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ABSTRACT 

The problem of production control for a hybrid manufacturing/remanufacturing system under uncertainty is analyzed. 
Two sources of uncertainty are considered: machines are subject to random breakdowns and repairs, and demand level 
is modeled as a diffusion type stochastic process. Contrary to most of studies where the demand level is considered 
constant and fewer results where the demand is modeled as a Poisson process with few discrete levels and exponentially 
distributed switching time, the demand is modeled here as a diffusion type process. In particular Wiener and Ornstein- 
Uhlenbeck processes for cumulative demands are analyzed. We formulate the stochastic control problem and develop 
optimality conditions for it in the form of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). We 
demonstrate that HJB equations are of the second order contrary to the case of constant demand rate (corresponding to 
the average demand in our case), where HJB equations are linear PDEs. We apply the Kushner-type finite difference 
scheme and the policy improvement procedure to solve HJB equations numerically and show that the optimal produc- 
tion policy is of hedging-point type for both demand models we have introduced, similarly to the known case of a con- 
stant demand. Obtained results allow to compute numerically the optimal production policy in hybrid manufacturing/ 
remanufacturing systems taking into account the demand variability, and also show that Kushner-type discrete scheme 
can be successfully applied for solving underlying second order HJB equations. 
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1. Introduction 

In recent years, the reverse logistics framework allowing 
the unified analysis of manufacturing planning and the 
inventory management has gained a substantial interest 
among the researchers working in the field. In a book [1] 
author described the quantitative models to represent the 
activities of remanufacturing and recycling in the context 
of reverse logistics emphasizing three issues: namely: 
distribution planning, inventory management and pro- 
duction planning. In the survey [2] authors analyzed 
more than sixty case studies in reverse logistics pub- 
lished between 1984 and 2002 and discussed network 
structures and activities related to the recovery of pro- 
ducts up to the end of life. Various optimization models 
for supply chains with a recovery of returned products 
have been proposed with special attention to the produc- 
tion control and inventory management using both, de- 
terministic and stochastic approaches. In the majority of 
previous studies discrete time (as opposed to continuous 
time) settings is used. In [3] authors present an effective 

approach to determine the discrete policy of the optimal  
control for a system with product recovery, taking into 
account the uncertainty in the demand of new and re- 
turned products. They model the demand and the return 
as discrete independent random variables. In [4] a new 
discrete stochastic inventory model for a hybrid system is 
proposed: new and returned products are manufactured 
separately, the demands are independent but production 
policies are synchronized. Authors of [5] develop a peri- 
odic inventory model of on a finite planning horizon with 
consideration of production remanufacturing and dispo- 
sal activities. In [6] authors propose a model of discrete 
time stochastic optimization for a hybrid system taking 
into account, the production, subcontracting, remanufac- 
turing of returned products, return market of poor quality 
products the production line and disposal activities. The 
demand is a random variable normally distributed and 
the return of products depends on the demand. A conti- 
nuous time optimization model is considered in [7] for 
the production, remanufacturing and disposal in a dyna- 
mic deterministic settings. 
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Manufacturing systems subject to random breakdowns 
and repairs were systematically analyzed in [8-10] in 
continuous time using stochastic optimization technique. 
Recently in [11] this methodology has been extended to 
address the global performances of the manufacturing 
system with the supply chain in closed loop. A stochastic 
dynamic system consisted of two machines dedicated re- 
spectively to manufacturing and remanufacturing; the 
random phenomena are breakdowns and repairs of the 
machines, the demand of new products was considered 
deterministic and known, the returned product was a por- 
tion of this demand. 

The constant demand is a prevailing assumption in the 
large body of the research devoted to stochastic continu- 
ous time optimization of production management in fail- 
ure-prone systems. Some papers develop optimality con- 
ditions and use them for searching numerical solutions 
[12]; others present analytical solutions as the recent ar- 
ticle [13]. In much fewer studies where the random de- 
mand is analyzed—it is most often modeled as a Poisson 
process. This approach allows to keep the usual frame- 
work of random discrete events changing the state of the 
system for both machine breakdowns and demand jumps 
[14]. Poisson-type demand is used more systematically in 
inventory optimization problems [15]. A combined mod- 
el: Poisson process coupled with the diffusion process 
has been recently proposed in [16] for modeling the de- 
mand in inventory problem. In fact diffusion-type proc- 
esses were used for modeling the demand in the classi- 
cal paper [8] were optimality conditions have been ob- 
tained, however it was the only source of random behav- 
ior since the machine breakdowns were not considered. 

