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ABSTRACT 

This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic 
time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and adaptive 
immune clonal selection algorithm (AICSA) is used to localize and quantify the damage. Data symbolization by using 
STSA alleviates the effects of harmful noise in raw acceleration data. This paper explains the mathematical basis of 
STSA and the procedure of the hybrid methodology. It also describes the results of an simulation experiment on a 
five-story shear frame structure that indicated the hybrid strategy can efficiently and precisely detect, localize and quan- 
tify damage to civil engineering structures in the presence of measurement noise. 
 
Keywords: Structural Health Monitoring; Adaptive Immune Clonal Selection Algorithm; Symbolic Time Series 

Analysis; Real-Valued Negative Selection; Building Structures 

1. Introduction 

Structural health monitoring (SHM) is a vast, interdisci- 
plinary research field whose literature spans several dec- 
ades. The focus of SHM research is the detection, locali- 
zation, and quantification of damage in a variety of struc- 
tures. Broadly speaking, SHM techniques for detecting, 
localizing, and quantifying damage rely on measuring the 
structural response to ambient vibrations or forced exci- 
tations. Ambient vibrations can be caused by earthquakes, 
wind, or passing vehicles, and forced vibrations can be 
delivered by hydraulic or piezoelectric shakers. SHM 
techniques infer the existence, location and severity of 
damage by detecting differences in local or global struc- 
tural responses before and after the damage occurs. 

Some success has been achieved with various heuristic 
optimization algorithms. The annealing algorithm (SA) 
and genetic algorithm (GA) methods have been used to 
accurately describe the dynamic behavior of structures 
[1]. Cunha & Smith used GAs to identify the elastic con- 
stants of composite materials [2]. Particle swarm optimi- 
zation (PSO) has been used to estimate the severity of 
damage and identify the parameters of shear frame build- 
ing structures [3]. An improved clonal selection algo- 
rithm (CSA), called adaptive immune CSA (AICSA), has 
been used for structural damage localization and quanti-  

fication [4,5]. Moreover, recently, a novel pattern identi- 
fication technique, called symbolic time series analysis 
(STSA), was developed. The core concept of STSA is the 
identification of statistical patterns from symbol se- 
quences generated by coarse-graining of time series data. 
STSA for anomaly detection in complex systems [6] has 
the potential to deal with noise. Several case studies [7-9] 
have shown that STSA is more effective at anomaly de- 
tection than pattern recognition techniques such as prin- 
cipal component analysis and neural networks. STSA has 
also been used for fault detection in electromechanical 
systems, e.g., three-phase induction motors [10]. 

In this paper, we propose a hybrid methodology com- 
bining immune algorithms (real valued negative selection 
(RNS) and AICSA) and symbolic time series analysis 
(STSA) for detection, localization and quantification of 
damage to structural systems. In this methodology, RNS 
detects damage, and AICSA localizes and quantifies it by 
minimizing the Euclidean distance between the state se- 
quence histogram (SSH) that STSA gets by transforming 
the raw acceleration data. We mathematically show that 
STSA improves noise immunity, and our experimental 
results show that this hybrid strategy can efficiently and 
precisely detect, localize and quantify damage to civil 
engineering structures in the presence of measurement 
noise. 
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2. Immune Algorithms and STSA 

2.1. Real-Valued Negative Selection and 
Adaptive Immune Clonal Selection 
Algorithm 

The negative selection (NS) algorithm [11] was inspired 
by observation of the activity of the human immune sys- 
tem, in particular, the selection process that takes place 
inside the thymus. In this process, T-cells that recognize 
the body’s own cells (self cells) are eliminated; this gua- 
rantees that the remaining T-cells will recognize only 
foreign molecules. Gonzalez et al. [12] proposed a new 
negative selection algorithm that uses a real-valued rep- 
resentation of the self/non-self space. RNS tries to allevi- 
ate some of the drawbacks of NS while using the higher- 
level-of-representation real space to speed up the detector 
generation process. Refer to [13] for the detailed proce- 
dure of RNS for damage detection. 

