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ABSTRACT 

Wheat streak mosaic (WSM), caused by Wheat streak mosaic virus is a viral disease that affects wheat (Triticum aesti-
vum L.), other grains, and numerous grasses over large geographical areas around the world. To improve disease man-
agement and crop production, it is essential to have adequate methods for monitoring disease epidemics at various 
scales and multiple times. Remote sensing has become an essential tool for monitoring and quantifying crop stress due 
to biotic and abiotic factors. The objective of our study was to explore the utility of Landsat 5 TM imagery for detecting, 
quantifying, and mapping the occurrence of WSM in irrigated commercial wheat fields. The infection and progression 
of WSM was biweekly assessed in the Texas Panhandle during the 2007-2008 crop years. Diseased-wheat was sepa- 
rated from uninfected wheat on the images using a sub-pixel classifier. The overall classification accuracies were >91% 
with kappa coefficient between 0.80 and 0.94 for disease detection were achieved. Omission errors varied between 2% 
and 14%, while commission errors ranged from 1% to 21%. These results indicate that the TM image can be used to 
accurately detect and quantify disease for site-specific WSM management. Remote detection of WSM using geospatial 
imagery may substantially improve monitoring, planning, and management practices by overcoming some of the short-
comings of the ground-based surveys such as observer bias and inaccessibility. Remote sensing techniques for accurate 
disease mapping offer a unique set of advantages including repeatability, large area coverage, and cost-effectiveness 
over the ground-based methods. Hence, remote detection is particularly and practically critical for repeated disease mo- 
nitoring and mapping over time and space during the course of a growing season. 
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1. Introduction 

Wheat streak mosaic (WSM), caused by Wheat streak 
mosaic virus (WSMV) is a viral disease that affects 
wheat (Triticum aestivum L.), barley (Hordeum vulgare 
L.), oat (Avena sativa L.), maize (Zea mays L.), millet 
(Panicum setaria), and numerous other grasses over 
large geographical areas around the world [1-8]. This vi- 
rus is vectored by the wheat curl mite (Aceria tosichella 
Keifer) [2] that has several grass species hosts besides 
wheat [2,9]. Initially, disease symptoms on infected 
wheat plants are characterized by light chlorotic streak- 
ing and mosaicing of young leaves. As the disease pro- 
gresses, infected plants exhibit extreme chlorosis and 
stunting, and in severe cases chlorotic leaves become 
necrotic and the plant eventually dies [2,10-13]. Symp- 
tom severity also depends on wheat cultivar, time of in- 

fection, temperature, and other environmental conditions 
that affect vector populations and plant growth [14]. Since 
its first discovery in 1922 in Nebraska, WSMV has peri- 
odically caused severe epidemics, across most of the 
Great Plains of the United States [3,8,15]. In the Texas 
Panhandle, much of the wheat is grown as a dual purpose 
crop, for both winter forage and grain production [10,12]. 
Studies have demonstrated that WSM reduces yield and 
quality of both forage and grain in wheat production sys- 
tems [12,16-18]. Recent studies indicated that infected 
wheat has less root and shoot biomass than uninfected 
plant, resulting in severe decrease in water-use efficiency 
[10,12,13]. WSM has been estimated to decrease annual 
wheat yields by approximately 5% per year, but local 
disease epidemics can be highly destructive and result in 
total crop loss [1-3,6,7,16,19]. 

