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ABSTRACT 

In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless 
sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a 
cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects 
them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and 
events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node 
detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy 
without sacrificing normal sensor nodes. 
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1. Introduction 

Sensor networks consist of a large number of small sen- 
sor nodes with sensing, computation, and wireless com- 
munication capabilities to monitor various environments 
and detect events of interest [1]. Due to the limited re- 
sources of sensor nodes, the networks are vulnerable to 
faults and malicious attacks. Malicious nodes may gen- 
erate arbitrary reports regardless of the actual sensor 
readings, leading to an incorrect decision, resulting in 
reduced network lifetime and loss of network connec- 
tivity. Hence it is important to identify malicious nodes 
in the presence of events and faults and isolate them 
upon detection. 

Several faults, anomaly, or outlier detection schemes 
for wireless sensor networks have been presented in the 
literature [2-7]. Most of them focus on detecting faulty 
sensor nodes or removing anomalous sensor readings in a 
distributed manner, assuming that majority of the sensor 
nodes report correctly. Some efforts have also been made 
to distinguish events from faults by exploiting the notion 
that measurement errors due to faults are likely to be 
uncorrelated, while measurements in a target region are 
spatially correlated [8-13]. In [11] a secure event bound- 
ary detection scheme was presented to correctly identify 
event boundaries in adversarial environments. Event de- 
tection using decision tree classifiers running on indi- 
vidual sensor nodes and applying a voting scheme to 
reach consensus among detections made by various sen- 
sor nodes has been proposed for disaster management 
[12]. 

In fault, event, or anomaly detection in wireless sensor 
networks, malicious nodes are often ignored or lightly 
treated, although they are likely to appear in the networks. 
In the case where malicious nodes generate arbitrary 
readings that do not conform to the defined fault model, 
the resulting performance might be poorer than the esti- 
mated one. Moreover, if they behave intelligently, it 
would be more difficult to detect events in the presence 
of wrong reports and distinguish events from false alarms 
due to the malicious nodes. 

Several schemes for detecting malicious nodes in 
wireless sensor networks have been proposed [14-18]. 
Curiac et al. [14] presented a detection scheme using 
autoregression technique. In [15] signal strength is used 
to detect malicious nodes. A message transmission is 
considered suspicious if the strength is incompatible with 
the originator’s geographical position. Xiao et al. deve- 
loped a mechanism for rating sensors in terms of correla- 
tion by exploring Markov Chain [16]. A network voting 
algorithm is introduced to determined faulty sensor 
readings. Atakli et al. [17] proposed a malicious node 
detection scheme using weighted trust evaluation for a 
three-layer hierarchical sensor network. Trust values are 
employed and updated to identify malicious nodes be- 
having opposite to the sensor readings. Ju et al. [18] pre- 
sented an improved intrusion detection scheme based on 
similar weighted trust evaluation. The mistaken ratio of 
each individual sensor node is used in updating the trust 
values. Trust management schemes have been proposed 
in routing and communications [19]. Some efforts have 
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also been made to combine communication and data 
trusts [20]. However, malicious node detection in the 
presence of events and various types of misleading sen- 
sor readings due to the compromised nodes have not 
been deeply investigated. In addition, the problem of 
distinguishing malicious nodes from events has not suffi- 
ciently been taken into account. 

Meanwhile, clustering schemes in wireless sensor 
networks have been investigated for energy efficiency 
and scalability in routing and data aggregation. Grid- 
based schemes, where network areas are divided into 
small grids, have also drawn special attentions due to 
their simplicity [21-23]. In [24] an energy efficient 
framework for detecting events in clustered sensor net- 
works was presented. A cellular approach to fault detec- 
tion and recovery in sensor networks is presented in [25], 
where a virtual grid structure is used to detect en-
ergy-depleted nodes. 

