
Journal of Software Engineering and Applications, 2013, 6, 20-28
http://dx.doi.org/10.4236/jsea.2013.61003 Published Online January 2013 (http://www.scirp.org/journal/jsea)

Microkernel Development for Embedded Systems

Rodrigo Maximiano Antunes de Almeida, Luis Henrique de Carvalho Ferreira,
Carlos Henrique Valério

IESTI-Systems Engineering and Information Technology Institute, UNIFEI-Federal University of Itajubá, Itajubá, Brazil.
Email: rodrigomax@unifei.edu.br, luis@unifei.edu.br, valerio@unifei.edu.br

Received October 27th, 2012; revised November 25th, 2012; accepted December 3rd, 2012

ABSTRACT

This paper presents the development of a microkernel with a device driver controller for embedded systems. The im-
plementation was done in C language aiming low cost microcontrollers. The proposed system allowed to perform soft
real-time activities while keeping the drivers and the application isolated by a secure layer. The callback system proved
itself extremely simple to use while still maintaining the security of the system regarding the temporal constraints.

Keywords: Embedded Systems; Microkernel; Device Driver Controller; Hardware Devices; Callback

1. Introduction

The embedded system development is a complex area in
which the developer needs to have a deep understanding
of the underlying hardware with its configurations and
registers. One of the solutions to reduce this complexity
is to use an operating system. This introduces in the sys-
tem a programming layer that operates as a translator,
passing the messages from processes to the hardware
devices, making the system development easier [1].

This paper presents a microkernel aimed at low re-
sources embedded systems. In order to provide a more
complete system a device driver controller was devel-
oped to operate with the microkernel.

This paper also proposes a standard for the hardware
driver with a common set of functions. The standardiza-
tion of these functions allows the developer to add a new
device driver or modify an existing driver without the
need to change the kernel code. Also it is possible to cre-
ate a new abstraction layer allowing complex hardware
resources like interrupts and callbacks to be easily used
by embedded systems developers.

The Section 2 presents an overview of some defini-
tions and discuss timing scheduler issues.

In the Section 3 the microkernel development process
is presented with the decisions taken to the system archi-
tecture. It also presents the developed callback process
with its requirements.

A practical example with the results obtained in this
paper is presented in the Section 4 followed by the con-
clusions on Section 5.

2. Embedded Systems Concepts

Embedded systems are systems designed for a single

purpose or a single application and usually have limited
memory and processing resources [2].

Generally they are not designed to be programmed or
modified by the end user. In some systems the user may
change or configure some of the system behavior, but not
the function that it performs [3].

In most cases, these systems are designed for applica-
tions that do not require human intervention and typically
they interact only with the environment where they are,
gathering data from sensors and modifying the environ-
ment with actuators [2]. In some of these systems there
are real-time requirements and not completing a task in
the required time can result in data/quality loss or even
cause damage to the system or be hazardous to the peo-
ple around it [3]. In these cases, the use of a real-time
kernel can ensure that the functions execution to satisfy
the predetermined times if some conditions are met [4].

2.1. Processes

A process is a piece of executable code, which can be
represented by a computational function. Besides the
code itself, other information may be necessary and is
stored with the process.

For a soft real-time system, it is necessary to indicate
the processes temporal needs. For this work it is neces-
sary that each process has its own countdown timer and
also inform the implementation period.

2.2. Kernel

The kernel is the software layer responsible for imple-
menting the interface between the hardware and the ap-
plication [5].

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 21

In general, a kernel has three main responsibilities [6]:
 to manage and coordinate the execution of processes

in the CPU through some criteria;
 to handle the available memory and coordinate the

processes to access it;
 to interface the communication between hardware and

processes.
Figure 1 shows the kernel responsibilities, showing

the relationships between it and the other system com-
ponents.

The way the kernel manages processes is a critical
point in development, especially in the context of em-
bedded systems, where processes may have restrictions
with respect to delays in its execution [7].

When there is no kernel, the entire responsibility of
organizing the processes, the hardware and the applica-
tions falls on the programmer, complicating even more
the management of critical processes.