Remote sensing has become an essential tool for moni- *Corresponding author. 
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toring and quantifying crop stress due to biotic and abi- 
otic factors [20-26]. Results from greenhouse and field 
studies have shown that it is possible to observe and 
quantify changes in crop health using remote sensing 
over the course of a growing season [27-33]. The pres- 
ence of a disease or insect feeding leads to reductions in 
green leaf area and chemical and pigment concentrations, 
and alteration of cell structure, water and nutrient uptake, 
and gas exchange, which is known to modify canopy re- 
flectance characteristics. Measuring the light reflected by 
the canopy area with a remote sensing device, therefore, 
potentially provides a quick, nondestructive, and inex- 
pensive method for identifying and quantifying infected 
areas [34]. Optical properties of mature and healthy green 
leaves, plants, or canopies are characterized by high ab- 
sorption in the blue (400 - 500 nm) and the red (600 - 
700 nm), but high reflectance in the green (500 - 600 nm), 
and very high reflectance and transmitance in the near 
infrared (NIR: 700 - 1500 nm) range [35-37]. Spectral 
responses of vegetation in the visible (400 - 700 nm) re- 
gion are primarily governed by the abundance of chloro- 
phylls, carotenoids, and anthocyanins [38,39]. The opti- 
cal properties of vegetation in the NIR are due to the 
discontinuities between cell walls and intercellular air 
spaces in internal leaf structure. Reflectance in the short- 
wave infrared (SWIR: 1200 - 2400 nm) is affected due to 
absorptions by water, proteins, and other carbon con- 
stituents in the vegetation [38,40]. Reduction in green 
leaf area due to growth limiting factors (pathogens, insect 
feeding, nutrient deficiencies), leaf senescence, and defo- 
liation causes high reflectance in the visible spectrum 
due to chlorophyll degradation, low reflectance in NIR 
due to reduced green leaf area and senescence, and high 
reflectance in SWIR due to modified tissue chemistry 
[38,40,41]. 

There are numerous successful applications of stress 
and disease detection and quantification in wheat and 
other vegetation canopies using a variety of sensor sys- 
tems including aerial photographs, airborne and satellite 
multispectral and hyperspectral sensors, ground-based 
instruments and other spatial information technologies 
[42-47]. Significant correlations between spectral reflec- 
tance data and symptoms of net blotch (Pyrenophora 
teres) in barley, glume blotch (Stagonospora nodorum) 
in winter wheat, and both diseases in spring wheat were 
reported by [48]. Nilsson and Johnsson [49] found sig- 
nificant correlations between the radiometric assessment 
of barley stripe disease (Pyrenophora graminea) and 
grain yield. Lelong et al. [50] identified differences in 
well-developed and water stressed wheat canopies by 
analyzing an image. Huang et al. [51] tested the photo- 
chemical reflectance index (PRI) derived from hyper-
spectral imagery to characterize yellow rust (Puccinia  

striiformis) in wheat and concluded that PRI has the po- 
tential for quantifying yellow rust levels in wheat fields. 
Franke and Menz [52] used multispectral satellite image 
for quantifying wheat infected by powdery mildew (Blu- 
meria graminis) and leaf rust (Puccinia recondita) at dif- 
ferent infective stages in an experimental field. The re- 
searchers demonstrated that multispectral images are ge- 
nerally suitable to detect in-field heterogeneities in wheat 
vigor, particularly for later stages of fungal infections but 
only moderately appropriate for distinguishing early in- 
fection levels in wheat. In addition to studies on insect 
feeding and foliar diseases in wheat, remote sensing has 
been effectively used to detect rhizomania in sugar beet 
(Beta vulgaris) [53]. Several researchers argued that re- 
mote sensing is a better method to detect and quantify the 
impact of plant diseases and insect infestations in vegeta-
tion compared to visual techniques because a vegetative 
unit can be repeatedly, objectively and nondestructively 
examined in a fast, robust, accurate and inexpensive way 
[54-58]. In addition, it removes human bias in visual in- 
terpretation that can be highly variable among individu- 
als [39,59,60]. 