In this paper, we present a malicious node detection 
scheme using confidence level evaluation in a grid-based 
wireless sensor network. Inter-grid communications are 
employed, if necessary, to distinguish events from false 
alarms due to malicious nodes. Confidence levels of 
member nodes are updated to reflect their behavior in 
decision-making. The scheme is designed to identify 
malicious nodes even in the presence of relatively small 
event regions. 

2. Background 

In this section, we briefly introduce the network model 
for our malicious node detection scheme and define the 
behavior of malicious node to be identified. 

2.1. Grid-Based Sensor Networks 

Grid-based sensor networks have been proposed for en- 
ergy efficient data aggregation and routing [21]. Our ma- 
licious node detection scheme is developed to conform to 
the protocol of the hierarchical networks. The sensor 
field in a grid based sensor network is assumed to be 
divided into M N  square-shaped grids as illustrated 
in Figure 1, where there are nine grids, A through I, and 
l is the side of a grid. Sensor nodes are assumed to be 
deployed randomly. Each sensor node is also assumed to 
know its own location. Immediately after deployment, 
the sensor network carries out grid construction process, 
and each sensor node figures out the grid it belongs to. 
Sensor nodes in each grid form a cluster, where a cluster 
head is selected dynamically. All other nodes in the clus-
ter communicate directly with the cluster head. Two 
types of communication are defined here for malicious 
node detection: one for communication between the 
cluster head and cluster members and the other for com-
munication between neighboring cluster heads. 

 

Figure 1. A sensor network with nine grids. 
 

The decision made at a cluster head alone based on the 
sensor readings of its member nodes might not be accu- 
rate due to the difficulty in distinguishing between false 
alarms and events, especially for a relatively small event 
region located across multiple grids as illustrated in Fi- 
gure 1 (see R1). Each grid, in that case, has insufficient 
number of event-nodes to apply a threshold test, such as 
the well-known majority voting. Consequently, lowering 
the threshold might be needed to achieve high event de- 
tection performance, causing a considerably high false 
alarm rate, unless the number of malicious nodes is neg- 
ligibly small. 

In order to cope with the expected poor performance, 
we estimate the event region, if necessary, with inter-grid 
communication, by finding the center of the nodes re- 
porting an alarm, and then apply a threshold test to the 
estimated event region. 

2.2. Modeling Malicious Nodes 

In this paper, we assume that each sensor node is aware 
of the range of normal readings. For clarity, we name 
acceptable sensor data in case of no-event as “normal” 
readings. Any readings outside the normal range are 
called “unusual” readings for convenience. In other 
words, correct sensor readings in an event region are also 
called unusual readings. Hence each sensor node can 
make a binary decision on its own sensor reading, where 
a “1” indicates an unusual reading. Sensor nodes in an 
event region are expected to report a 1, unless the nodes 
are faulty. 

We also assume that malicious nodes can change the 
sensor readings arbitrarily. In addition, they have some 
intelligence to report 0’s and 1’s alternately, to break 
down the network while remaining undetected, unless 
some sophisticated techniques are used to detect them. 
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In order to detect malicious nodes, we define a model 
for their behavior. We assume that all the sensor nodes 
become malicious randomly and independently with the 
same probability m . In addition, each malicious node 
sends its report inconsistent with the actual sensor read- 
ing with the probability ma . If , for example, 
malicious nodes report 1(0) with a probability of 0.4 
when the actual reading is 0(1). 

p

p 0.4map 

In addition, normal sensor nodes in the network are 
also assumed to report against their readings, randomly 
and independently, with the same probability t . Hence 
malicious nodes have to be detected and isolated in the 
presence of such faults and events. 

p

2.3. Event Model 

The most important part in detecting malicious nodes is 
how to distinguish false alarms due to malicious nodes 
from events and identify malicious nodes in an event 
region. We thus define the event model to be used 
throughout the paper. An event region is assumed to be a 
circle with radius r, although the proposed scheme can be 
applied to event regions of other shapes with minor 
modifications. 