The system considered in this paper contains reverse 
logistics loop with manufacturing and remanufacturing 
branches revisiting the model proposed in [14]. We use 
continuous time stochastic control approach and adopt 
the diffusion-type component into the demand model 
merging this source of random behavior with random 
machine breakdowns described by Poisson process as in 
[9,10]. As a direct consequence of an adopted demand 
model the optimality conditions lead to the Hamilton- 
Jacobi-Bellman (HJB) equation of the second order. Sec- 
ond order HJB is often met in option price modeling, but 
for stochastic control in manufacturing systems the HJB 
is usually of the first order [9,10,14]. Analyzing the sec- 
ond order HJB we use the Kushner finite difference ap- 
proximations and the policy improvement algorithm [17]. 

The paper is structured as follows. In Section 2 we de- 
scribe the model of the hybrid system consisting of 2 
machines. The first machine uses primary product, and 
the second—returned product; both are subject to break- 
downs and repairs constituting the first source of uncer- 
tainty. We describe in details our demand model using 
diffusion type random processes constructed as an output 

of shaping filter excited by the white noise. We study 2 
versions of such model simple Brownian motion and first 
order Markovian process. Latter version seems more rea- 
listically fit the real world situations. In Section 3 we de- 
rive optimality conditions in the form of Hamilton-Ja- 
cobi-Bellman (HJB) equations which are second order 
partial differential equations (PDEs) for the chosen de- 
mand model. In Section 4 we describe the numerical me- 
thod based on finite difference approximations and pol- 
icy improvement approach following the methodology 
proposed in [17] and also in [12]. In Section 5 we apply 
the developed methodology to the manufacturing system 
described in Section 2, compute the optimal production 
policy and show that it is of classical hedging point type. 
In conclusion we discuss the proposed methodology and 
obtained results, and outline the possible directions for 
future works. 

2. Model of a Hybrid Manufacturing System 
Suitable for Stochastic Control 

We consider a hybrid manufacturing/remanufacturing 
system consisting of two parallel machines denoted M1 
and M2 respectively, producing the same type of product. 
Stochastic phenomena are demand level and machine 
breakdowns/repairs. We take into account the activity of 
production in forward direction and the activity of reuti- 
lization of returned products in reverse logistics. The 
demand must be satisfied by inventory for serviceable 
items. This inventory will be built by the products manu- 
factured or reused. The returned products will be in the 
second inventory namely recovery, they can be remanu- 
factured, or be hold on stock for future remanufacturing. 
In our problem, we assume that the maximal production 
rates for each machine are known and the machine M2 is 
producing at average supply for return rate, which is also 
its maximal rate. This situation is illustrated in Figure 1. 
State of the machine iM  with  is modeled as 
a Markov process in continuous time with discrete state  

 1,2i 

       1B  1iB 0 , with 0,t t 
0iB

i i i  ( —machine is 
operational,  —machine is out of order). We may 
the define 
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State transition diagram is shown in Figure 2. 
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Figure 1. System structure. 
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Figure 2. State transition diagram. 
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State equations can be written in the simplified form 
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Since the demand  d t  and return  R t  rates are 
considered as stochastic processes the more rigorous Ito 
form of Equations (3) will be used later. Namely let d(t) 
be a stationary Gaussian process with the constant mean  

and variance      2~ ,D D D Dd t N t      , where  

   ~ 0,1t N . Below we further specify  t  in one 
of two ways: either an increment of a standard Brownian 

motion, or an increment of the first order Markov process 
defined later using the shaping filter. 

For the return (remanufacturing) rate, an assumption is 
made that it is proportional to the customer demand rate 
     R RR t r d t t       with r is a percentage of 

return. 
Stochastic state differential Equations (3) can be re- 

written in Ito form using notation  t t z    
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Equations (4) will be also used in the following ge- 
neric form: 
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For the Case A the input z  to Equations (4) is spe- 
cified as a standard Brownian motion increment  

z W  . 
For the Case B the input z  to (4) is specified as an 

increment of the shaping filter output (Ornstein-Uhlen- 
beck process) 

z a z t b W       where     (6) 0, 0a b 

 z tProcess  is a first order Markovian, its correla- 
tion function is      2 2 expk t b a a t   . 

Additional insight to the proposed demand model can 
be given by considering the cumulative demand:  
   .D DD t t V   where D  is a constant demand 

ramp,  .DV  is a randomly varying portion of the de- 
mand. For the case A. DV W  (Wiener process), for the 
case B. DV z  (Ornstein-Uhlenbeck process). Also 
case A can be obtained from B setting . 0, 1a b 

Following constraints have to be added to (5)-(6) 
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             (7) 

 2 0x t   

Let the cost rate function to be defined as follows: 

 1 2 1 1 1 1 2 2 1

2

, ,

with ,

p

r

G x x u c x c x c x c u

c u c B



 

        

  
    (8) 

Here  1,2 1,2max 0,x x 
c

,   1 1max ,0x x  
1 1,c  : inventory holding and backlog costs for manu- 

factured product (per time unit); 

2 c : inventory holding cost for remanufactured prod- 

Copyright © 2013 SciRes.                                                                                  AM 



S. OUARET  ET  AL. 553

uct (per time unit); 
, rpc c : production costs for manufacturing and re- 

manufacturing processes (per unit); 
 c : maintenance cost for nonoperational state of the 

machines: 

     
    

2 1

1 2

2 3

4 ,

r r

r r
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where 

    1 if . is true
.