Despite the fact that remote detection and quantifica- 
tion of foliar disease and insect infestation have been su- 
ccessful in plant sciences [61-68] and regional occur- 
rence of WSM in the US and other countries, the appli- 
cation of moderate resolution multitemporal imagery to 
WSM epidemics is still not well studied. Ability to util- 
ize moderate resolution imagery to discriminate and se- 
parate WSM from healthy areas within a field can greatly 
improve monitoring population dynamics, understanding 
disease ecology, and developing long-term site-specific 
management practices for WSM. Landsat 5 Thematic 
Mapper (TM) can provide a sufficient and inexpensive 
data base for remote sensing of WSM over large regions. 
In addition, Landsat offers the advantage of continuously 
collected data and availability of immediate or archived 
data sets. However, it may have limitations for temporal 
monitoring due to cloud cover. Processing time required 
by the image provider for high resolution satellite data 
that are usually not archived and continuously collected 
may complicate timely acquisition of data along with 
cloud cover for monitoring real time occurrence of WSM 
in commercial wheat fields. Therefore, continuously col- 
lected data and availability of Landsat real time images 
are appealing as a research method for WSM. This re- 
search is a continuation of a previous study done by [41] 
with the following objectives: 1) To explore the utility of 
Landsat 5 TM imagery for continuous monitoring of 
WSM progression over time and space for its site-spe- 
cific management; and 2) To evaluate Constrained En- 
ergy Minimization (CEM) sub-pixel classifier to gain im- 
proved understanding of the spatial distribution and re- 
mote detection of WSM 2.  
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2. Materials and Methods 
2.1. Landsat 5 Thematic Mapper Imagery 

During the 2007-2008 wheat growing seasons (Septem- 
ber-May), a series of cloud free Landsat 5 TM images 
covering the northwestern Texas Panhandle with path 30 
and row 36 and scene center latitude 34.27˚ and longi- 
tude −102.19˚ were obtained every 16 days, which is the 
revisiting time period of Landsat for the same area. Im- 
ages were provided by the United State Geological Ser- 
vice (USGS) via the Center for Space Research, Univer- 
sity of Texas at Austin with geometric and radiometric 
corrections. The images were projected to the Universal 
Transverse Mercator, World Geodetic System 1984, Zone 
14 North. Image digital numbers were converted to re- 
flectance using Environment for Visualizing Images soft- 
ware package (ENVI: Exelis Visual Information Solu- 
tions, Boulder, CO). Images were subset for a 25600 ha 
(16 km by 16 km) area including only irrigated comer- 
cial wheat fields using ENVI. Images used for this study 
acquired on March 15 and 31, April 16, May 02 and 18, 
2008. Images prior to March 15 were not suitable due to 
cloud cover or low growth of wheat from livestock graz- 
ing. Specification of Landsat 5 TM imagery is presented 
in Table 1. 

2.2. Imagery Classification 

Imagery classification was performed using CEM me- 
thod. CEM was developed for distinguishing sub-pixel 
abundance of image materials. CEM method is described 
by ENVI User’s Guide as follows: CEM performs a par- 
tial unmixing by only finding the abundance of a single, 
user-defined endmember (reference spectra), by increas- 
ing the response of the target material and suppressing 
the response of the composite unknown background 
noise, thus matching the known signature. Using a spe- 
cific constraint, CEM uses a finite impulse response filter 
to pass through the desired target while minimizing its 
 
Table 1. Specifications of Landsat 5 TM image used to de- 
tect diseased-wheat caused by Wheat streak mosaic virus. 

 Resolution 

Band Spectral (nm) Spatial (m) 

1-Blue-green 450 - 520 30 

2-Green 520 - 600 30 

3-Red 630 - 690 30 

4-Near infrared 760 - 900 30 

5-Middle infrared 1550 - 1750 30 

6-Thermal infrared 10,400 - 12,500 120 

7-Middle infrared 2080 - 2350 30 

output energy resulting from a background other than the 
desired targets. The main practical advantage of this spe- 
ctral mixture analysis is that it does not require that all 
image endmembers be defined. Therefore, rather than a 
target endmember, the reflectance spectra of different 
materials does not have to be identified either from pure 
pixels in an image or ground collected endmember using 
a field spectroradiometer. The result of CEM is a grey- 
scale fractional abundance image representing estimated 
relative degree of match to target endmember. CEM ap- 
pears to be an appropriate technique for identifying the 
fractional abundance of a single target material, in our 
study occurrence of WSM.  

