at 

[10]. In fact, lemma 6 provides a useful proof method to 

reason about authentication properties basing on secrecy 

properties. Note that the premise that n  is an unsoli-

cited test for { }
K

h  requires that K  is regular w.r.t. 

n  in B , which is an assumption on the secrecy of K . 

And the conclusion is an authentication guarantee of the 

existence of a regular node m . Besides, compared with 

the original version of unsolicited test, our result also has 
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two extensions that nm
B
�  and m  is minimal (i.e., 

{ } )( '

K
mtermh ⊏/  for any node 'm  such that )mm'

B
� . 

We find that the extended version of unsolicited authen-

tication test is quite useful in many cases, especially in 

the verification of authentication properties of symmetric 

key based protocols. In [13], we have used a version of 

unsolicited authentication test in the classical strand 

space theory to give new proofs of authentication proper-

ties of the Otway-Rees protocol. In this work, we have 

successfully applied unsolicited authentication test to our 

study of the Kerberos V protocol in the next paper. 

 
6. Conclusions and related Work 
 
This work is an extension of [14]. We have added two 

new semantical features in our new framework: time-

stamp and protocol mixture. In essence, our treatment of 

timestamps is to add a global clock to the underlying 

execution model, and to extend every action by a tem-

poral annotation. This allows us to align the timestamps 

sent in the protocol messages with the actual occurrence 

times of the corresponding actions. Although it is quite 

straightforward, it gives a powerful mechanism to reason 

about recency of a message. For protocol mixture, we 

admit a realistic assumption that a regular agent can start 

multiple parallel secondary sessions once he has finished 

a primary protocol session, and he holds all the informa-

tion of the primary protocol session when he begins a 

secondary protocol session. So we introduce a causal 

relation a  between strands to model the protocol de-

pendency. The above two semantical features are seldom 

discussed in previous works of strand space literature. 

Despite the aforementioned extensions in semantics, 

the definition of a bundle, which is the cornerstone of the 

strand space theory, remains unchanged. So the induction 

principle on the well-foundedness of a bundle is still ef-

fective in our model. Based on this principle, we have 

proved an extended result of the unsolicited authentica-

tion test. 

In the literature, most of the existing approaches for 

protocol analysis have not concentrated on timestamps 

and replay attacks. These include the CSP model- 

checking approach [15], the rank functions [16], and the 

Multi-Set Rewriting formalism (MSR) [17]. Paulson and 

Bella's inductive method [4,11] is one exception. They 

not only have extended their method to model replay 

attacks, but also have succeeded in applying their method 

to the Yahalom protocol and the Kerberos IV protocol. 

Recently, Bozga et al. [18] proposed an approach based 

on timed automata, symbolic verification techniques and 

temporal logic to analyze security protocols with time-

stamps. But they haven’t applied their approach to any 

real-world security protocols. 

For protocol mixture, there have been a few works to 

reason rigorously about protocol interactions. For in-

stance, Meadows studied the Internet Key Exchange 

protocol, emphasizing the potential interactions among 

its specific sub-protocols [19]. The analysis work was 

conducted in the NRL protocol analyzer. Recently, Cre-

mers discussed the feasibility of multi-protocol attacks, 

and his work is done in the operational semantical frame- 

work which considers a so-called type flaw attacks [20]. 

All these works, including [7], focus on protocol interac-

tions by message exchanging. Instead, our work empha-

sizes on the dependency between a primary protocol ses-

sion and a secondary protocol session. Here we assume 

that when a regular agent starts a secondary protocol 

session, he should be aware that he has finished a cor-

responding primary protocol session, and he maintains 

all the information obtained in the primary protocol ses-

sion, such as tickets and the creation time of the tickets. 

These modelling assumptions fit well with the real-world 

environments where the Kerberos protocols run. 
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