Inspired by the clonal selection principle (CSP), the 
clonal selection algorithm (CSA) has been used to deal 
with optimization problems, thanks its superior search 
capability compared with classical optimization techni- 
ques [14]. CSP explains how an immune response is 
mounted when a non-self antigenic pattern is recognized 
by B cells. In natural immune systems, only the antibo- 
dies that can recognize the intruding antigens are selected 
to proliferate by cloning [15]. Hence, the main idea of 
CSA is that those cells (antibodies) capable of recogniz- 
ing the non-self cells (antigens) will proliferate. Al- 
though CSA has great advantages over GA, it is still dif- 
ficult to solve complex problems with it. In order to solve 
complex problems, AICSA embodies three strategies: 
secondary response, adaptive mutation regulation, and 
vaccination to speed up CSA’s convergence and ability 
to find the global optimum. For more information about 
AICSA, please refer to [16]. 

2.2. Symbolic Time Series Analysis 

It may be appropriate to say that, while classical data 
analysis focuses on individuals, symbolic data analysis 
deals with concepts, a less specific type of information. 
The original time series signals are converted into se- 
quences of discrete symbols, and the statistical features 
of the symbols can be used to describe the dynamic 
statuses of a system. 

Consider a structural system . The raw acceleration 
data can be recorded by using sensors. A section of this 
data, denoted as 



0 1 1 , can be obtained by 
sliding a rectangular window of length T  along the 
time series of the raw acceleration data. The first step is 
to transform the raw acceleration data into a binary sym- 
bol series 

, , , Tx x x   

0 1 1, , , T   .   0,i T 1i  equals 

“0” or “1” by setting a partition line. After that, we select 
an integer  (word length) and define the symbolic 
state at time  as the vector t

1r 
t s  containing the subse- 

quent  output symbols, namely, r

   1 1t r, , , , 0, 1ts t   t t T r        (1) 

ts  defines a state series  0 1, ,s s 1 . A binary 
coded t

, T rs  
s  should be transformed into the decimal do- 

main, and note that ts  can take  possible values 
(called “states”), which can be listed as a finite set 

2rQ

 , 10,1,S Q  . We can then derive the statistics of 
the symbolic state, i.e., compute the vector of the ob- 
served state frequencies , where di 
(integer 

0 1, , , Qd d     1D d
 0,i 1Q  ) is the number of occurrences of 

S i . Also, since there are  states in the state  1 T r

series in total,  can be normalized as D
1

D

T r 
. The  

histogram of  and  is called the state sequence 
histogram (SSH). 

S

SSH

SSH

 



D

3. Proposed Method 

3.1. Introduction 

In our methodology, the self (non-self) element is an SSH 
gotten by STSA from raw acceleration data from a 
healthy (damaged) structure. The detector is represented 
as a redistribution of the states of self elements. 

We introduce an index, the relative state sequence his- 
togram error (RSSHe), to measure the distance between 
two histograms: 
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where ida b  is the frequency of state i  in  or 
. 

aSSH

bSSH

3.2. Procedure 

Our methodology has two stages: damage detection using 
RNS and damage localization and quantification using 
AICSA. The procedure is as follows (see Figure 1): 

Stage 1: Damage detection. 
1) Training phase 
a) To create a subseries of raw acceleration data, a 

rectangular window of length T  is chosen and slid 
along the raw acceleration data series (length L). A set of 
subseries numbering 1, 2, 1j L T,    is created in 
this way. STSA (Section 2.1) is applied to each sub-series  
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Figure 1. Procedure of IA and STSA for structural health 
monitoring. 
 
to create a corresponding  . j

b) To create the self set, the distances 
SSH  1,2, , 1j L T 




RSSHe  be- 
tween the jth SSH and all previous in the self set is 
calculated. If one of the distances is less than the pre- 
defined self radius 

SSHs

sr , the jth  is discarded. Other- 
wise, it is stored in the self set as a new self element. 
This procedure is repeated until the predefined criteria is 
reached. 

SSH

c) RNS is applied to the self set to generate detectors. 
2) Detection phase 
a) New raw acceleration data of a structure is sym- 

bolized into a corresponding jSSH
 

by using the same 
method as in step a) of the training phase. 

b) When matching jSSH  with the detectors gene- 
rated in the training phase, if any detectors are activated 
(the distance between them is less than a certain value), a 
signal indicating the occurrence of the abnormal struc- 
tural state will be given. 

Stage 2: Damage localization and quantification. 
In the research field of structural parameter identifica- 

tion, the time response of the system is usually compared 
with that of a parameterized model using a norm or some 
performance criterion to give us a measure of how well 
the model explains the system. 