In selecting a threshold for event detection in the face 
of faults and malicious nodes, the size of an event region 
plays an important role. Suppose that the side of a grid is 
l. Then the average number of sensor nodes in an event 
region, , can be written as  en

2

2

π
e

r
n d

l
  , 

where d is the average number of sensor nodes in a grid. 
For a relatively large event region, it is easy to set the 
threshold since at least one grid is likely to pass the 
threshold. For a relatively small event region compared 
to a grid, however, each grid might contain only a small 
number of event nodes, especially when the region lies 
across multiple adjacent grids. In that case, choosing a 
proper threshold is difficult or might be impossible to 
satisfy both high event detection accuracy and low false 
alarm rate. 

3. Malicious Node Detection 

In detecting malicious nodes, we employ confidence lev- 
els (weights) of sensor nodes to reflect the trustworthi- 
ness of their reports in decision-making. A sensor node 
with its weight below a preassigned lower bound is de- 
termined to be malicious, and it thus is logically isolated 
from the rest of the network. In addition, the center of an 
event region is estimated, if necessary, to achieve high 
event/malicious-node detection performance, while main- 
taining low false alarm rate. 

3.1. Confidence Level 

Malicious nodes are assumed to arbitrarily modify their 
readings without being easily detected. To monitor their 
behavior we define confidence level of a sensor node to 
represent its reliability, measuring its past behavior in 
reporting sensor readings. For a grid with n sensor nodes, 

1 2  and vn, the cluster head maintains 1 2  
and n , as their weights (confidence levels), respec-
tively, where 

, , ,v v 
w

, ,w w ,

10 iw  , and updates them each time a 
decision on the correctness of their reports is made. Ini-
tially all the weights are set to 1. At the time the weight 
reaches a predefined lower bound (0 in this paper), the 
corresponding node is determined to be malicious and 
logically isolated thereafter. 

3.2. Decision Based on Center Estimation 

In a grid-based sensor network, the decision made at 
each grid alone without inter-grid communication for 
receiving data from neighboring grids might be inaccu- 
rate when a relatively small event region is located across 
multiple adjacent grids. As the event region increases, 
however, at least one grid may have sufficient number of 
event nodes to pass a threshold test, such as the well- 
known majority voting. To cope with this problem, we 
apply a threshold test, if needed, to an estimated event 
region, computed based on the aggregated data obtained 
from the neighboring cluster heads. 

In Figure 2, for example, an event region E is located 
across four grids, A, B, C, and D, such that each grid has 
insufficient number of event nodes to pass majority vot- 
ing. The event can possibly be detected if the threshold is 
lowered. It, however, causes significant false alarms, 
especially for a fault-prone sensor network with a large 
number of malicious nodes. 

 

 

Figure 2. Estimation of the center of an event region. 
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The center of the alarms in the grid A, RA, is defined 
here as the weighted average of the positions, ir s , of the 
nodes reporting a “1” (i.e., an alarm), and it thus can be 
expressed as 

i i
A

i

w r
R

w
 


                 (1) 

where each alarm node in the grid A contributes to the 
estimated center as long as its weight is not zero. 

Similarly, the overall center of the alarms from the 
four grids, , can be written as ABCDR

A A B B C C D D
ABCD

A B C D

w R w R w R w R
R

w w w w

  


  
    (2) 

where A  represents i  of the sensor nodes re-
porting a “1” in the grid A. Once the center is computed, 
a threshold test, such as weighted majority voting, will be 
applied to a circle centered at  with radius r , 
where . 

w

r r

w

ABCDR 

3.3. Updating Confidence Levels 

In the proposed detection, the decision on an event is 
made at the cluster head based on two threshold tests to 
be detailed in the next subsection. Once the decision is 
made, the cluster head needs to update the confidence 
levels of its member nodes accordingly. For each mem- 
ber node vj the cluster head maintains two weights, 1

jw  
and 0

jw , where 1
jw  and 0

jw represent the weights of vj 

in case of no-event and an event, respectively. That is, a 
malicious node reporting a 1 in a no-event cycle loses its 
weight 1

jw , while a malicious node reporting a 0 in an 
event region loses its weight 0

jw . The weight wj defined 
in the previous subsection is the smaller one between the 
two, i.e.,  01 ,minj j jww w . 