A monolithic kernel is the one where all resources are
implemented within the same level, having all functions
and procedures required to operate the system inside it-
self, i.e., operations on input/output, memory management
and processes are all implemented in the same module.

The microkernel differs from a monolithic kernel be-
cause its goal is to be as simple as possible, leaving eve-
rything that is not essential to its operation in other layers.
Therefore the vast majority of drivers and routines are
implemented outside the kernel, increasing both security
and the system stability.

The option of a microkernel provides a greater system
reliability, since each module can be separated and thus
having its errors contained [8]. However this architecture
can insert an unnecessary overhead in communication
between the kernel and modules, and this is the most
critical point in the microkernel development [9].

2.3. Time Related Conditions

Some of the embedded system applications need to run
some of their processes periodically. The failure to exe-
cute or even a small delay on these processes, can lead to
serious consequences for the system as a whole. Some
systems can even completely fail if these deadlines are

Figure 1. Kernel, application and resources.

not met [10].
There are at least three conditions that must be satis-

fied in order to implement timing conditions on the ker-
nel [11]:
 The system must have a hardware interrupt which

occurs at a precise rate and is capable of running an
arbitrary code;

 The kernel must be informed of the temporal needs
(frequency or the period of execution) of each process
loaded on the kernel pool;

 The processor must have enough available time to
execute all processes with their temporal require-
ments [4].

A problem may arise in the implementation of tempo-
ral conditions: timers possess a numerical limitation de-
fined by the size of their internal counters. There is an
inherent difficulty in using a finite number to measure or
count time that may impose a problem with the processes
scheduler. It appears when two processes are scheduled
to run in a short period of time, or even simultaneously.

Suppose a non-signed 16-bit timer, maximum 65,535
into a system where two processes are scheduled for the
same instant as shown in Figure 2. When the counter
matches the one set for each process only one can take
control of the CPU and run.

After the execution of the process P1, the only infor-
mation available to the kernel is it timer value (now) and
the start value for each of the processes as shown in Fig-
ure 3. Thus it is not possible to know if the process P2 is
10 seconds late or if it was scheduled to occur 50,535 s
ahead.

There are two solutions to this problem: create a flag
for each process, indicating when it is ready to run, or
create a counter for each process indicating the remain-
ing time to run. All these counters should be decree-

Figure 2. Two processes scheduled to the same time.

Figure 3. Determining delay on process start.

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 22

mented every tick of the kernel, generating more over-
head.

On the other hand, if the counter is allowed to assume
negative values, it is possible to examine for how long
the process is waiting. With this information it is possible
to take some action in order to avoid starvation [6].
Through a priority system it is possible to promote the
process that is waiting for a long time without being
executed.

2.4. Hardware Driver

Fundamentally, a hardware driver is simply a form to
abstract out the details of the hardware device so the ap-
plication developer does not need to worry about them
[12].

This software layer comprises a set of modules im-
plemented which provide the necessary mechanisms to
access the device specific input/output stream. Thus, the
upper layer has a “standard view” of devices with a
common programming interface [13]. The device drivers
can be loaded dynamically without restarting the kernel
[14].

2.5. Hardware Interrupts

The interrupt is a mechanism used to signal, to the CPU,
the occurrence of important events related to peripheral
devices and other elements of the system [15]. When it
occurs, the program execution is stopped and the current
program flow is shifted to a specific routine [13]. This
routine is commonly called interrupt service routine
(ISR).

The interruption allows the peripheral devices to syn-
chronize their operation with the CPU or to signal the
end of some task. If it did not exist it would be necessary
to waste time checking the desired peripheral ended its
function or take the risk of inserting a delay in the recep-
tion of the information [16].

Access to interruptions, using high-level languages, is
done in a complex and non-standard way because each
hardware has its own configuration and each compiler
provide a different way to access the hardware.

It is important that the code executed within the inter-
ruptions to be fast, preventing that the other processes to
be stopped for a long time.

2.6. Callback

The callback is a programming technique typically used
when a process A requires a return from a process B but
does not want to remain idle while waiting for the re-
sponse.

