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ABSTRACT 
Parallel implementation of algorithm of numerical solution of Navier-Stokes equations for large eddy simulation (LES) 
of turbulence is presented in this research. The Dynamic Smagorinsky model is applied for sub-grid simulation of tur-
bulence. The numerical algorithm was worked out using a scheme of splitting on physical parameters. At the first stage 
it is supposed that carrying over movement amount takes place only due to convection and diffusion. Intermediate field 
of velocity is determined by method of fractional steps by using Thomas algorithm (tridiaginal matrix algorithm). At the 
second stage found intermediate field of velocity is used for determination of the field of pressure. Three dimensional 
Poisson equation for the field of pressure is solved using upper relaxation method. Moreover various ways of geome-
trical decomposition for parallel numerical solution of three dimensional Poisson equations are investigated.  
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1. Introduction 
Most flows occurring in nature and in engineering appli-
cations are turbulent. Turbulent flow is a fluid motion 
that possesses complex and seemingly random structure 
at some macroscopic scale of dynamical importance. The 
most important physical consequence of turbulence is the 
enhancement of transport processes. In turbulent flow, 
momentum, energy and particle transport rates greatly 
exceed the corresponding molecular transport rates. 
Turbulent flow exhibit much more small-scale structure 
than their non-turbulent counterparts. In fact, this 
small-scale structure is correlated with enhanced turbu-
lent transport phenomena. Small-scale structure itself is 
evidence of enhanced transport in the sense that small 
scale develop from the degradation of large-scale excita-
tions and are maintained by energy transport from one 
scale to another. Another important characteristic of tur-
bulent flows is their apparent randomness and instability 
to small perturbations. Currently, there are three basic 
and commonly used approaches for simulation of turbu-
lent flows. First approach is direct numerical simulation 
(DNS) which applies to solve Navier – Stokes equations, 
resolving all the scales of motion, with initial and boun-
dary conditions appropriate to the considered flow. Each 
simulation produces a single realization of the flow. The 
DNS approach was infeasible until the 1970s when  

computers of sufficient power became available. In DNS 
whole range of spatial and temporal scales of the turbu-
lence must be resolved. All the spatial scales of the tur-
bulence must be resolved in the computational mesh, 
from the smallest dissipative scales (Kolmogorov micro-
scales), up to the integral scale L, associated with the 
motions containing most of the kinetic energy. Second 
approach is large eddy simulation (LES), the larger three 
– dimensional unsteady turbulent motions are directly 
represented, whereas the effects of the smaller-scale mo-
tions are modelled. In computational expense, LES lies 
between Reynolds-stress models and DNS. Because the 
large-scale unsteady motions are represented explicitly, 
LES can be expected to be more accurate and reliable 
than Reynolds-stress models for flows in which large- 
scale unsteadiness is significant – such as the flow over 
bluff bodies, which involves unsteady separation and 
vortex shedding. The computational cost of DNS is high, 
and it increases as the cube of the Reynolds number, so 
that DNS is inapplicable to high Reynolds number flows. 
Nearly all of the computational effort in DNS is ex-
pended on the smallest, dissipative motions, whereas the 
energy and anisotropy are contained predominantly in 
the larger scales of motion. In LES, the dynamics of the 
large-scale motions are computed explicitly, the influ-
ence of the smaller scales being represented by simple 
models. Third approach is the Reynolds-averaged Navi-
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er–Stokes equations (or RANS equations) are 
time-averaged equations of motion for fluid flow. The 
idea behind the equations is Reynolds decomposition, 
whereby an instantaneous quantity is decomposed into its 
time-averaged and fluctuating quantities, an idea was 
first proposed by Osborne Reynolds. The RANS equa-
tions are primarily used to describe turbulent flows. 
These equations can be used with approximations based 
on knowledge of the properties of flow turbulence to 
give approximate time-averaged solutions to the Navi-
er–Stokes equations. 

2. Mathematical Model 
Under the assumption of incompressible flow, the di-
mensionless governing equations are as follows [1,2,7]: 
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where jijiij uuuu −=τ  
The solution of spread of flow in three dimensional 

areas were considered in this work. iu  velocity, p 
represents the total pressure. The Reynolds number is 
defined as ν/Re DV=  (ν  dynamic viscosity). Fur-
thermore Cartesian coordinate system is employed, in 
which z is stream wise direction, x, y are in the lateral 
directions. 

As for constructing model of turbulence we used dy-
namic model of Smagorinsky, the following is the un-
derlying principle of the dynamic model for extracting 
information concerning a given eddy-viscosity model via 
a double filtering in physical space. It is worth to admit 
that the most of the historical developments have been 
done with Smagorinsky’s model [6,9] 
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, sC =0.18 for a Kolmogorov con-

stant of 1,4. 
But the dynamic procedure applies in fact to the types 

of eddy viscosities such as those used in the struc-
ture-function model.  

We start with regular LES corresponding to a 
“bar-filter” of width x∆ , an operator associating an 

function ),( txf . Then we define a second “test filter” 