In case of no-event, the cluster head updates the 
weights as follows. 

 1 1min 0, for 1j jw w s  j 

j 

      (3) 

 1 1max 1, for 0j jw w s        (4) 

where sj denotes the sensor reading of node vj . 
Malicious nodes reporting a 1 in the case of no-event 

lose their weights, 1
jw , by α. Otherwise, they gain  

weights by β. The two parameters, α and β play an im-
portant role in distinguishing between malicious and 
normal nodes. If α = 0.2 and β = 0.05, for example, a 
sensor node reporting a 1 every five cycles recovers its 
weight to 1.0. That is, for the chosen values of α and β a 
normal sensor node with some transient faults remain in 
the network unless the probability pt is greater than 0.2. 
Malicious nodes reporting alarms more frequently than 
this gradually lose their weights, and will eventually be 
detected at the time the weights reach 0. 

In the case of an event, the weights of the nodes within 
the event region need to be lowered if they have reported 
a 0. Due to the inaccuracy of the center estimation, how- 
ever, we apply the updates only to sensor nodes within a 
circle of radius  1r    centered at the estimated 
center, not to sacrifice normal nodes. The following up- 
dates are done at the cluster head. 

 0 0min 0, for 0j jw w s j         (5) 

 0 0max 1, for 1j jw w s j         (6) 

A malicious node in an event region loses its weight if 
it is within the reduced circle. As a result, the detection 
latency might increase. Such a node, however, can also 
be identified during no-event cycles if it reports a 1. 

3.4. Malicious Node Detection in a Grid-Based  
WSN 

In the proposed scheme, malicious nodes in a grid-based 
sensor network are detected using threshold tests along 
with confidence level evaluation. In addition, malicious 
nodes are distinguished from events by estimating the 
center of an event, if necessary. Our malicious node de- 
tection scheme can be described as follows: 
 

Malicious Node Detection in a Grid-Based WSN 

1. Each sensor node vj sends a 1 (alarm) to the cluster head if 
1js  . 

2. Each cluster head computes 0
1

1
d

j
j

jM w s


   and 

 1
1

d

j j
j

sM w


  . 

3. If 1
1

1 0

M

M M



, then E = 1(i.e., an event) and update  

confidence levels accordingly  

If 1
1

1 0

M

M M



 and 1

2 2 1

1 0

M

M M
   


, then estimate the 

center of alarms using inter-grid communication, and apply 
weighted majority voting to the estimated event region. If E = 1, 
update confidence levels accordingly 

If 1
2

1 0

M

M M



, then E = 0 (i.e., no-event) and update confi-

dence levels accordingly. 

4. Determine the nodes with  to be malicious. 0jw 

 
Inter-grid communication is needed only for the sec- 

ond case in Step 3, where the center of alarms is com- 
puted to apply weighted majority voting within the esti- 
mated event region. In the simulation later, we choose θ1 
= 0.5 (i.e., majority voting) to make a decision locally in 
a grid alone. The value of θ2, however, has to be care- 
fully chosen to achieve both high event detection accu- 
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racy and low false alarm rate. 
Let Pf represent the probability that the report from a 

sensor node is incorrect due to faults or malicious attack. 
Let d denote the average number of nodes in a grid. Then 
for given l and r, the average number of event nodes in a 
grid, ne, when an event region is located across four grids 
as illustrated in Figure 1, is 

2

2

π 1

4e

r
n d

l
                  (7) 