Suppose that damage to a structure has been detected 
by the above procedure. Moreover suppose that there is a 
parameterized model able to capture the behavior of the 
physical system, and this model depends on a set of n 
parameters, i.e.,  T

1 2, , , n
nx x x x R   . Given a can- 

didate parameter value x  and a guess 0X̂  of the initial 
state,    ŷ t i 1, ,Ti , the value of the parameterized 
model, i.e., the identified system at the ith discrete time 
step, can be obtained. Hence, the problem of system 

identification boils down to finding a set of parameters 
that minimize the prediction error between the system 
output  iy t , which is the measured data, and the model 
output   ,ˆ , iy x t  which is calculated at each time instant 

. it
Usually, our interest would lie in minimizing the pre- 

defined error norm of the time series outputs, e.g., the 
following mean square error (MSE) function, 

      2

1

1
ˆ ,

T

i ii
x y t y x t

T 
 f       (3) 

where 
2  represents the Euclidean norm of vectors. 

Formally, the optimization problem requires one to find a 
set of  parameters n nx R   so that a certain quality 
criterion is satisfied, namely, that the error norm  •f  
is minimized. The parameters of the model are taken to 
be equivalent to the parameters of the structure. 

In our methodology, instead of comparing raw accele- 
ration data directly, the Euclidean distance of SSHs from 
the structure and model is used as a measure of the dis- 
tance between the system output  and model out- 
put . 

aSSH

bHSS

3.3. Generation of Detectors 

If window length is  and word length is , the num- 
ber of states in  is 2  and the minimum change-  

T r
SSH r

able unit is 
1

T r
, then the total number of possible  

1 
distributions SSH  of SSH is equal to one classic com- 
bination problem, which is ‘put  same balls in 

 different boxes, and the combinatorial number is:  

N

2 1

2

r

rT r
N C 

 

1T r 
2r

SSH  . Supposing that the  can capture  SSH

the dynamic features of a structure, the normal state of 
the structure is represented by  (self), the damage 
to that structure can be expressed by other distributions 
of states in the  (non-self). Instead of randomly 
generating candidate detectors (which may result in cre- 
ating an impossible distribution of states in the ), a 
novel procedure to create candidate detectors on the basis 
of self elements is proposed. The procedure is described 
below (

sSSH

sSSH

SSH

sN

2r

 is the number of self elements). 
1) Redistribution: Randomly choose n (integer  

2,n    ) states from j  SSH   1, s j N
n

. Randomly 
changing the frequency values of the  chosen states 
and keep their sum unchanged. Note that the minimum  

unit of change is 
1

1T r 
. The newly created   SSH

by this procedure is used as the candidate detector. 
2) Self recognition: Calculate the distance between 

candidate detector and all self elements. If the minimum 
distance s sdist r  ( sr  is self radius), delete it. If not, 
keep it for the next step. 

Copyright © 2013 SciRes.                                                                                JILSA 



Hybrid Methodology for Structural Health Monitoring Based on Immune Algorithms and 
Symbolic Time Series Analysis 

51

3) Recognition of existing detectors: Calculate the 
distance between the candidate detector and the existing 
detectors. If the minimum distance  1d d odist r r  

r
 

( dr  is the radius of existing detectors; o  is the overlap 
rate, defined in 3.4), delete it. If not, store it as a new 
detector. Set  as the radius of the new detector. d

Repeat Steps (1) - (3) until the predefined stopping 
criterion is reached. 

dist

3.4. Noise Immunity 

Usually the raw acceleration data is chosen as input, and 
the Euclidean distance of raw acceleration data is used as 
the damage index or objective function; the problem is 
that the possible number of representations of raw ace- 
leration data is infinite for any Euclidean distance. In 
other words, the raw acceleration data is easily affected 
by noise. STSA is a coarse graining process that is robust 
against measurement noise. It is expected that small 
changes in time series data do not affect the symbolized 
data. Therefore, it can be assumed that a certain band of 
states represents similar dynamic status of the dynamic 
structural system, and instead of having an infinite num- 
ber of representations of the Euclidean distance in the 
case of using raw acceleration data as input, the  
representation is finite. 