Through this technique, the process B obtains a func-
tion pointer from the process A. When the execution of
the requested service is completed, the process B can

notify the process A by invoking the function pointer
provided [17].

This is a very interesting structure to use to avoid
lengthy and complex functions to be implemented within
the interruptions. The process responsible for each inter-
rupt should only perform the essential functions and to
leave the heavier processing for a second function that
will be executed outside of the interruption. This second
function is called via callback technique.

3. Development

In this work it was developed a cooperative microkernel
and a device driver controller to isolate the kernel from
the drivers. The processes will be scheduled based on
their temporal needs, specifically the frequency of execu-
tion and the remaining time to its start. The purpose of
these options is to simplify the development of a system
that includes real-time constraints.

3.1. Process Definition

One process is simply one function that will be executed
by the kernel. In order to manage its execution, more
information, regarding the process temporal needs, are
grouped into one struct. This struct and the pointer func-
tion declaration is presented in Code 1.

3.2. Kernel Implementation

The developed kernel has four functions: kernelInit, ker-
nelAddProc, kernelClock and kernelLoop. Processes are
added in a pool which is implemented as a circular buffer
with a predefined size.

The addition of new processes by the function kerne-
lAddProc, can only be achieved if there is enough space
in the buffer as can be seen on Code 2. At the time of
addition is also important to initialize the new process
with appropriate values. It should be noted that the pool
is implemented on a circular buffer.
 The kernel requires one temporized hardware interrupt
to synchronize its operation. This interruption should call
the function kernelClock as presented on Code 3. Nega-
tive values are allowed to track which functions had

//Pointer function type declaration

typedef char(*ptrFunc)(void);

//Process struct

typedef struct {

 ptrFunc function;

 unsigned int period;

 signed int start;

} process;

Code 1. Process definition.

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 23

char kernelAddProc(process* func){

 // Check if there is free space available

 // One space on buffer should always be free

 if (((end+1)%SLOT_SIZE) != start){

 //Add the process and setup the start counter

 func->start += func->period;

 pool[end] = func;

 end = (end+1)%SLOT_SIZE;

 return OK; //Added successfully

 }

 return FAIL; //Fail

}

Code 2. New process addition.

void kernelClock(void){

 unsigned char i;

 i = start;

 //update all processes counters

 while(i!=end){

 if((pool[i]->start)>(MIN_INT)){

 pool[i]->start--;

 }

 i = (i+1)%SLOT_SIZE;

 }

}

Code 3. Kernel clock procedure with processes countdown
clock.

their start delayed, avoiding conflict situations such as in
Figure 3.

The function kernelLoop is responsible for the proc-
esses execution. The order in which the processes will be
executed is guided by their temporal needs. They are
ranked according to the time remaining to the start of
their execution, indicated by the start variable. The ker-
nel performs a search among all scheduled processes and
wait for the process to be ready to run it. During this time
the system can enter a power saving mode, in general it
is made with an assembly command as presented on
Code 4.

Figure 4 shows the model of the developed kernel.
This represents all the definitions and decisions taken in
the previous steps.

With this kernel is possible to develop a system with
tasks that have various time requirements simply. Code 5
presents one example in which two led’s are blinked with
different frequencies.

3.3. Drivers

A driver can be defined as a set of functions to access,
control and monitor a hardware device. Thus one of the
possible options for its implementation is an array of
function pointers. Each element on the array provides a

pointer to one functionality to the application. These
functions receive as parameter one pointer to void and
return one char.

The parameter passing as void pointer is needed be-
cause the system does not know in advance the amount
or types of variables that will be passed by the kernel.
These definitions can be seen on Code 6.

void kernelLoop(void){
 unsigned char j;
 unsigned char next;
 process* tempProc;
 for(;;){
 if (start != end){
 j = (start + 1)%SLOT_SIZE;
 next = start;
 while(j! = end){
 // get the smallest start time
 if(pool[j].start<pool[next].start){
 next = j;
 }
 // next process
 j = (j + 1)%SLOT_SIZE;
 }
 // exchange places on the buffer
 tempProc = pool[next];
 pool[next] = pool[start];
 pool[start] = tempProc;
 while(pool[start].start>0){
 // wait on low power mode
 _asm SLEEP _endasm;
 }
// check if the process needs to be rescheduled
 switch (pool[start]->function()) {
 case REPEAT:
 kernelAddProc(pool[start]);
 break;
 case FAIL:
 break;
 default: ;
 }
 // get the next process on the pool
 start = (start + 1) % SLOT_SIZE;
 }
 }
}

Code 4. Kernel scheduler and processes execution.

