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ABSTRACT 

This paper presents the development of a microkernel with a device driver controller for embedded systems. The im- 
plementation was done in C language aiming low cost microcontrollers. The proposed system allowed to perform soft 
real-time activities while keeping the drivers and the application isolated by a secure layer. The callback system proved 
itself extremely simple to use while still maintaining the security of the system regarding the temporal constraints. 
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1. Introduction 

The embedded system development is a complex area in 
which the developer needs to have a deep understanding 
of the underlying hardware with its configurations and 
registers. One of the solutions to reduce this complexity 
is to use an operating system. This introduces in the sys- 
tem a programming layer that operates as a translator, 
passing the messages from processes to the hardware 
devices, making the system development easier [1]. 

This paper presents a microkernel aimed at low re-
sources embedded systems. In order to provide a more 
complete system a device driver controller was devel-
oped to operate with the microkernel. 

This paper also proposes a standard for the hardware 
driver with a common set of functions. The standardiza-
tion of these functions allows the developer to add a new 
device driver or modify an existing driver without the 
need to change the kernel code. Also it is possible to cre-
ate a new abstraction layer allowing complex hardware 
resources like interrupts and callbacks to be easily used 
by embedded systems developers. 

The Section 2 presents an overview of some defini- 
tions and discuss timing scheduler issues. 

In the Section 3 the microkernel development process 
is presented with the decisions taken to the system archi- 
tecture. It also presents the developed callback process 
with its requirements. 

A practical example with the results obtained in this 
paper is presented in the Section 4 followed by the con- 
clusions on Section 5. 

2. Embedded Systems Concepts 

Embedded systems are systems designed for a single 

purpose or a single application and usually have limited 
memory and processing resources [2]. 

Generally they are not designed to be programmed or 
modified by the end user. In some systems the user may 
change or configure some of the system behavior, but not 
the function that it performs [3]. 

In most cases, these systems are designed for applica- 
tions that do not require human intervention and typically 
they interact only with the environment where they are, 
gathering data from sensors and modifying the environ- 
ment with actuators [2]. In some of these systems there 
are real-time requirements and not completing a task in 
the required time can result in data/quality loss or even 
cause damage to the system or be hazardous to the peo-
ple around it [3]. In these cases, the use of a real-time 
kernel can ensure that the functions execution to satisfy 
the predetermined times if some conditions are met [4]. 

2.1. Processes 

A process is a piece of executable code, which can be 
represented by a computational function. Besides the 
code itself, other information may be necessary and is 
stored with the process. 

For a soft real-time system, it is necessary to indicate 
the processes temporal needs. For this work it is neces-
sary that each process has its own countdown timer and 
also inform the implementation period. 

2.2. Kernel 

The kernel is the software layer responsible for imple-
menting the interface between the hardware and the ap-
plication [5]. 
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In general, a kernel has three main responsibilities [6]: 
 to manage and coordinate the execution of processes 

in the CPU through some criteria; 
 to handle the available memory and coordinate the 

processes to access it; 
 to interface the communication between hardware and 

processes. 
Figure 1 shows the kernel responsibilities, showing 

the relationships between it and the other system com- 
ponents. 

The way the kernel manages processes is a critical 
point in development, especially in the context of em-
bedded systems, where processes may have restrictions 
with respect to delays in its execution [7]. 

When there is no kernel, the entire responsibility of 
organizing the processes, the hardware and the applica- 
tions falls on the programmer, complicating even more 
the management of critical processes. 

A monolithic kernel is the one where all resources are 
implemented within the same level, having all functions 
and procedures required to operate the system inside it- 
self, i.e., operations on input/output, memory management 
and processes are all implemented in the same module. 

The microkernel differs from a monolithic kernel be- 
cause its goal is to be as simple as possible, leaving eve- 
rything that is not essential to its operation in other layers. 
Therefore the vast majority of drivers and routines are 
implemented outside the kernel, increasing both security 
and the system stability. 

The option of a microkernel provides a greater system 
reliability, since each module can be separated and thus 
having its errors contained [8]. However this architecture 
can insert an unnecessary overhead in communication 
between the kernel and modules, and this is the most 
critical point in the microkernel development [9]. 