0 otherwise
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The objective is to determine the production rates 
 1 .u  and  2 .u  in order to minimize the expected dis- 

counted cost (   is the discount rate): 
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The domain    of admissible controls is defined as 
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Defined hybrid system is said to be meeting feasibility 
condition if 
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where i  et max  are limiting probabilities and maxi- 
mal productions rates. We recall that the vector of limit- 
ing probabilities is defined as an eigenvector of the tran- 
sition matrix Q(.) 
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3. Optimality Conditions for Stochastic 
Control Problem 

Let us define the value function is defined as a minimum 
(infimum) of expression (9) over all possible control in- 
puts:  
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Let us briefly recall the guidelines for obtaining opti- 
mality conditions. Introducing time-dependant α-depen- 
dant cost function and value function we have: 
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According to Bellman optimality principle for cost 
function at t t  we can write 
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Using Taylor expansion for the term e t  and the 
value function      1 2, , ,t t x t t t tx t t        

t
 

over last 3 arguments, and keeping linear terms over   
and up to second order terms over x  we get: 
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Second order terms over x  are kept for further ana- 
lysis because of diffusion-type processes affecting sys- 
tem dynamics. One more technical step consists of com- 
puting the value function  using 
Markov chain-type machine dynamics (2) defined through 
transition probabilities 
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Merging Equations (16) and (17) we get 
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Averaging over random realizations of the demand 
driven by the Brownian input ,w  using Equations (5) 
and applying Ito’s lemma we get: 

 1 2 1 21 2 1 2 0x x x xE g g w g E w g E w           



2 ,

 

   
1 21 2 0x t x tE x t E x t            

     2 2 22 2
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Now neglecting all terms of order higher than 1 over  

  ,t  taking , and considering the stationary re- 
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get HJB equations in the following form: 
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4. Numerical Method—Policy Improvement 

A numerical approach proposed by Kushner in [17] and 
successfully used in the series of works [9,12] consists of 
introducing the grid in the state space  1 2,x x


 for ap- 

proximating the value function 1 2 , ,x x   approximat- 
ing the first derivatives by “up wind” finite differences, 
then use policy improvement—discrete analog of a gra- 
dient descent in policy (control) space. Use of “up-wind” 
derivatives results in conditional computations but greatly 
improve convergence of the numerical. 

4.1. Computations of First Derivative 

To describe conditional computations of the derivatives 
let us introduce the following notation: 
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The first derivatives of the value function with respect 
to 1x  and 2x  are: 
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It worth emphasizing that there is no conditional com- 
putation for 

2x  since  2 0R u     all the time due 
to assumption described in Section 2. 

4.2. Computations of Second Derivatives 

For  
1 1 1 2, ,x x x x   and for  
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1 1 1 2

1 1 22
1

1 1 2 1 2

, ,

1
, ,

, , 2 , ,

x x x x

x hx x
hx

x hx x x x

 

 

   

 

  

     (22) 

 

 

   

2 2 1 2

1 2 22
2

1 2 2 1 2

, ,

1
, ,

, , 2 , ,

x x x x

x x hx
hx

x x hx x x

 

 

   

 

  

    (23) 

Both expressions above do not need conditional com- 
putations, contrary to the cross derivative  , ,x x1 2 1 2x x   
which might need up to four different schemes. Since the 
return inventory is always positive we will use just two 
schemes (main inventory can be positive or negative). 

If  1 2 0Du u      and  we have  2 0Ru u  
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As a result we obtain for the case of Brownian motion 
the following discrete HJB equations: 
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In mode 1: 1  ; we obtain: 
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Mode 2: 2  ;  and 2 0u 
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Mode 3: 3  ;  and  1 0u 
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Mode 4: 4  ;  and , 1 0u  2 0u  0D t    and the value function 
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In the second case (filter demand) we have similar 
HJB equations in four modes, but with slightly different 
parameters in the first derivative of the value function 
namely: 1 1 2f u u a D     

 2 2

 and  
f u raD    . 