Prior to classification performance, the spectral profile 
of image endmembers was examined using the mean va- 
lues of training samples for regardless of healthy wheat, 
diseased-wheat, canola (Brassica napus), and bare ground 
(Figure 1). Canola was the only green crop and was in 
full bloom with yellow flowers in addition to wheat in 
study area on March 15 (Figure 2(a)). Classification was 
performed three times on March 15 imagery: One for 
wheat (healthy and diseased-wheat together), one for 
canola, and one for bare ground. During the wheat map- 
ping, canola endmember was selected as a non-target to 
reject for classification and during the canola mapping, 
wheat endmember was chosen as a non-target to reject 
for classification. Fractional abundance of each image 
end member was converted to vector format to produce a 
seamless map of land use classes (Figure 2(b)). In addi- 
tion, canola and bare ground land use classes were mer- 
ged in ArcMap (ESRI, Inc. Redlands, CA) and used to 
mask out these areas in ENVI for diseased and healthy 
wheat classification only. 

Consequent to wheat, canola, and bare ground classi- 
 

 

 

Figure 1. Reflectance characteristics of healthy wheat, dis- 
eased-wheat, canola, and bare ground extracted from Land- 
at 5 TM imagery acquired April 16, 2008. s  
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(a)                                          (b) 

 
(c)                                          (d) 

Figure 2. Landsat 5 TM color infrared image of study area (a) and classified image with 1024 ground-truthing points for 
wheat, canola, and bare ground (b), color infrared image masked to keep wheat areas only (c) and classified image for dis- 
eased-wheat caused by Wheat streak mosaic virus (d) on March 15, 2008. 
 

sified. For the accuracy assessment, 1024 points with a 
500 m equal spacing over the entire study area were gen- 
erated using the “create fishnet” function in ArcMap. Of 
these 1024 points (Figure 2(b)), only 276 points fell on 
wheat areas, therefore, those 276 ground-truthing (ground- 
verification) points were used for accuracy of diseased- 
wheat classification. The training samples were not in- 
cluded in ground-truthing points. The ground-truthing 
points were exported to a field computer equipped with 
the Farm Works software package (CTN Data Service, 
Hamilton, IN) and a GPS receiver; and were navigated 
on the ground for field verification. At each verification 
point, ocular estimate of disease severity >10% was ac- 
cessed within a 30-m radius. Error matrices for each clas- 
sification map were generated by comparing the classi- 
fied categories with the ground data at these points. Error 
matrices to evaluate the classification accuracy were cal- 
culated and included overall accuracy, kappa coefficient, 
and commission and omission errors. 

fications, non-wheat area (merged canola and bare 
ground) was used to mask out canola and bare ground in 
all images to create images containing only wheat areas 
(Figure 2(c)). After the masking process, wheat-only 
areas were classified for diseased-wheat using the same 
classifier (Figure 2(d)). During the diseased-wheat map- 
ping, healthy wheat endmember was chosen as a non- 
target to reject for classification. In order to compute di- 
seased-wheat areas, fractional abundance images for all 
dates were converted to vector format during the sub- 
pixel classification. 