2.3. Time Related Conditions 

Some of the embedded system applications need to run 
some of their processes periodically. The failure to exe-
cute or even a small delay on these processes, can lead to 
serious consequences for the system as a whole. Some 
systems can even completely fail if these deadlines are 
 

 

Figure 1. Kernel, application and resources. 

not met [10]. 
There are at least three conditions that must be satis-

fied in order to implement timing conditions on the ker-
nel [11]: 
 The system must have a hardware interrupt which 

occurs at a precise rate and is capable of running an 
arbitrary code; 

 The kernel must be informed of the temporal needs 
(frequency or the period of execution) of each process 
loaded on the kernel pool; 

 The processor must have enough available time to 
execute all processes with their temporal require- 
ments [4]. 

A problem may arise in the implementation of tempo-
ral conditions: timers possess a numerical limitation de-
fined by the size of their internal counters. There is an 
inherent difficulty in using a finite number to measure or 
count time that may impose a problem with the processes 
scheduler. It appears when two processes are scheduled 
to run in a short period of time, or even simultaneously. 

Suppose a non-signed 16-bit timer, maximum 65,535 
into a system where two processes are scheduled for the 
same instant as shown in Figure 2. When the counter 
matches the one set for each process only one can take 
control of the CPU and run. 

After the execution of the process P1, the only infor-
mation available to the kernel is it timer value (now) and 
the start value for each of the processes as shown in Fig-
ure 3. Thus it is not possible to know if the process P2 is 
10 seconds late or if it was scheduled to occur 50,535 s 
ahead. 

There are two solutions to this problem: create a flag 
for each process, indicating when it is ready to run, or 
create a counter for each process indicating the remain- 
ing time to run. All these counters should be decree- 
 

 

Figure 2. Two processes scheduled to the same time. 
 

 

Figure 3. Determining delay on process start. 
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mented every tick of the kernel, generating more over- 
head. 

On the other hand, if the counter is allowed to assume 
negative values, it is possible to examine for how long 
the process is waiting. With this information it is possible 
to take some action in order to avoid starvation [6]. 
Through a priority system it is possible to promote the 
process that is waiting for a long time without being 
executed. 

2.4. Hardware Driver 

Fundamentally, a hardware driver is simply a form to 
abstract out the details of the hardware device so the ap-
plication developer does not need to worry about them 
[12]. 

This software layer comprises a set of modules im-
plemented which provide the necessary mechanisms to 
access the device specific input/output stream. Thus, the 
upper layer has a “standard view” of devices with a 
common programming interface [13]. The device drivers 
can be loaded dynamically without restarting the kernel 
[14]. 

2.5. Hardware Interrupts 

The interrupt is a mechanism used to signal, to the CPU, 
the occurrence of important events related to peripheral 
devices and other elements of the system [15]. When it 
occurs, the program execution is stopped and the current 
program flow is shifted to a specific routine [13]. This 
routine is commonly called interrupt service routine 
(ISR). 

The interruption allows the peripheral devices to syn-
chronize their operation with the CPU or to signal the 
end of some task. If it did not exist it would be necessary 
to waste time checking the desired peripheral ended its 
function or take the risk of inserting a delay in the recep-
tion of the information [16]. 

Access to interruptions, using high-level languages, is 
done in a complex and non-standard way because each 
hardware has its own configuration and each compiler 
provide a different way to access the hardware. 

It is important that the code executed within the inter-
ruptions to be fast, preventing that the other processes to 
be stopped for a long time. 

2.6. Callback 

The callback is a programming technique typically used 
when a process A requires a return from a process B but 
does not want to remain idle while waiting for the re-
sponse. 

Through this technique, the process B obtains a func- 
tion pointer from the process A. When the execution of 
the requested service is completed, the process B can 

notify the process A by invoking the function pointer 
provided [17]. 

This is a very interesting structure to use to avoid 
lengthy and complex functions to be implemented within 
the interruptions. The process responsible for each inter-
rupt should only perform the essential functions and to 
leave the heavier processing for a second function that 
will be executed outside of the interruption. This second 
function is called via callback technique. 

3. Development 

In this work it was developed a cooperative microkernel 
and a device driver controller to isolate the kernel from 
the drivers. The processes will be scheduled based on 
their temporal needs, specifically the frequency of execu- 
tion and the remaining time to its start. The purpose of 
these options is to simplify the development of a system 
that includes real-time constraints. 