SSH

Taking a SDOF (single degree of freedom) system as 
an example, the dynamic equation can be represented as: 

 mx cx kx F t                (4) 

where , , and  are respectively the mass, damp- 
ing ratio, and stiffness of the system, F is the force linked 
to the ground acceleration. By dividing both sides by the 
mass , the equation of motion becomes 

m

m

c k

2
0 02

F
x x x

m
                 (5) 

where 

0

k

m
  : undamped natural frequency of the oscillator 

2c

c c

c mk
   : damping ratio 

The value 

2cc m k                  (6) 

is called the critical damping. 
Acceleration x  is: 

2
0 0

1
2x x x

m
      F            (7) 

At time , t tx  can be obtained as 

2
0 1 0 1

1
2t t t

Since the window length is  and word length is , 
all the raw acceleration data in the window is  

T r

 0 1 1, , , Tx x x x     . The mean value of x  is: 
1t T 

0

1 2
0 1 0 1 10

1
2

tt

t T

t t tt

x
x

x x
m

T

F

T

 



 
  

   






 









   (9) 

This mean value of x

t

 is for the noise-free case. In 
case of raw acceleration data polluted by noise, the ac-
celeration data at time  is 

ttx x t                    (10) 

where t  is the value of noise at time . The partition 
line (the mean value of 

t

tx  ) is: 

 1 1

0 0

t T t T

t tt t
x x x t    

 
           (11) 

For a sufficiently long window length  and word  T

length , r
1

0
0

t T

tt
 


 , which means that noise will  

not affect the partition line. 
A random sample of SSH is defined as a . From 

Equation (2), any other  (i.e., ) will be some 
distance away from . 

SSH
SSH

aH
SSH

bSSH
SS

SSH

 0 1 2 1
, , , r

b aSSH

SSH SSH SSH


  

   
 

 , , 0, 2 1r
i b i a iSSH SSH SSH i         (12) 

where 
2 1

0
0

ri

ii
SSH

 


   and  22 1

0

ri

ii
SSH  


   (13) 

where 0, 2 1ri      and 2   is an even number.  

From reference [18], since the minimum unit of change  

in  is SSH
1

1T r 
 and the dimension of  is  SSH

2r , there is a possibility that not only one but many 
different  will have the same  as . 
This possibility occurs when Equation (13) is satisfied. 

SSHs RSSHe aSSH

The minimum number of b s that have the same 
 as  occurs when the difference between 

b  and a  is only one minimum unit; in that 
case, 

SSH
RSSHe
SSH

aSSH
SSH

2  , the minimum number is:  min 2 2 1r rN  
bSSH

. 
If there are two different minimum units between  
and , aSSH   equals 4, 6 or 8.  

22 , 2 2, , 2          , where   is the number  

of different units between  and . The num- 
ber of different values of ε is . For every 
certain value of ε can be called as a representative band, 
then the number of representative band is 

bSSH
N

aSSH
1   

N

2

 . Also, we 
can see that for a certain combination of , when α SSH s

1tx x x
m

       F         (8) 
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is the number of elements for which  

 0, 0, 2 1r
iSSH i      , the possible combinatorial  

number is 
2rC . For example, when  and 9r    is 

the minimum 2, the combinatorial number is 130816, 
which is a big number, and we should note this is only 
the minimum one. The conclusion is that STSA has very 
good fault tolerance. 

In addition, since the total number of units in  is 
, 

SSH
1T r  1T r    . For each representative band  , 

there will be many representations of b ; in other 
words, a small change in the raw acceleration data (say, 
due to noise) will not affect the  between  
and . 

SSH

RSSHe bSSH

aSSH

3.5. Indexes Used in the Performance Evaluation 

Two indexes are used to evaluate the classification accu- 
racy: the detection rate (DR) and the false alarm rate 
(FAR). DR is the ratio of correctly classified negative 
elements to the total negative elements, and the FAR is 
the ratio of incorrectly classified positive elements to the 
total negative elements. Four values are needed to cal- 
culate DR and FAR: the number of true positives (TP, 
positive elements identified as positive), true negatives 
(TN, negative elements identified as negative), false 
positives (FP, negative elements identified as positive), 
and false negatives (FN, positive elements identified as 
negative). DR and FAR are calculated as 

TN
DR

TN FP



             (14) 

FN
FAR

TP FN



            (15) 

In the damage localization and quantification stage, 
the severity of damage is defined as 

Severity 100%i r

r

k k

k


       (16) 

where i  and r  are the identified stiffness and real 
stiffness of the th story, respectively. 

k k
i

4. Numerical Simulation 

4.1. Description of Model 

For simplicity and generality, we used a five-story shear 
frame structure as a representative case to verify the per- 
formance of our methodology, and we modeled it as a 
five degree-of-freedom lumped mass system (Figure 2). 
Table 1 lists the structural and modal parameters of the 
structure. 

