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ABSTRACT 

Semiconductor solar cell (PV cell) has been widely used for generating solar electricity. However, the high cost and 
severe pollution limits its application. Recently the discovery of graphene may open a door to fabricate a novel solar 
cell with lower cost and more environmentally friendly. Our proposed solar cell device consists of a graphene strip and 
two semiconductor strips with different energy gaps attached to the two edges of the graphene strip on a flat plane. This 
structure is a two-dimensional quantum well. The energy bands of graphene can be described by a two-dimensional 
Dirac equation centered on hexagonal corners (Dirac points) of the honeycomb lattice Brillouin zone. The 2 D Dirac 
equation has been solved numerically in this paper. The results indicate that the graphene quantum well possesses very 
dense quantum energy states which imply that quantum well of this type can absorb sun light with more different fre- 
quencies. If we use graphene quantum well to fabricate the photo voltaic cell, the efficiency of converting solar energy 
to electricity will be enhanced. 
 
Keywords: Graphene; Quantum Well; Dirac Equation; PV Cell; Energy Levels 

1. Introduction 

This paper is devoted to a theoretical study of quantum 
well based on graphene and narrow semiconductors with 
two different energy gaps. Single atom layer graphene 
possesses unique electric properties. The energy bands of 
graphene can be described by a two-dimensional Dirac 
equation centered on hexagonal corners (Dirac points) of 
the honeycomb lattice Brillouin zone [1-3]. Particularly 
the low energy band structure of graphene is gapless and 
the corresponding electronic states are found near two 
cones located at unequivalent corners of the Brillouin 
zone [2-4]. The low-energy carrier dynamics 2

Fmv  is 
equivalent to that of a 2 D gas of massless charged fer- 
mions [2,5,6]. Many studies of electronic properties, 
transport properties of a nanoscale graphene strips were 
performed over the past years [4,7-14]. Transistors using 
graphene strip and graphene quantum dot have be fabri- 
cated recently [15,16]. 

The graphene quantum well composed of semicon- 
ductor and graphene strip which has two different bound- 
ary conditions corresponding to two types of graphene 
strip edges, i.e., the zigzag and “armchair” [10,17], cur- 
rently attracts intensively investigations world-wide [2,9]. 

In this paper, we proposed a flat graphene-semicon- 
ductor quantum well with asymmetric energy gaps of the 
semiconductors. With this structure of the quantum well, 
the two dimensional Dirac equation was established and 
the boundary conditions of the quantum well were dis- 
cussed. We then numerically solved the equation with the 
boundary conditions. The energy states of the electrons 
in the well were obtained. The advantages of using such 
quantum well as a photo voltaic cell were discussed. 

2. Electron Wave Functions in Graphene 
Semiconductor Quantum Well 

Electrons in graphene can be treated as massless particles. 
Their behavior is governed by Dirac Hamiltonian [2,5,6]. 
The Hamiltonian including the energy gaps of the semi- 
conductor film surrounding the graphene strip and a di- 
agonal effective mass-like term 2

Fmv  is [2]. 

  2ˆ
F F ZH v mv  U   P , 

and the Dirac equation is [2] 

ĤΨ EΨ ,                 (1) 

where 
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Since effective mass of electrons in graphene strips 
near the corners of the Brillouin zone is close to massless, 
the Hamiltonian of the electrons is nearly relativistic. 
Then the energy of the electrons in the graphene strip 
mostly arises from the spin-orbit interaction [2,18]. 

The potentials are the energy gaps of the semiconductors 
as a barrier around the edges of the graphene strips. The stru- 
cture of the graphene quantum well is shown in Figure 1. 

The scheme of the potential quantum well is shown in 
Figure 2. 

The potential function for the well is 
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Similarly to Pereira et al.’s work [2], we derived fol- 
lowing equations. 
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Figure 1. (a) Top view of structure of graphene quantum 
well; (b) Cross section view of structure of graphene quan- 
tum well. 
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Figure 2. Quantum well. 
 

Combining Equations (1) and (2), we found the Equa- 
tion (3) 
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(3) [2] 

Since y-direction is along the length of the strip which 
is much greater than the width L, electrons are consid- 
ered as free particles in y. Then the wave function can be 
expressed as 
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Substituting A  and B  into Equation (3) with 
Equation (4), Equation (3) become [2] 
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Letting x L  , then Equation (5) become 
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, Equa- 

tion (5)’ become 
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. From Equation (5)”, we obtained Equation (6) 
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  (6) 3. Boundary Conditions and the Electron 
States in Graphene Quantum Well 

It has been proven that the probability flow densities 

y F yj v     at boundary 1 2    is continuous. 
The wave functions BandA

where 
1

2
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 . [2]   and their derivatives are 

continuous at the boundary too. Then we form the four 
equations: 