Figure 4. Kernel structure.

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 24

process p1 = {Led1,0,530}; //period of 530 ms

char Led1(void) {
 BitFlp(PORTD,0);
 return REPEAT;
}

process p2 = {Led2,0,135}; //period of 135 ms

char Led2(void) {
 BitFlp(PORTD,1);
 return REPEAT;
}

void main(void){
 kernelInit();
 kernelAddProc(p1);
 kernelAddProc(p2);
 kernelLoop();
}

Code 5. Blinking leds example using the developed kernel.

//Pointer function type declaration

typedef char(*ptrFuncDrv)(void *prm);

//Driver struct

typedef struct {

 char drv_id;

 ptrFuncDrv *functions;

 ptrFuncDrv drv_init;

} driver;

// Initialize the driver and return the handle

typedef driver* (*ptrGetDrv)(void);

Code 6. Device driver definition.

The structure of the driver consists of a vector of
pointers of ptrFuncDrv and a function pointer apart. The
latter is responsible for starting the driver.

In order for the device driver controller to have access
to each driver, the driver must implement one more func-
tion, which initializes the structure above and returns a
handle to the driver, which is implemented as a pointer to
the structure. This enables drivers to be loaded and ac-
cessed dynamically, not requiring a static link at compile
time.

Another required element is one enumerated that de-
fines the positions of each function pointer in the vector.
By making it as an enumerator, the developer has an
easier way to program the device, without adding too
much overhead on the system. The enumerator act as a
label for each function provided by the driver. Code 7
presents an example of a device driver interface for a
generic driver.

This standardization allows the device driver control-
ler to work with different drivers regardless of their im-
plementation.

3.4. Generic Driver Development

This section presents a generic driver to illustrate the
development of one driver. As shown in the pattern on
Code 8 it is necessary to implement function that initial-
ize the driver and returns a handler.

The function getDriver is the only function that should
be reported to the controller. It is responsible for return-
ing the address of the structure that contains the relevant
information of the driver and initialize the driver struc-
ture.

The model of a generic driver is presented on Figure
5.

From the Figure 5 one can observe that all drivers
must include the driver struct in order to allow its access
and management by the device driver controller.

//Driver handle

static driver thisDriver;

//Functions array

static ptrFuncDrv this_functions[GEN_END];

enum {

 GEN_FUNC1,

 GEN_FUNC2,

 GEN_FUNC3,

 GEN_END

};

Code 7. Example of a device driver interface.

driver* getDriver(void) {

 this.drv_init = initGeneric;

 this.functions=(ptrFuncDrv*) &this_functions;

 return &thisDriver;

}

Code 8. Example function to obtain the driver handler.

Figure 5. Generic device driver example

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 25

3.5. Device Driver Controller

The device driver controller was designed to intermediate
the requests from the application, or the kernel, to the
drivers, with minimal overhead. The structure of the con-
troller can be seen in Figure 6.

The device driver controller needs an access to each
driver. This can be done statically by passing all the
ptrGetDrv functions to the controller. This functions re-
turns a handler, which is a pointer to a driver struct, with
all information about the device. If the driver is not
known at compile time it must be stored in memory at
runtime and a pointer to its structure should be passed to
the controller. The static linking is presented at Code 9.

The device driver controller have an array of drivers
and a counter indicating how many drivers have been
loaded so far. It also has three functions: one to initialize
itself, another to load a particular driver and a third one
to check the kernel/application command and forward it
to the correct driver.

Loading a driver is done though the list of known
drivers and starting its initialization routine. Only after

Figure 6. Device driver controller structure.