3.1. Process Definition 

One process is simply one function that will be executed 
by the kernel. In order to manage its execution, more 
information, regarding the process temporal needs, are 
grouped into one struct. This struct and the pointer func- 
tion declaration is presented in Code 1. 

3.2. Kernel Implementation 

The developed kernel has four functions: kernelInit, ker- 
nelAddProc, kernelClock and kernelLoop. Processes are 
added in a pool which is implemented as a circular buffer 
with a predefined size. 

The addition of new processes by the function kerne-
lAddProc, can only be achieved if there is enough space 
in the buffer as can be seen on Code 2. At the time of 
addition is also important to initialize the new process 
with appropriate values. It should be noted that the pool 
is implemented on a circular buffer. 
  The kernel requires one temporized hardware interrupt 
to synchronize its operation. This interruption should call 
the function kernelClock as presented on Code 3. Nega-
tive values are allowed to track which functions had 

 

//Pointer function type declaration 

typedef char(*ptrFunc)(void); 

 

//Process struct 

typedef struct { 

  ptrFunc function; 

  unsigned int period; 

  signed int start; 

} process; 

Code 1. Process definition. 
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char kernelAddProc(process* func){ 

 // Check if there is free space available 

 // One space on buffer should always be free 

 if ( ((end+1)%SLOT_SIZE) != start){ 

 //Add the process and setup the start counter 

  func->start += func->period; 

  pool[end] = func; 

  end = (end+1)%SLOT_SIZE; 

  return OK; //Added successfully 

 } 

 return FAIL; //Fail 

} 

Code 2. New process addition. 
 

void kernelClock(void){ 

 unsigned char i; 

 i = start; 

 //update all processes counters 

 while(i!=end){ 

  if((pool[i]->start)>(MIN_INT)){ 

   pool[i]->start--; 

  } 

  i = (i+1)%SLOT_SIZE; 

 } 

} 

Code 3. Kernel clock procedure with processes countdown 
clock. 
 
their start delayed, avoiding conflict situations such as in 
Figure 3. 

The function kernelLoop is responsible for the proc-
esses execution. The order in which the processes will be 
executed is guided by their temporal needs. They are 
ranked according to the time remaining to the start of 
their execution, indicated by the start variable. The ker- 
nel performs a search among all scheduled processes and 
wait for the process to be ready to run it. During this time 
the system can enter a power saving mode, in general it 
is made with an assembly command as presented on 
Code 4. 

Figure 4 shows the model of the developed kernel. 
This represents all the definitions and decisions taken in 
the previous steps. 

With this kernel is possible to develop a system with 
tasks that have various time requirements simply. Code 5 
presents one example in which two led’s are blinked with 
different frequencies. 

3.3. Drivers 

A driver can be defined as a set of functions to access, 
control and monitor a hardware device. Thus one of the 
possible options for its implementation is an array of 
function pointers. Each element on the array provides a 

pointer to one functionality to the application. These 
functions receive as parameter one pointer to void and 
return one char. 

The parameter passing as void pointer is needed be-
cause the system does not know in advance the amount 
or types of variables that will be passed by the kernel. 
These definitions can be seen on Code 6. 
 

void kernelLoop(void){ 
 unsigned char j; 
 unsigned char next; 
 process* tempProc; 
 for(;;){ 
  if (start != end){ 
   j = (start + 1)%SLOT_SIZE; 
   next = start; 
   while(j! = end){ 
    // get the smallest start time 
    if(pool[j].start<pool[next].start){ 
     next = j; 
    } 
    // next process 
    j = (j + 1)%SLOT_SIZE; 
   } 
   // exchange places on the buffer 
   tempProc = pool[next]; 
   pool[next] = pool[start]; 
   pool[start] = tempProc; 
   while(pool[start].start>0){ 
    // wait on low power mode 
    _asm SLEEP _endasm; 
   } 
// check if the process needs to be rescheduled 
   switch (pool[start]->function()) {  
    case REPEAT:  
     kernelAddProc(pool[start]);  
    break;  
    case FAIL:  
     break;  
    default: ;  
   }  
   // get the next process on the pool 
   start = (start + 1) % SLOT_SIZE; 
  } 
 } 
} 

Code 4. Kernel scheduler and processes execution. 
 