5. Optimal Production Policy for Hybrid 
System-Simulation Results 

The first case we have analyzed corresponds to the hy- 
brid system with manufacturing costs set relatively high 
in order to enforce production in remanufacturing loop. 
The (cumulative) demand is modeled as a Brownian pro- 
cess. The results are shown in Figures 3-6. Figure 3 illu- 
strates the shape of the value function  1 21, ,x x    
depending on the stock levels of manufactured  1x  and 
remanufactured  2x  products in mode 1. Value func- 
tions in other modes have similar shapes and are not 
shown. Figures 4 and 5 illustrate the optimal policy for 
the machine 1 (manufacturing) in mode 1 (both machines 

in operation) and mode 2 (remanufacturing machine 2 in 
failure) respectively. The optimal policies for the ma- 
chine 1 are of hedging-point type, namely: maximal pro- 
duction if the stock level  1x  is below the threshold, 
zero production above the threshold and production “on 
demand” at the threshold-level. Comparing Figures 3 
and 4 one can observe that the threshold level in mode 2 
when machine 2 is in failure is higher than in mode 1. 

Figure 6 illustrates the optimal policy for the machine 
 

 

Figure 3. Value function in mode 1. 
 

 

Figure 4. Production policy: Machine 1, mode 1. 
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Figure 5. Production policy: Machine 1, mode 2. 
 

 

Figure 6. Production policy: Machine 2, mode 1. 
 
2 (remanufacturing) in modes 1 when both machines are 
in operation (optimal policy of the machine 2 in mode 3 
is identical). Machine 2 is must produce at average sup- 
ply (proportional to demand) rate—which is also its 
maximal rate as explained in the section 2. 

Figures 7 and 8 show the realizations of Brownian and 
Markov-type (filtered) demand rates respectively (the va- 
riance D  is set to the same value). Comparing two 
graphs one can see that in Brownian case (Figure 7) the 
variation rate is much faster than in Markov case (Figure 
8). 

Figures 9 and 10 illustrate the optimal policy for the 
machine 1 (manufacturing) in mode 1 (both machines in 
operation) and mode 2 (remanufacturing machine 2 in 
failure) respectively. The results are to be compared with 
those shown in Figures 4 and 5. One can observe that the 
threshold values for the case of slower varying Markov 
demand are lower as compared to the case of Brownian 
demand. Parameters used for simulations are summarized 
in Table 1. 

In the second case of Markov-type (filtered) demand 
the parameters of the filter may be used to fit the model  

 

Figure 7. Brownian demand and return rates. 
 

 

Figure 8. Filtered demand and return rates. 
 

 

Figure 9. Production policy: Machine 1, mode 1. 
 
to the characteristics observed in the real life applications. 
A classical assumption of the constant demand in this 
context means that the variability of the demand is ig- 
nored and only its average rate is taken into account. A  
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Figure 10. Production policy: Machine 1, mode 2. 
 

Table 1. Parameters of the numerical example. 

1c  2c  1c  pc  

2 2 100 10 

rc  c    1

maxu  

8 50 0.01 0.3 

2

maxu  13, 24q q  12, 34q q  31, 42 21, 43,q q q q  

0.125 0.01 0.02 0.067 

r  a  b  0D  

0.5 0.01 0.035 0.25 

 
second order terms in HJB equations reflecting demand 
variability are in that case neglected and the optimal pol- 
icy is found using the first order approximation of HJB 
equation. Optimal policy for the main (manufacturing) 
machine is of hedging point in both studied (Brownian 
and Markov) cases—as it is for the constant demand. Ac- 
cording to Figures 4, 5, 9 and 10 one can see that more 
the demand varies rapidly in time, more the hedging stock 
level increases in order to respond to the demand vari- 
ability. In addition, the average total cost also increases 
from 1939 (Markov) to 2236.5 (Brownian) as the de- 
mand variability increases. 

6. Conclusion and Future Work 

We have shown that the problem of stochastic control 
corresponding to optimization of production planning in 
failure prone hybrid manufacturing/remanufacturing sys- 
tems with random demand can be successfully analyzed 
for diffusion-type demands. We investigate this problem 
in continuous time which seems to be the most natural 
setting. We develop optimality conditions in the form of 
HJB equations and show that due to the Brownian com- 
ponent in the demand the HJB equations are the second 

where they are of the first order. We use finite difference 
approximations for HJB equations reducing a continuous 
time optimization problem to the discrete time, discrete 
state, infinite horizon dynamic programming problem, 
and use policy improvement technique [17] for solving it. 
Value functions of the stochastic optimization problems 
are usually non-smooth and corresponding HJB equa- 
tions have to be addressed using generalized approaches 
such as viscosity solutions [18]. Theoretical studies of 
the convergence of discrete approximations to an exact 
(viscosity-type) solution of HJB equations when the size 
of the grid tends to zero is addressed in [19,20]. Such 
theoretical analysis is out of the scope of this paper 
where we propose a numerical approach targeting the 
new model for the uncertain demand that allows address- 
ing more naturally the growing number of industrial ap- 
plications. Considering possible extensions of the study 
presented in this paper we count to explore a compound 
demand model of Poisson and diffusion-type process 
thus allowing both the jumps and continuous random va- 
riation of the demand. 

order PDEs, contrary to the case of a constant demand 
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