//include all drivers known at compile time
#include "drvInterrupt.h"
#include "drvTimer.h"
#include "drvLcd.h"

// drivers enumerate to access their handlers
enum {
 DRV_INTERRUPT,
 DRV_TIMER,
 DRV_LCD,
 DRV_END
};

// functions to access the drivers handlers
static ptrGetDrv drvInitVect[DRV_END] = {
 getInterruptDriver,
 getTimerDriver,
 getLCDDriver
};

Code 9. Device driver controller example.

proper initialization the driver is stored in the list of
loaded drivers. If there is no space for another driver or
the driver failed to initialize, the function returns an error.
Code 10 presents the driver initialization routine.

All driver calls, originated from the kernel or the ap-
plication, are intermediated by callDriver function. This
function iterates through the list of loaded drivers
searching for the requested device. From Code 11 it can
be seen that if the device driver is not found an error
code is returned.

3.6. Interrupt Abstract Layer

There are some interesting solutions that help the devel-
oper to maintain a high level programming style while
still interacting with hardware details. The interrupt ab-
straction layer is one of them. This software layer aims to
abstract the interrupt routines and still allow the applica-
tion developer to access them easily.

This is done through a function pointer that stores the
address of the function that the user want to execute in
the interrupt context. The interrupt abstraction layer will
store this pointer inside itself. This pointer can be
changed by the program at runtime even more than once.
This allow the developer to select a different routine de-
pending on the program context.

With the technique presented on Code 12, the details
of low-level compiler instructions become hidden from
the application. Below is an example that configures the

char initDriver(char nDrv) {
 char resp = FAIL;
 //checking if there is free space
 if(qntDL < QNTD_DRV) {
 dLoad[qntDL] = drvGetFunc[nDrv]();
 resp = dLoad[qntDL]->drv_init(&nDrv);
//check if the driver was started without errors
 if(resp == SUCCESS) {
 qntDL++;
 }
 }
 return resp;
}

Code 10. Driver loading routine.

char callDriver(char drv_id, char f_id,
 void *prm) {
 char i;
 for (i = 0; i < qntDL; i++) {
 //looking for the requested driver
 if (drv_id == dLoad[i]->drv_id) {
 //executing the requested function
 //with the received parameter
 return dLoad[i]->f_ptr[f_id](prm);
 }
 }
 return DRV_FUNC_NOT_FOUND;
}

Code 11. Interface routine to driver access.

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 26

kernel to call the function timerISR on each hardware
interrupt generated by the timer device. Note that there
isn’t any microcontroller specific instruction. This way,
in order to port the code to another architecture the de-
veloper needs only to rewrite the drivers.

Code 13 presents an example of the system making
use of the timer interrupt without the need to deal with
the underlying hardware.

3.7. Hardware Devices Callback

In some devices there is the need to wait for a response
from the hardware. Reading the A/D converter is an ex-
ample: after initialized, it starts the conversion of the
analog signal on its input. Without the use of interrupt or
a callback technique, the system must wait for the end of
conversion, losing processing time that could be used for
another task.

A second problem that may arise is the time spent in
the interrupt handling routine. It should be as small as
possible, preventing the system to lose, or delay, a sec-
ond interrupt could not be serviced while the processor is
busy with the first one.

// ISR function pointer type definition
typedef void (*intFunc)(void);

// Internal variable to store the ISR pointer
static intFunc thisInterrupt;

// Function to configure the ISR pointer
char setInterruptFunc(void *prm) {
 thisInterrupt = (intFunc) prm;
 return OK;
}

Code 12. Definition, storage and management of the ISR
pointer.

// This function will be called inside the
// interrupt routine
void timerISR(void) {
 kernelClock();
}

void main (void){
 kernelInit();
 initDriver(DRV_INTERRUPT);
 initDriver(DRV_TIMER);

 // Enabling TMR interrupt
 callDriver(DRV_TIMER, TMR_INT_EN, 0);

 // Setup of the ISR function
 callDriver(DRV_INTERRUPT, INT_TIMER_SET,
 (void*)timerISR);

 // Enabling interrupts
 callDriver(DRV_INTERRUPT, INT_ENABLE, 0);
 kernelLoop();
}

Code 13. Example of ISR usage.