2.3. Accuracy Assessment 

For the classification in present study, region of interest 
with previously identified diseased-wheat with ocular 
estimate of >10%, healthy wheat, canola, and bare 
ground were manually selected in satellite image as the 
training samples to represent respective classes. Training 
samples were consisted of 250 pixels for all images clas- In order to validate image classification accuracy, and 
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to verify that observed disease symptoms were caused by 
WSMV, ground surveys were conducted to collect and 
analyze wheat samples. Wheat samples from ground- 
truthing points were tested for WSMV within a two-day 
time frame before or after each image acquisition dates. 
Wheat samples were collected, placed into plastic bags, 
and transported to the Great Plains Diagnostic Network, 
plant pathology laboratory at the Texas A&M AgriLife 
Research in Amarillo for processing. Each sample con- 
sisted of multiple leaves or tillers, and individual samples 
were collected arbitrarily from 3 - 4 locations within each 
field for each classified category. Infection by WSMV 
was verified by double antibody sandwich enzyme-link- 
ed immunosorbent assay (DAS-ELISA) using standard 
Agdia protocol and reagents (Elkhart, IN), with minor 
modifications [69]. Polystyrene plates (Fisher Scientific, 
San Francisco, CA) were used to reduce buffer and anti- 
body serum from 100 µl to 50 µl, and WSMV antiserum 
was used at a 1:200 (vol:vol) dilution. Tissue was ground 
at a ratio of 1 g:10 ml extraction buffer. Individual sam- 
ple wells were evaluated by absorbance at 405 nm using 
an Emax precision microplate reader (Molecular Devices 
Corp., Union City, CA). Tissues from non-inoculated 
wheat grown in a greenhouse served as controls. Absor- 
bance values greater than 3 times the healthy controls 
were considered positive. 

3. Results 

The spectral profile of vegetation image endmembers 
(crops only) clearly indicated that separability of wheat 
and canola endmembers largely occurred in the near in- 
frared (NIR) band centered at 830 nm of TM imagery. 
High separability of bare ground from wheat and canola 
endmembers occurred in the band centered at 2200 nm. 
Therefore, only these two bands were used during the 
classification. Similar to reflectance from wheat and ca- 
nola, the largest difference in reflectance between heal- 
thy and diseased-wheat occurred in the NIR band cen- 

tered at 830 nm (Figure 1). 
Classification of the Landsat TM image collected on 

March 15 for wheat, canola, and bare ground revealed 
that overall classification accuracy was 100% with 0% 
commission and omission errors (Table 2). Classification 
identified about 9014 ha wheat in a 25600 ha study area. 
Of this total wheat, 17.6% was classified as diseased- 
wheat. Overall, 97% of the known ground-truthing points 
were classified correctly with a kappa value of 0.81 (Ta-
ble 3, Figure 2(d)). 

Omission errors were 14% for diseased-wheat and 2% 
for healthy wheat, whereas commission errors were 21% 
for diseased-wheat and 1% for healthy wheat. Classifica- 
tion of March 31 image indicated that diseased-wheat 
areas increased approximately 1.3% and classification 
accuracy decreased approximately 3% with kappa coef- 
ficient of 0.83 from mid-March to late March. On March 
31, omission and commission errors decreased for dis- 
eased-wheat, whereas the same error rates slightly in- 
creased for healthy wheat compared to March 15 (Table 
2, Figure 3(a)).  

Classification of the image acquired on April 16 re- 
vealed that WSM was quickly spread and infected wheat 
areas increased from 18.9% to 36.12% from late March 
to mid-April. The overall accuracy for April image was 
93% with a kappa value of 0.80 (Table 3, Figure 3(b)). 
Approximately 4% of diseased-wheat was included into 
healthy wheat category (commission error), whereas ap- 
proximately 6% of healthy wheat was misclassified as 
diseased-wheat (omission error) by the classification me- 
thod performed. For this date, approximately 17% of 
healthy wheat was erroneously classified as diseased- 
wheat, while about 12% of disease wheat was included in 
healthy wheat category. 

On May 2 and 18, there were about 5.8% and 6.54% 
increases in diseased-wheat areas, respectively, when 
compared to areas in mid-April. Overall classification 
ccuracies were 97 and 92% with kappa values of 0.94 a 

 

Table 2. Classification accuracies for wheat, canola, and bare ground land use classes using Landsat 5 TM imagery acquired 
on March 15, 2008. 