Equations (5)” and (6) with an asymmetric potential 
shown before have solutions [2] 

Through algebra processes we reduce these four equa- 
tions in group (7) into two equations as 
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ε1) For non-relativistic particle if the energy gaps of the 

surrounding semiconductors 01 02U U , energy of 
electrons, as we know that the probability of finding 
non-relativistic particles outside the well decays experi- 
entially as 

E �

1e   and 2e  , α1, α2 are positive, hence par-
ticles are confined in the well. In contrast, for relativ- 
istic particle even in this case α1, α2 can be imaginary 
number. It may be understood as a manifestation of a 
relativistic tunneling effect first discussed by Klein 
[2,19,20]. The electronic states of the epitaxial graphene- 
quantum-well film system was discussed by Alisultanov 
and Meilanov [21]. 

2) For relativistic electron α1, α2 determine the con- 
figuration of the electrons, not U01 or U02. α1 and α2 can 
be real or complex. The confined electron states can only 
exist when the values of α1, α2 are real. In general, if 

1 20, 0 � �  the wave functions of massless elec- 
trons outside the well decay rapidly like nonrelativistic 
particle. The massless electrons are also possibly con- 
fined in the well. Let us discuss these cases in detail. 
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must be real, therefore, 
3) 2 2    . 
If the electrons are confined in the well, the solution of 

Equation (8), i.e. ε as a function of β, Δ, μ1 and μ2 or en- 
ergy E as a function of ky, U01, U02, vF is also restrained 
by these four conditions mentioned above. The values of 
ε and β satisfying the above mentioned conditions fall in 
the area marked by the dashed lines in Figure 3. 

4. Numerical Calculation of Energy States 
and Wave Function in the Well 

Equation (8) can be solved numerically. For L = 200 nm, 
U01 = 1.0 eV, energy gap for GaAs and U02 = 1.5 eV, 
energy gap for GaAsAl.  for graphene, 
the dimensionless parameters are 
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Figure 3. Diagram for the restrained relation of β and ε. 
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and 

2 2    . 

According to these conditions mentioned above, in the 
region (dot lines marked) in β, ε frame there may exist 
confined states. 

We can choose different values of β and ε to calculate 
the values of α1, α2 and k, and do algorism on Equation (8) 
until finding the value or values of ε that satisfy this 
equation. There are possible discrete energy states, if for 
one value of β there are multiple values of ε that satisfy 
Equation (8). 

The numerical calculation results are shown in Figure 
4. From Figure 4 we show the dimensionless energy ε as 
a function of β. One can see that there are multiple of 
energy levels for each value of β. Then electrons occu- 
pying these states can absorb photons with different fre- 
quencies and exited to the states where the energy level is 
higher than 2 2

1u     . Converting to real ener- 
gy, that is 

  2 2
01 FE U h L      
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Figure 4. The numerical calculation result showing ε vs β. 
 

The efficiency of the photovoltaic device made of such 
quantum well is expected to be higher. 
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According to the spectrum of sun light, the photo ener- 
gies of sun light range from 0.5 eV to 2.9 eV. The energy 
levels of electrons inside the well range from  

2 2Fv

L
  


 to 2 2

01
Fv

U
L

 


 . U01 should be 

relatively large, so that there would be enough number of 
electrons confined in the well. But it can’t be too much 
larger than 3.0 eV, because if U01 is too large, there may 
not be enough number of electrons exited to the outside 
of the well on the semiconductor strip with smaller ener- 
gy gap. In contract, U02 should be large than U01 + 2.90 
eV, so that no much electrons can escape to another side 
of the well (the semiconductor strip with higher energy 
gap). Dr. Alex Ignatiev is trying to produce GaN with 
energy gap of 3.5 eV [22]. It may serve well for this pur- 
pose. 

5. Conclusion 

Our theoretical study of quantum well based on graphene 
and semiconductors with two different energy gaps has 
shown that the behavior of low energy carrier of 2 D gas 
massless charged fermions including a diagonal effective 
mass-like term 2

Fmv  is governed by the 2 D Dirac equa- 
tion. The 2 D Dirac equation has been solved numeri- 
cally. The results indicate that the graphene quantum well 
possesses very dense quantum energy states which imply 
that quantum well of this type can absorb sun light with 
more different frequencies. If we use graphene quantum 
well to fabricate the photo voltaic cell, the efficiency of 
converting solar energy to electricity will be enhanced. 
The quantum well with uneven gaps of the semiconduc- 
tors at the edges of the graphene strip provides a perfect 
electric parity for the photo voltaic cell. 
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