 

Figure 4. Kernel structure. 
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process p1 = {Led1,0,530}; //period of 530 ms  
 
char Led1(void) { 
 BitFlp(PORTD,0); 
 return REPEAT; 
} 
 
process p2 = {Led2,0,135}; //period of 135 ms  
 
char Led2(void) { 
 BitFlp(PORTD,1); 
 return REPEAT; 
} 
 
void main(void){ 
 kernelInit(); 
 kernelAddProc(p1); 
 kernelAddProc(p2); 
 kernelLoop(); 
} 

Code 5. Blinking leds example using the developed kernel. 
 

//Pointer function type declaration 

typedef char(*ptrFuncDrv)(void *prm); 

 

//Driver struct 

typedef struct { 

 char drv_id; 

 ptrFuncDrv *functions; 

 ptrFuncDrv drv_init; 

} driver; 

 

// Initialize the driver and return the handle 

typedef driver* (*ptrGetDrv)(void); 

Code 6. Device driver definition. 
 

The structure of the driver consists of a vector of 
pointers of ptrFuncDrv and a function pointer apart. The 
latter is responsible for starting the driver. 

In order for the device driver controller to have access 
to each driver, the driver must implement one more func- 
tion, which initializes the structure above and returns a 
handle to the driver, which is implemented as a pointer to 
the structure. This enables drivers to be loaded and ac-
cessed dynamically, not requiring a static link at compile 
time. 

Another required element is one enumerated that de-
fines the positions of each function pointer in the vector. 
By making it as an enumerator, the developer has an 
easier way to program the device, without adding too 
much overhead on the system. The enumerator act as a 
label for each function provided by the driver. Code 7 
presents an example of a device driver interface for a 
generic driver. 

This standardization allows the device driver control-
ler to work with different drivers regardless of their im-
plementation. 

3.4. Generic Driver Development 

This section presents a generic driver to illustrate the 
development of one driver. As shown in the pattern on 
Code 8 it is necessary to implement function that initial-
ize the driver and returns a handler. 

The function getDriver is the only function that should 
be reported to the controller. It is responsible for return-
ing the address of the structure that contains the relevant 
information of the driver and initialize the driver struc-
ture. 

The model of a generic driver is presented on Figure 
5. 

From the Figure 5 one can observe that all drivers 
must include the driver struct in order to allow its access 
and management by the device driver controller. 
 

//Driver handle 

static driver thisDriver; 

 

//Functions array 

static ptrFuncDrv this_functions[GEN_END]; 

 

enum { 

 GEN_FUNC1, 

 GEN_FUNC2, 

 GEN_FUNC3, 

 GEN_END 

}; 

Code 7. Example of a device driver interface. 
 

driver* getDriver(void) { 

 this.drv_init = initGeneric; 

 this.functions=(ptrFuncDrv*) &this_functions; 

 return &thisDriver; 

} 

Code 8. Example function to obtain the driver handler. 
 

 

Figure 5. Generic device driver example 
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3.5. Device Driver Controller 

The device driver controller was designed to intermediate 
the requests from the application, or the kernel, to the 
drivers, with minimal overhead. The structure of the con-
troller can be seen in Figure 6. 

The device driver controller needs an access to each 
driver. This can be done statically by passing all the 
ptrGetDrv functions to the controller. This functions re-
turns a handler, which is a pointer to a driver struct, with 
all information about the device. If the driver is not 
known at compile time it must be stored in memory at 
runtime and a pointer to its structure should be passed to 
the controller. The static linking is presented at Code 9. 

The device driver controller have an array of drivers 
and a counter indicating how many drivers have been 
loaded so far. It also has three functions: one to initialize 
itself, another to load a particular driver and a third one 
to check the kernel/application command and forward it 
to the correct driver. 

Loading a driver is done though the list of known 
drivers and starting its initialization routine. Only after 
 

 

Figure 6. Device driver controller structure. 
 

//include all drivers known at compile time 
#include "drvInterrupt.h" 
#include "drvTimer.h" 
#include "drvLcd.h" 
 
// drivers enumerate to access their handlers 
enum { 
 DRV_INTERRUPT, 
 DRV_TIMER, 
 DRV_LCD, 
 DRV_END 
}; 
 
// functions to access the drivers handlers 
static ptrGetDrv drvInitVect[DRV_END] = { 
 getInterruptDriver, 
 getTimerDriver, 
 getLCDDriver 
}; 

Code 9. Device driver controller example. 

proper initialization the driver is stored in the list of 
loaded drivers. If there is no space for another driver or 
the driver failed to initialize, the function returns an error. 
Code 10 presents the driver initialization routine. 