tilde of large width x∆2  associating ),(
~

txf
−

. So let us 
first apply this filter product to the Navier-Stokes equa-

tion. The subgrid-scale tensor of the field  
~

iu  is ob-
tained from equation (4) with the replacement of the fil-
ter bar by the double filter and tilde filter:  
 

~~~

jijiij uuuu −=τ        (5) 
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Now we apply the tilde filter to equation (4), which 
leads to 
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Adding equations (6) and (7) and using equation (5), 
we obtain 

~
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Further we use Smagorinsky’s model expression for 
the subgrid stresses related to the bar filter and tilde-filter 
to get  
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where ijij SSxA 2)(∆=      ( 8 ) 

We have to determine ijτ , the stress resulting from 
the filter product. This is again obtained using the Sma-
gorinsky model, which yields 
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Subtracting (8) from (9) with the aid of Germano’s 
identity we get the following 

~
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All the terms of equation (10) may now be determined 

by means of u . Unfortunately, there are five indepen-
dent equations for only one variable C, and thus the 
problem is over determined. The first solution was pro-

posed by Germano to multiply (10) tensorially by ijS  
to get 
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3. Numerical Simulation 
The numerical solution of system is built on the stag-
gered grid with the usage of the compact scheme for 
convective terms and scheme against a stream of the 
second type [5]. 

The scheme of splitting on physical parameters is used 
for the solution of turbulence problem [9-12,14]: 
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The first stage is solved by fractional step method in 

combination of Thomas algorithm (tridiaginal matrix 
algorithm) [8, 11,13]. 

Three dimensional Poisson equation for pressure field 
using an over - relaxation method is handled at the second 
stage. Three dimensional Poisson equation is parallelized 
by using various geometrical decomposition (1D, 2D and 
3D). Geometric decomposition of the grid area is selected 
as the basic approach of parallelization. In this case, there 
are three different ways of sharing the values of the grid 
function on the compute nodes one-dimensional, 
two-dimensional and three-dimensional of the grid 
computing nodes [3,4]. 

After a stage of decomposition, when performed on 
separate data blocks for the construction of a parallel 
algorithm, we proceed to relation between the blocks, the 

calculations which will be run parallel. Because of we 
used an explicit difference scheme for computing the next 
approximation in the border nodes of each subdomain is 
necessary to know the value of the grid function with 
bordering neighboring processor elements. To accomplish 
this, in each compute node a fake edge for storing data 
from a neighboring computational node and arranged 
shipment of these boundary values needed to ensure the 
homogeneity of the calculations by explicit formulas. 
Sending data is done using the procedures library MPI. 
Let us turn to a preliminary theoretical analysis of the 
effectiveness of various methods of decomposition of the 
computational domain for this case. We will estimate the 
time of the parallel program as the time of consistent 
program calcT , divided by the number of processors used, 

plus the time shipments comcalcp TpTT += / . While 
shipments to different ways of decomposition can be 
approximately expressed in terms of the amount of 
bandwidth: 
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where 3N  - dimension of finite-difference problems, p 
– number of computing nodes, sendt  - shipping time of 
one number.  

Calculations were performed on a cluster system 
URSA KazNU after al-Farabi on grids of 128 × 128 × 128 
and 256 × 256 × 256 by using up to 64 processors. Results 
of computational experiment showed the presence of a 
good speed in solving problems of this class. They are 
mainly focused on over-time shipments and time 
calculations for various methods of decomposition. 

In the first stage we used one overall program, the size 
of arrays from run to run have not changed, each pro-
cessor element numbering of the array elements starting 
from scratch. Despite the fact that, in accordance with the 
theoretical analysis of the 3D decomposition is the best 
option for parallelization (Figure 1), computational ex-
periments have shown that better results can be achieved 
using 2D decomposition when the number of processes 
from 25 to 144 (Figure 2) 

On the basis of preliminary theoretical analysis of the 
graphs it must have the following pattern. Computation 
time without interprocessor communication costs at dif-
ferent ways of decomposition should be approximately 
the same for the same number of processors and shrink as 
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pTcalc / . In reality, the calculated data (Figure 4) indi-
cate that the use of 2D decomposition on different grids 
gives the minimum cost for computation and payment 
schedules depending on the computation time on the 
number of processors which placed much higher than 

pTcalc / . 
To explain these results there is a need to pay attention 

to the assumptions that were made during the preliminary 
theoretical analysis of the problem. 

Firstly, it was assumed that regardless of how the dis-
tribution of data on a single processor element executed 
the same amount of computational work, which should 
lead to identical time-consuming. Secondly, we assumed 
that the time spent on interprocessor shipping any order of 
the same amount of data that does not depend on their 
selection from memory. To understand what happens in 
reality, the next set of test calculations was held. To assess 
the consistency of first admission was considered when 
the program is run in a single-processor version, and thus 
simulates different ways of geometric data decomposition 
for the same amount of computation performed by each 
processor.  

Thus, for explicit difference methods for solving three 
dimensional Poisson equation can be applied one-di- 
mensional, two and three-dimensional decomposition, but 
the results of testing programs have shown that the 3D 
decomposition does not gain in time compared with the  
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Figure 1 Speed up for different ways to decompose the 
computational domain 
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Figure 2 Computation time without considering the cost of 
data transfer for various methods of decomposition 
2D decomposition, at least for the number of processors 
does not exceed 250, and the 3D decomposition has a 
more time-consuming software implementation and the 
use of 2D decomposition is sufficient for the scale of the 
problem at the present number of compute nodes. 

4. Testing results of the numerical method 
Consideration of a turbulent flow, which is located in the 
channel (Figure 1). Computations were performed for the 
Reynolds number ν/Re DU m=  equal to 8000 de-
fined based on the jet axis velocity. Also the following 
grid 1608080 xxxNxNN zyx =  is taken in the 
calculations.  

The spread of flow in three dimensional areas is de-
scribed in numerical solution. Figure 6 shows isosurface 
of spread flow in three dimensional areas at different time 
scale. 
 

 
5. Conclusions 
The results of numerical experiments showed that the 
constructed mathematical model of turbulence is able to 
reproduce the characteristic features of turbulent flow. 
The usage of dynamic Smagorinsky model allowed us to 
obtain good data for the study area. Application in the 
calculation of 2D decomposition gives 65% efficiency in 
the use of 25 compute nodes. With further increase in the 
number of compute nodes and 100 for the chosen mesh 
size, a characteristic was obtained for problems of this 
class efficiency value is around 45%. 
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