At least one grid is likely to have more event nodes 
than the average in practice, unless the event nodes are 
equally divided into the four grids. In the case of no 
event, the average number of alarm nodes in a grid, Nne, 
is 

·ne fN d P                   (8) 

In the case of an event, the average number of alarm 
nodes, Ne, in a grid is given by 

     1e e f e f f e fN n P d n P d P n P       1 2  (9) 

Hence the ratio eN

d
 is 

2 2

2

1 π 1 π
1

2
e

f

N r
P

d l l

  
       

24

r
       (10) 

From the above expressions (8) and (9), we can see  

that eN

d
is greater than ne f

N
P

d
  until Pf reaches 0.5. 

For a sensor network functioning correctly, Pf is expected 
to be much smaller than 0.5, and we thus assume that Pf  

lies between 0 and 0.3 for a working sensor network. 
Since malicious nodes identified are logically isolated 
from the network, Pf can be controlled to be lower than 
0.3 unless a large number of nodes become malicious at 
the same time. 

For 0.6
r

l
 , eN

d
 is greater than 0.3 for the entire  

range of Pf under consideration. Hence setting θ2 to 0.3 in 
those cases can remove most of the false alarms while 
achieving high event detection accuracy. For a relatively 
small event region, however, it would be necessary to 
lower θ2 to maintain high event detection performance. If  

0.5
r

l
 and ,  0fP 

for example, 
2

2

1 π
0.2

4
eN r

d l
  . 

Even if Pf increases to 0.1, the ratio is still less than 0.3. 
Since Pf is unknown and might change over time, we 
choose the threshold θ2 to be effective for a wide range of 
Pf . In this paper, we choose θ2 to be 

2

2 2

1 π
min ,

4
u
f

r
P

l


  
      

          (11) 

where u
fP  denotes an upper bound on Pf for a function- 

ing sensor network. In other words, if the malicious node 
detection scheme can control Pf below 0.3 by properly 
isolating malicious nodes upon detection, for example, 

u
fP  can be set to 0.3, and the resulting  

2

2 2

1 π
min 0.3,

4

r

l


  
      

. 

Lowering θ2 causes more false alarms, requiring un- 
necessary inter-grid communication. Our scheme, how- 
ever, quickly lowers the weights of malicious nodes, and 
it thus effectively reduces the number of false alarms. 

We can extend the proposed malicious node detection 
scheme to cover malicious cluster-heads by employing 
spare node(s) in each grid for monitoring the behavior of 
the cluster-heads [26]. Since spare node(s) in a grid can 
also receive reports from the member nodes and perform 
the same function as the cluster head, each report from a 
malicious cluster head to its neighboring cluster heads or 
base station can be checked to see if there is any mis- 
match. Moreover, inter-grid communication to estimate 
the center of alarms for a relatively small event region 
allows adjacent cluster heads to compute the center of 
alarms at the same time. Such a redundancy makes it 
possible to immediately detect a malicious cluster head 
since cluster heads can monitor each other’s behavior. 

4. Simulation Results 

Computer simulation is performed in a sensor network 
where sensor nodes are randomly deployed in a square 
area. The network area is divided into grids of the same 
size, each of which has 20 nodes on average. Four met- 
rics, malicious node detection rate (MDR), misdetection 
rate (MR), event detection accuracy (EDA), and false 
alarm rate (FAR), are used in the performance evaluation. 
MDR is defined to be the ratio between the number of 
detected malicious nodes and the total number of mali- 
cious nodes in the network. MR is defined as the ratio of 
the number of good nodes determined as faulty to the 
number of good nodes. Event detection is also important 
since malicious nodes have to distinguished from event 
nodes. Hence to indicate the accuracy of event detection, 
EDA is defined to be the number of events detected to 
the total number of events generated. Finally, FAR is 
used to denote the ratio of the number of false alarm cy- 
cles to total number of no-event cycles operated. 