All driver calls, originated from the kernel or the ap- 
plication, are intermediated by callDriver function. This 
function iterates through the list of loaded drivers 
searching for the requested device. From Code 11 it can 
be seen that if the device driver is not found an error 
code is returned. 

3.6. Interrupt Abstract Layer 

There are some interesting solutions that help the devel-
oper to maintain a high level programming style while 
still interacting with hardware details. The interrupt ab-
straction layer is one of them. This software layer aims to 
abstract the interrupt routines and still allow the applica-
tion developer to access them easily. 

This is done through a function pointer that stores the 
address of the function that the user want to execute in 
the interrupt context. The interrupt abstraction layer will 
store this pointer inside itself. This pointer can be 
changed by the program at runtime even more than once. 
This allow the developer to select a different routine de-
pending on the program context. 

With the technique presented on Code 12, the details 
of low-level compiler instructions become hidden from 
the application. Below is an example that configures the 
 

char initDriver(char nDrv) { 
 char resp = FAIL; 
 //checking if there is free space 
 if(qntDL < QNTD_DRV) { 
  dLoad[qntDL] = drvGetFunc[nDrv](); 
  resp = dLoad[qntDL]->drv_init(&nDrv); 
//check if the driver was started without errors 
  if(resp == SUCCESS) { 
   qntDL++; 
  } 
 } 
 return resp; 
} 

Code 10. Driver loading routine. 
 

char callDriver(char drv_id, char f_id, 
                void *prm) { 
 char i; 
 for (i = 0; i < qntDL; i++) { 
  //looking for the requested driver 
  if (drv_id == dLoad[i]->drv_id) { 
  //executing the requested function 
  //with the received parameter 
   return dLoad[i]->f_ptr[f_id](prm); 
  } 
 } 
 return DRV_FUNC_NOT_FOUND; 
} 

Code 11. Interface routine to driver access. 
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kernel to call the function timerISR on each hardware 
interrupt generated by the timer device. Note that there 
isn’t any microcontroller specific instruction. This way, 
in order to port the code to another architecture the de-
veloper needs only to rewrite the drivers. 

Code 13 presents an example of the system making 
use of the timer interrupt without the need to deal with 
the underlying hardware. 

3.7. Hardware Devices Callback 

In some devices there is the need to wait for a response 
from the hardware. Reading the A/D converter is an ex-
ample: after initialized, it starts the conversion of the 
analog signal on its input. Without the use of interrupt or 
a callback technique, the system must wait for the end of 
conversion, losing processing time that could be used for 
another task. 

A second problem that may arise is the time spent in 
the interrupt handling routine. It should be as small as 
possible, preventing the system to lose, or delay, a sec-
ond interrupt could not be serviced while the processor is 
busy with the first one. 
 

// ISR function pointer type definition 
typedef void (*intFunc)(void); 
 
// Internal variable to store the ISR pointer 
static intFunc thisInterrupt; 
 
// Function to configure the ISR pointer 
char setInterruptFunc(void *prm) { 
 thisInterrupt = (intFunc) prm; 
 return OK; 
} 

Code 12. Definition, storage and management of the ISR 
pointer. 
 

// This function will be called inside the 
// interrupt routine 
void timerISR(void) { 
 kernelClock(); 
} 
 
void main (void){ 
 kernelInit(); 
 initDriver(DRV_INTERRUPT); 
 initDriver(DRV_TIMER); 
 
 // Enabling TMR interrupt 
 callDriver(DRV_TIMER, TMR_INT_EN, 0); 
 
 // Setup of the ISR function 
 callDriver(DRV_INTERRUPT, INT_TIMER_SET, 
      (void*)timerISR); 
 
 // Enabling interrupts 
 callDriver(DRV_INTERRUPT, INT_ENABLE, 0); 
 kernelLoop(); 
} 

Code 13. Example of ISR usage. 