 Actual category   

Classified category Wheat Canola Bare ground Row total Commission error (%) 

Wheat 276 0 0 276 0 

Canola 0 741 0 741 0 

Bare ground 0 0 7 7 0 

Column total 276 741 7 1024  

Omission error (%) 0 0 0   

Overall accuracy (%) 100     

Kappa coefficient 1     
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Table 3. Classification accuracies for diseased-wheat caused by Wheat streak mosaic virus using Landsat 5 TM images ac- 
quired on March 15 and 31, on April 18, and May 2 and 18, 2008. 

  Actual category   

Image date Classified category Healthy Diseased Row total Commission error (%) 

Healthy 249 3 252 1.19 

Diseased 5 19 24 20.83 

Column total 254 22 276  

Omission error (%) 1.97 13.64   

Overall accuracy (%) 97.10    

March 15 

Kappa coefficient 0.81    

Healthy 207 7 214 3.27 

Diseased 9 53 62 14.52 

Column total 216 60 276  

Omission error (%) 4.17 11.67   

Overall accuracy (%) 94.20    

March 31 

Kappa coefficient 0.83    

Healthy 199 8 207 3.86 

Diseased 12 57 69 17.39 

Column total 211 65 276  

Omission error (%) 5.69 12.31   

Overall accuracy (%) 92.75    

April 16 

Kappa coefficient 0.80    

Healthy 174 4 178 2.25 

Diseased 3 95 98 3.06 

Column total 177 99 276  

Omission error (%) 1.69 4.04   

Overall accuracy (%) 97.46    

May 2 

Kappa coefficient 0.94    

Healthy 151 10 161 6.21 

Diseased 13 102 115 11.30 

Column total 164 112 276  

Omission error (%) 7.93 8.93   

Overall accuracy (%) 91.67    

May 18 

Kappa coefficient 0.83    

 
and 0.83 for diseased and healthy wheat, respectively, for 
the same dates (Table 3, Figures 3(c) and (d)). On May 
2, diseased and healthy wheat had about 4% and 2% omis- 
sion error, whereas commission errors were about 3 and 
2%, respectively. Healthy wheat had about 6% commis- 
sion error and 8% omission error, while the same errors 
were 11% and 9%, respectively for diseased-wheat on 
May 18.  

4. Discussion  

In the Texas Panhandle and throughout the Southwestern 
Great Plains, much of the winter wheat crop is irrigated 

with ground water from the Ogallala aquifer. Grain 
yields from irrigated wheat are often 3 - 4 times greater 
than dryland production, but reduced water levels in 
much of the aquifer threaten irrigated production. For this 
reason, research has focused on factors that impact irri- 
gation and crop water use efficiency (WUE). A majority 
of this effort has addressed the mechanics of water deliv- 
ery systems, or agronomic and soil physical characteris- 
tics that affect WUE, but recent studies have demonstra- 
ted the negative impact of WSM on root development 
and WUE [10,12,13]. Wheat plants, severely infected by 
WSM, have significantly smaller root systems than heal- 
thy plants and are unable to take advantage of available 
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(a)                                          (b) 

 
(c)                                    (d) 

Figure 3. Classified images for diseased-wheat caused by wheat streak mosaic virus on March 31 (a), April 16 (b), May 2 (c) 
and May 18 (d) 2008. 
 
soil moisture, regardless of the source. For this reason, 
application of irrigation to severely infected wheat con- 
stitutes a waste of time, energy and natural resources, and 
the economic impact of WSM is significantly greater in 
irrigated than in dryland production systems [12]. With 
the advent of site-specific irrigation technology, avoiding 
irrigation of severely infected wheat could result in sig- 
nificant savings, but to achieve this goal, improved me- 
thods of disease detection are needed. 