The dynamic equation is [17]: 

 t t tMX CX KX f t           (17) 

 

Figure 2. 5-DOF shear frame structure. 
 
Table 1. Structural and modal parameters of the structure. 

DOF 1 2 3 4 5 

Mass (kg) 1000 1000 1000 1000 1000

Stiffness (MN/m) 2.000 2.000 2.000 2.000 2.000

Frequency (Hz) 2.03 5.91 9.32 11.98 13.66

 
where M , , and C K  are respectively the mass ma- 
trix, damping matrix, and stiffness matrix.  f t

X
 is the 

force vector linked to the ground acceleration. , , 
and 

X
X  are respectively relative acceleration, velocity, 

and displacement response. The sampling frequency was 
100 Hz. In the simulation, the input signal was Gaussian 
white noise (Figure 3). To test the noise immunity of our 
method, noise at levels of 5% and 10% was added to the 
raw acceleration data. 

4.2. Results of Damage Detection 

The training data sets that were to generate detectors 
were acceleration time histories from the top story of the 
healthy shear structure under ground motion following a 
pattern of randomly generated Gaussian white noise. In 
the test phase, the test data sets (self and non-self) were 
obtained from the top story of the healthy and damaged 
shear structure under ground motion following another 
pattern of randomly generated Gaussian white noise. The 
sampling frequency was 100 Hz, and all time histories 
were normalized. 

As is shown in [18], the word length and window 
length will greatly affect the performance of the method- 
ology. Larger word and window lengths yield better per- 
formance. The reason is that, a longer word or window 
can symbolize the raw acceleration data much more ac- 
curately than a shorter one. As the word length and win- 
dow length increase, much more dynamic information 
about the system is captured, and the representation 
space of the problem becomes more accurate. In the 
simulation, the word length was set as 9 and window 
length was set as 3.0E+03. 

Several tests were performed by simulating stiffness 
reductions occurring in different locations and to diffe- 
rent degrees. The simulated cases included stiffness re-  
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Figure 3. Example input signal (Gaussian white noise). 
 
ductions on a single story (2nd story or 4th story) and on 
two stories (2nd story and 4th story). The degree of 
stiffness reduction was 10% or 20%. Table 2 lists the 
most pertinent results, and Figure 4 compares the DR 
and FAR values of the different damage cases. 

The results show that, by employing our methodology, 
perfect results can be obtained for the noise-free case, 
DR is 100% and FAR is 0%, which means all the dam- 
age can be detected and no SSH from the healthy struc- 
ture is misclassified. For the noise polluted cases as well, 
a high DR and low FAR can be obtained no matter the 
location or degree of stiffness reduction. Even as the 
noise level increases and the detection rate decreases, the 
extent of misclassification remains very small. This 
means that noise is not problematic in our methodology. 
Indeed, the good results probably reflect the fact that the 
RSSHe is much more sensitive to changes in the struc- 
ture itself than to the environment. 

5. Numerical Simulation of Damage 
Localization and Quantification 

5.1. Description of Procedure 

In this simulation, the system to be identified was the 
same five-story shear frame structure as stated before; 
the mass distribution and damping parameters were as- 
sumed to be known, and the stiffness of each story was 
set as the objective parameters that needed to be identi- 
fied. First, the parameters of the healthy structure were 
identified as a reference. AICSA was performed when 
the abnormal SSH of the damaged structure was detected. 
The abnormal SSH was the output of the damaged struc- 
ture. The input ground acceleration data corresponding to 
the abnormal SSH was used as the input of the candidate 
model, and the output of the candidate model was sym- 
bolized using the procedure in Section 2.2. The Euclidean 
distance of system and candidate SSHs was used as the 
objective function to be minimized. After the parameters 
of the damaged structure were identified, the severity 
(Equation (6)) showing the location and degree of the  

Table 2. DR and FAR of different damage cases. 