The solution to these problems can negatively impact 
on the system performance if not properly implemented. 
This task is particularly difficult because the routines are 
very close related to hardware issues and must be devel-
oped specifically for each architecture and for each pro-
ject. 

The development of a callback interface aims to fa- 
cilitate the use of this tool by the programmer. The best 
option is to separate the problem into two parts: the first 
will be executed in the interruption context, being as 
brief as possible, and the second will be responsible for 
executing the longer code outside the interrupt context. 

Figure 7 shows an event diagram of a system using 
the callback. 

The first step is setup the driver. The interrupt abstrac-
tion layer must be informed about which function (call-
backPtr) will be performed during the hardware inter-
rupt. 

The second step is the callback setup. The main proc-
ess must make the necessary adjustments to tell the 
driver which is the callback process (callbackProc). 

When the interrupt occurs, the interrupt driver calls the 
preset function callbackPtr. The driver performs all the 
necessary procedures (copying data, set flags, etc.) in 
order to ensure that the data will be available outside the 
interrupt context . 

Finally, when the kernel and the callback process con-
ditions are met, the kernel will run the callback process 
removing it from the pool of processes. Within the call-
back process, one can execute tasks which are more pro- 
cessing intensive, thus requiring more time, such as sig- 
nal filtering, data storage on a nonvolatile memory, da- 
tabase search, processing control/management rules etc. 

4. Results 

In order to execute the kernel on the test board it is nec- 
 

Main
Process Driver Interrupt

Layer

ISRsetup
 (&callbackPtr)

    DataRequest (&callbackProc)

HW interrupt

isrPtr()

Kernel

kernelAddProc(&callback)

KernelLoop:
MainProc.()

KernelLoop: CallbackProc()

KernelInit: InitDrv()

Callback
Process

 

Figure 7. Callback event diagram. 
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essary to develop at least one driver to provide access to 
a hardware timer interrupt (drvTimer) and two libraries, 
one to configure the internal registers (fuses) of the mi-
crocontroller (config.h) and one with information about 
the special registers to access and configure the peripher- 
als (basico.h). 

In order to use all the board resources seven other 
drivers were developed. The proposed final structure is 
shown in Figure 8. 

There is no direct link between the kernel and drivers 
layer, characterizing the operation of the microkernel, 
where applications are separated from drivers, in this 
case by the controller drivers. 

It can be further noted from Figure 8 that all drivers 
developed are derived from the structure shown in Fig-
ure 5 in this way the controller can operate any one of 
them, even without knowing the implementation of each 
of them at compile time. 

Figure 9 shows the amount of RAM used by each of 
the three layers of a system using the kernel developed. 
The kernel itself is the largest consumer of RAM. This 
was expected since he is responsible for inserting, orga-
nizing and storing the processes into an internal buffer. 

As can be seen in Figure 10 the final implementation 
of the controller drivers occupies a small portion of 
memory compared to the amount of drivers being even 
smaller than the kernel used. This finding is of great im- 
portance since the controller is an essential component in 
systems with microkernel. Also the large consumption of 
 

 

Figure 8. Complete system diagram. 
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Figure 9. RAM consumption (total of 999 bytes). 
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Figure 10. ROM consumption (total of 14.74 Kb). 
 
the ROM, almost 15 kilobytes can be explained by the 
high number of drivers and descriptors implemented in 
this work and the absence of optimization on the com-
piler. 

5. Conclusions 

The developed microkernel allows the programmer to 
benefit from a layer of abstraction that is generally only 
available to desktop developers. The proposed scheduler 
is capable of guaranteeing soft real-time processes only, 
because the guarantee of real time is not effective in all 
cases using a cooperative kernel. 

The implementation of the device driver controller 
used few resources of ROM, especially when compared 
to other components. As a whole, the system consumed 
few memory resources, an important point for its use in 
embedded systems, especially the low cost ones. 

The proposed standard for writing drivers proved quite 
simple to use and did not burden too much the drivers 
access. 

The implementation of an effective callback system 
brought the benefits of using the hardware interrupts 
without its inherent complexity. 

When concerning memory usage, the proposed system 
proved itself a good candidate to be used on low resource 
embedded system as proposed in this paper. 

The future work of this research is to modify the 
scheduler of the microkernel for a preemptive system to 
ensure hard real-time for at least one process. This would 
allow the use of this microkernel in stricter control ap-
plications. 
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