To test the utility of multispectral TM 5 data monitor- 
ing, identifying, and mapping of the occurrence of WSM 
disease in wheat in 2007-2008 crop years, CEM sub- 
pixel mapping method was employed for image classifi- 
cation consequent to band selection through examining 
spectral characteristics of land use classes. Wheat canopies 
were correctly separated from canola and bare ground. 
This is a relatively straightforward method for detection 

of winter wheat because wheat and canola were the only 
green vegetation in early spring in the study area. Canola 
was easily separated from the wheat crop, probably due 
the spectrally distinctive characteristics of its yellow 
flowers. 

Some researchers found that leafy spurge (Euphorbia 
esula L.) is spectrally distinguishable from the surround- 
ing vegetation due to its yellow-green flower during the 
flowering stage [70,71] and possibly musk thistle (Car- 
duus nutans L.) due to its large, red-purple flower heads 
[72]. Some cool-season grass and broad-leaf forb species 
germinated or greened up in March and areas covered by 
cool-season species may be confused with wheat. How- 
ever, typically these areas were limited to ditch banks, 
roadsides, and waste areas, and were too small to be de- 
tected on a 30 by 30 m Landsat image. The methods em- 
ployed in this study could easily differentiate some green 
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crops such as alfalfa, winter peas, etc. from wheat, but 
would not be able to easily separate other small grains 
such as oats, rye or triticale from wheat. However, none 
of these other crops were noticed during our ground sur- 
vey of the area we studied. 

This study showed that image processing techniques 
were repeatable between the dates when images were 
acquired for remote detection of WSM during a growing 
season. Results of the accuracy assessments for land use 
classes demonstrated an overall accuracy of 100%. This 
implies that Landsat 5 TM imagery can be reliably used 
for winter crop inventory in the region. The accuracy 
assessments for WSM presence and absence confirmed 
overall accuracies between 92% and 97%. This indicates 
that the method used in this study can be used for large 
area disease monitoring during the growing seasons. 
High values of overall accuracy as well as low commis- 
sion and omission errors illustrate that healthy wheat and 
wheat exhibiting low to severe symptoms of WSM was 
detectable in multi-temporal-multi-spectral images. An 
overall accuracy of 80% for remote detection of yellow 
rust in winter wheat was found [73]. The overall accura- 
cies of 65.9% and 88.6% for winter wheat infected by 
leaf rust and powdery mildew using an airborne hyper-
spectral HyMap image with a spatial resolution of 4 m 
and a QuickBird satellite image with a spatial resolution 
of 2.4 m were reported, respectively, [52]. The research- 
ers concluded that high-resolution multispectral imagers 
were appropriate to distinguish in field heterogeneities in 
wheat vigor, in particular when the crop is severely dis-
eased. Healthy and diseased-wheat infected by yellow 
rust were discriminated with a success rate of 96% using 
spectral images collected with a spectrograph in a field 
study [74]. The authors pointed out that their results were 
encouraging for the development of a cost-effective op- 
tical device for recognizing disease in the field during the 
early spring. The areas where sugarcane was infected by 
orange rust from disease free areas were distinguished 
using Hyperion imagery with 30 m by 30 m spatial reso- 
lution and concluded that this imagery can be used to 
detect orange rust disease in sugarcane [75]. Landsat 7 
Image intensity had higher r2 values for soybean cyst 
nematode, Heterodera glycines, population density, soy- 
bean oil and protein concentrations, but had lower r2 
values for soybean yield compared to either aerial image 
intensity or ground-based percentage reflectance meas- 
urements [76].  

Early stages of WSM symptom expression were <10% 
when only a few chlorotic streaks were present on leaves 
were not considered for identification of diseased-wheat 
in this study because earlier studies found that remote 
sensing images are not suitable for detecting initial sym- 
ptoms of infection [52,77-80]. Even though slightly sym- 
ptomatic plants were not included in our study as dis- 

eased, this omission was not considered problematic be- 
cause the goal was to quantify moderate to severe symp-
toms of WSM that ultimately would result in reduced fo- 
rage or grain yields. WSM is a progressive disease, and 
late infections, which result in greatly reduced symptom 
expression, cause significantly less damage to the crop [10, 
13,41]. Late infections that were not quantified in this 
study in mid-April or afterward likely had no negative 
effect on crop yield. Furthermore, light infections that oc- 
curred early in the season and were not quantified in the 
earliest spring images, likely were included in later im- 
ages, if they developed into severe, yield limiting diease.  