We first evaluate MDR and MR for various values of 
pma when  0.1, 0.2, 0.1t mp p    , and 0.02   after 
50, 100, 300, and 500 cycles of operation. The results are 
shown in Figures 3 and 4, respectively. 
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Figure 3. MDR for various values of pma when α = 0.1 and 
β = 0.02. 
 

 

Figure 4. MR for various values of pma when α = 0.1 and β 
= 0.02. 

 
MDR for  is almost perfect after 500 cycles. 

Since α = 0.1 and β = 0.02 are chosen for the simulation, 
a malicious node reporting a 1 every 6 cycles can still 
retain its weight. Hence for a smaller value of pma (e.g., 
pma = 0.05) malicious nodes remain undetected. Further 
improvements in MDR can be made by changing the 
values of α and β unless malicious nodes behave similar 
to normal nodes (i.e. pma ≈0). If pma = 1.0, malicious 
nodes might form a group to pass the threshold tests, 
although the probability is low, resulting in a small deg-
radation in MDR. 

0.2map 

We have also observed that the required time to detect 
malicious nodes depends on pma, α, and β. If pma = 0.5, 
for example, malicious nodes are almost surely detected 
within 50 cycles. If pma is 0.2, on the other hand, most of 
the malicious nodes are detected after 500 cycles. 

MR is controlled to be less than 0.002 for a wide range 
of pma as shown in Figure 4. It increases to 0.006 when  

pma = 1.0 due to the false alarms caused by malicious 
nodes. Although the experiments are conducted for a 
small event region to see the worst case performance, 
some notable improvements in MDR and MR can be 
made as the size of events increases. 

False alarms may occur if malicious nodes form a 
group to pass the thresholds. Such unwanted alarms 
cause unnecessary communication and computation, and 
they might shorten the network lifetime. FAR for a grid, 
when pt = 0.1, pm = 0.2, and r = 0.5l, is shown in Figure 
5(a), where it increases with pma. A significant reduction 
in FAR is made as the number of cycles increases. This 
is due to the fact that the weights of malicious nodes are 
lowered with time. 

In Figure 5(a), we can observe a sudden increase in 
FAR even after 50 cycles when pma = 1. In that extreme 
case, all the malicious nodes send wrong reports to the 
cluster head. As a result, about 30% of the sensor nodes 
on average generate an alarm. Such an increase in FAR  

 

 
(a) 

 
(b) 

Figure 5. FAR for a grid for various values of pma when r = 
0.5l, (a) pt = 0.1 and pm = 0.2; (b) pt = 0.05 and pm = 0.1. 
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disappears as pt and pm decrease as illustrated in Figure 
5(b), where pt = 0.05 and pm = 0.1 are chosen for com- 
parison. Significant reductions in FAR are also observed. 
Moreover, FAR in that case is stable and persistent re- 
gardless of the values of pma, and is very close to 0 after 
50 cycles. Since θ2 increases with r up to u

fP , FAR de- 
creases as the size of the event region increases. We 
conducted the same simulation for r = 0.7l when pt = 0.1 
and pm = 0.2. The results are shown in Figure 6, where 
FAR becomes negligibly small with time regardless of 
the values of pma. 

In malicious node detection, distinguishing malicious 
nodes from event nodes is also important to achieve high 
detection accuracy. Moreover, malicious nodes should be 
detected and isolated without sacrificing EDA. We thus 
evaluated EDA in the presence of malicious nodes. All 
the malicious nodes are generated simultaneously at the 
time the simulation starts. We then generated events at 
various different cycles to see the impact of weight 
changes over time. The resulting EDA are shown in 
Figure 7, where a weighted majority voting is applied 
within a circle with radius  = 0.7r. EDA is very close 
to 1 when r ≥ 0.7l as shown in Figure 7. High EDA is 
achieved even for a relatively small event region. In ad- 
dition, some marginal improvements in EDA are also 
observed with time. 