Single Double 

Rate (%) Rate (%) 
Noise 

level (%) Location & Location & 
Degree Degree DR FAR DR DR 

0 100 0 100 0 

5 98.64 0.20 98.87 0.19

10 

2nd & 10%

97.76 0.41 

2nd & 10% 
4th & 10% 

98.15 0.24

0 100 0 100 0 

5 99.06 0.13 99.28 0.14

10 

2nd & 20%

98.91 0.17 

2nd & 20% 
4th & 10% 

98.69 0.19

0 100 0 100 0 

5 98.09 0.23 99.04 0.13

10 

4th & 10%

97.56 0.44 

2nd & 10% 
4th & 20% 

98.26 0.21

0 100 0 100 0 

5 98.96 0.16 99.91 0.09

10 

4th & 20%

98.21 0.19 

2nd & 20% 
4th & 20% 

99.54 0.11
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Figure 4. DR and FAR for damage detection. 
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damage was calculated. 

5.2. Identification Results for Healthy and 
Damaged Structures 

The input signal was Gaussian white noise, as in the pre- 
vious simulation. The window and word lengths were the 
same as before, and the full output of the structure was 
used. Table 3 lists the identified stiffness of each story of 
the healthy and damaged structures. The damage cases 
are the same as those in the damage detection stage. Se- 
verity of damage was calculated for each damage case 
using the results in Table 3, and Figures 5, 6 and 7 plot 
the severity for the noise-free, 5% noise and 10% noise 
cases, respectively. 
 
Table 3. Estimated parameters for healthy and damaged 
models with a word length of 9 and window length of 3000. 

Calculated Value(MN/m)

Case State Stiffness 

True 
Value 

(MN/m) 
No 

noise 
5% 

noise
10% 
noise

k1 2.000 2.000 2.001 2.000

k2 2.000 2.000 1.999 2.003

k3 2.000 2.000 2.021 1.987

k4 2.000 2.000 1.997 2.031

0 Healthy 

k5 2.000 2.000 2.000 1.993

k1 2.000 2.000 2.003 2.010

k2 1.800 1.800 1.796 1.805

k3 2.000 2.000 2.014 1.996

k4 2.000 2.000 2.000 1.978

1 
One 
damage 
2nd & 10% 

k5 2.000 2.000 1.989 1.984

k1 2.000 2.000 2.008 2.030

k2 2.000 2.000 2.017 2.017

k3 2.000 2.000 2.010 1.997

k4 1.600 1.600 1.598 1.601

2 
One 
damage 
4th & 20% 

k5 2.000 2.000 1.998 2.024

k1 2.000 2.000 1.994 2.000

k2 1.800 1.800 1.796 1.815

k3 2.000 2.000 2.019 1.987

k4 1.600 1.600 1.608 1.582

3 

Two 
damage 
2nd & 10% 
4th & 20% 

k5 2.000 2.000 2.001 1.993

k1 2.000 2.000 1.992 1.979

k2 1.600 1.600 1.598 1.624

k3 2.000 2.000 2.031 2.024

k4 1.600 1.600 1.619 1.631

4 

Two 
damage 
2nd & 20% 
4th & 20% 

k5 2.000 2.000 2.006 1.989
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Figure 5. Identification results for noise-free case. 
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Figure 6. Identification results for 5% noise case. 
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Figure 7. Identification results for 10% noise case. 
 

The results show that, AICSA combining STSA can 
identify the parameters of a structure accurately regard- 
less of whether the structure is healthy or damaged. Even 
error of severities of each story increase slightly as the 
noise level of the raw acceleration increase, the location 
and severity of the damage can be identified distinctly. 

6. Conclusion 

We proposed a hybrid methodology based on immune 
algorithms (IAs) and symbolic time series analysis 
(STSA) for structural health monitoring (SHM). In this 
methodology, RNS is used detect damage, and AICSA is 
used to localize and quantify the damage to the structure. 
Data symbolization by using STSA alleviates the effects 
of noise in the raw acceleration data. We explained the 
mathematical basis of STSA and described a simulation 
experiment on a five-story shear frame structure. The re- 
sults showed that this hybrid methodology can efficiently 
and precisely detect, localize and quantify damage to 
civil engineering structures in the presence of measure- 
ment noise. 
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