The ability to easily and repeatedly monitor large areas 
during the growing season, at low cost, is perhaps the 
greatest advantage of this approach for disease quantifi- 
cation. In a study on powdery mildew and leaf rust of 
winter wheat, multi-spectral remote sensing imageries 
were not sensitive enough to distinguish slight disease 
symptoms when only lower leaves were infected by 
powdery mildew, but were capable of detecting high in-
fection rates of leaf rust that rapidly affected whole 
canopies late in the growing season [52]. A similar result 
was obtained for late blight caused by Phytophthora in- 
festans, in field tomatoes (Solanum lycopersicum) [80]. 
Multispectral imageries with a spatial resolution of 1 m 
were successfully classified into healthy and diseased 
tomato when disease incidence reached stages 3 and 
above, but early disease detection below stage 3 was dif- 
ficult due to its similar spectral response to that of 
healthy vegetation [80]. Most of the regression models de- 
veloped for percentage reflectance and percentage defo- 
liation in alfalfa caused by foliar pathogens were insig- 
nificant when disease levels were quite low two or more 
weeks prior to harvest, whereas nearly all models were 
significant on the day of harvest or one week earlier [79]. 
Similar regression models were developed that r2 values 
between percentage reflectance and percentage defolia- 
tion caused by foliar pathogens in alfalfa increased as the 
measurements were made closer to harvest or on the day 
of harvest [77,78]. On the contrary, the discrimination of 
powdery mildew and leaf rust in winter wheat was 
achieved as early as one and two days post inoculation 
using blue-green and chlorophyll fluorescent [81]. Re- 
flectance in the 350 - 850 nm region of the spectrum was 
found to be useful for distinguishing bacterial wilt (Ral- 
stonia solanacearum) infected potato (Solanum tubero- 
sum) at the same time as the expert trained eye in 100% 
of the observations made [27]. Another recent study in- 
dicated that remotely sensed data can identify Rhizocto- 
nia crown and root rot caused by Rhizoctonia solani in 
sugar beet [82]. The level of damage by the black-shank 
fungus (Phytophthora nicotianae) on tobacco (Nicotiana 
tabacum) leaves was discriminated using a hyperspectral 
sensor [83].  
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5. Conclusions 

Regional epidemics of WSM on commercial wheat crops 
occurred in the Texas Panhandle in 2008. Landsat 5 TM 
imagery using CEM illustrated the remote monitoring, 
detection, and mapping of wheat fields with moderate to 
severe (extensive mosaic streaking to complete leaf chlo- 
rosis and stunting of plants) WSM. Detection was pro- 
vided at a level that allowed accurate disease assessment, 
and was provided early enough in March to allow pro- 
ducers to make important management decisions, such as 
whether to continue irrigation, fertilization, and disease 
control. The current study indicates that high levels of 
accuracy are achievable for identifying WSM using 
Landsat 5 TM imagery. This process can therefore pro- 
vide useful baseline input for real-time monitoring and 
mapping of WSM, its economics, and wheat inventory. 
Landsat 5 TM data could be also useful for quantifying 
past disease epidemics by obtaining and using archived 
images.  

The results of present study demonstrate that there ex- 
ists high potential to identify and quantify WSM within 
wheat fields using moderate resolution multitemporal 
imagery with 30-m pixel size. This can provide produc- 
ers and managers a quick and repeatable method for 
WSM management in time and place. Once applied to a 
particular management unit or farm, the georeferenced 
disease spots can then be used to facilitate more efficient 
treatment of WSM with Geographic Information Sys- 
tem-based precision farming spray equipment. 
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