r

Finally, we comment on the accuracy of the estimation 
of an event center and the resulting accuracy in identify-
ing malicious nodes in the corresponding event region. 
For convenience we first define Dcenters to be the distance 
between the center of an event region of radius r and the 
center of alarms in four adjacent grids, i.e.,  

. Then the ratio,  centers alarms eventdist ,D R R 
centersD

r
, 

 

 

Figure 6. FAR for a grid for various values of pma when r = 
0.7l, pt = 0.1, and pm = 0.2. 

for various cycles of operation when r = 0.5l, is shown in 
Figure 8. The ratio slowly decreases with time and ap- 
proaches 0.4 when pt = 0.1 and pm = 0.2. The ratio for pt = 
0.05 and pm = 0.1 approaches 0.3 instead due to reduction 
in the number of fault induced alarms. Our weighted 
voting applied within the circle centered at the estimated 
center can tolerate the inaccuracy of the estimation, re- 
sulting in high EDA as already shown in Figure 7. 

Malicious nodes reporting a 0 when an event has oc- 
curred can be detected if they are in an event region. 
However, it is difficult to find the exact boundary of an 
event region locally in a distributed manner, without sig- 
nificant overhead in computation and communication. A 
normal node close to the event boundary might be deter- 
mined to be suspicious. Such an incorrect decision low- 
ers the weight of the normal node, and it might lead to 
the loss of network connectivity. Hence we use a con- 
servative approach in updating the weights in case of an 
event, not to sacrifice normal nodes. In the simulation we  
 

 
(a) 

 
(b) 

Figure 7. EDA for r = 0.5l and various values of pma after 
different cycles of operation when (a) pt = 0.1, pm = 0.2, (b) pt  
= 0.05, pm = 0.1. 
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Figure 8. 
D

r
centers  for r = 0.5l (a) pt = 0.1, pm = 0.2, (b) pt = 

0.05, pm = 0.1. 
 
use a circle with radius 2r  (i.e., δ = 0.5) centered at 
the estimated center as the region where the weight up- 
dates are applied. To see the accuracy of the updates, we 
also obtain the distribution of sensor nodes in the reduced 
region. The ratio of the number of event nodes in the 
reduced region to the total number of nodes in the region, 
when r = 0.5l and pma = 0.7 are shown in Figure 9, where 
two different values of pm and pt are selected for illustra- 
tion. For both cases the accuracy improves over time and 
an over 95% accuracy has been achieved after 20 cycles 
of operation. Although the updates are made for the sen- 
sor nodes within a limited region, the effect is positive in 
achieving high event and malicious node detection per- 
formance. 

Event detection accuracy may change with the event 
region size. Since the simulation results are shown for a 
relatively small event region to see the worst case per- 
formance, we can claim that the scheme performs better 
as the event region increases. 

5. Conclusion 

In this paper, we developed a malicious node detection 
scheme for a grid-based wireless sensor network. The 
network area is divided into square grids and malicious 
nodes are detected locally in a distributed manner. For a 
relatively small event region located across multiple ad- 
jacent grids, inter-grid communication is partially em- 
ployed to enhance the event detection accuracy. Confi- 
dence levels (weights) are used to reflect the behavior of 
sensor nodes in reporting their readings in decision- 
making. Once the weights reach a predefined lower- 
bound, the corresponding nodes are logically isolated 
from the rest of the network. Thresholds are properly 
chosen to achieve high malicious node detection accu- 
racy without sacrificing normal nodes. The simulation 

 

Figure 9. Distribution of normal and event nodes in a re-
duced region for r = 0.5l and pma = 0.7, when (a) pt = 0.1, pm 
= 0.2; (b) p t= 0.05, pm = 0.1. 
 
results are shown for relatively small event regions to see 
the worst case performance. Hence the proposed scheme 
is expected to perform better as the event region in- 
creases. 
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