The solution to these problems can negatively impact
on the system performance if not properly implemented.
This task is particularly difficult because the routines are
very close related to hardware issues and must be devel-
oped specifically for each architecture and for each pro-
ject.

The development of a callback interface aims to fa-
cilitate the use of this tool by the programmer. The best
option is to separate the problem into two parts: the first
will be executed in the interruption context, being as
brief as possible, and the second will be responsible for
executing the longer code outside the interrupt context.

Figure 7 shows an event diagram of a system using
the callback.

The first step is setup the driver. The interrupt abstrac-
tion layer must be informed about which function (call-
backPtr) will be performed during the hardware inter-
rupt.

The second step is the callback setup. The main proc-
ess must make the necessary adjustments to tell the
driver which is the callback process (callbackProc).

When the interrupt occurs, the interrupt driver calls the
preset function callbackPtr. The driver performs all the
necessary procedures (copying data, set flags, etc.) in
order to ensure that the data will be available outside the
interrupt context .

Finally, when the kernel and the callback process con-
ditions are met, the kernel will run the callback process
removing it from the pool of processes. Within the call-
back process, one can execute tasks which are more pro-
cessing intensive, thus requiring more time, such as sig-
nal filtering, data storage on a nonvolatile memory, da-
tabase search, processing control/management rules etc.

4. Results

In order to execute the kernel on the test board it is nec-

Main
Process Driver Interrupt

Layer

ISRsetup
 (&callbackPtr)

 DataRequest (&callbackProc)

HW interrupt

isrPtr()

Kernel

kernelAddProc(&callback)

KernelLoop:
MainProc.()

KernelLoop: CallbackProc()

KernelInit: InitDrv()

Callback
Process

Figure 7. Callback event diagram.

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems 27

essary to develop at least one driver to provide access to
a hardware timer interrupt (drvTimer) and two libraries,
one to configure the internal registers (fuses) of the mi-
crocontroller (config.h) and one with information about
the special registers to access and configure the peripher-
als (basico.h).

In order to use all the board resources seven other
drivers were developed. The proposed final structure is
shown in Figure 8.

There is no direct link between the kernel and drivers
layer, characterizing the operation of the microkernel,
where applications are separated from drivers, in this
case by the controller drivers.

It can be further noted from Figure 8 that all drivers
developed are derived from the structure shown in Fig-
ure 5 in this way the controller can operate any one of
them, even without knowing the implementation of each
of them at compile time.

Figure 9 shows the amount of RAM used by each of
the three layers of a system using the kernel developed.
The kernel itself is the largest consumer of RAM. This
was expected since he is responsible for inserting, orga-
nizing and storing the processes into an internal buffer.

As can be seen in Figure 10 the final implementation
of the controller drivers occupies a small portion of
memory compared to the amount of drivers being even
smaller than the kernel used. This finding is of great im-
portance since the controller is an essential component in
systems with microkernel. Also the large consumption of

Figure 8. Complete system diagram.

47%

15%

38%

Used RAM memory

Kernel
Device
Controller
Drivers

Figure 9. RAM consumption (total of 999 bytes).

16%
4%

80%

Used ROM memory

Kernel
Device
Controller
Drivers

Figure 10. ROM consumption (total of 14.74 Kb).

the ROM, almost 15 kilobytes can be explained by the
high number of drivers and descriptors implemented in
this work and the absence of optimization on the com-
piler.

5. Conclusions

The developed microkernel allows the programmer to
benefit from a layer of abstraction that is generally only
available to desktop developers. The proposed scheduler
is capable of guaranteeing soft real-time processes only,
because the guarantee of real time is not effective in all
cases using a cooperative kernel.

The implementation of the device driver controller
used few resources of ROM, especially when compared
to other components. As a whole, the system consumed
few memory resources, an important point for its use in
embedded systems, especially the low cost ones.

The proposed standard for writing drivers proved quite
simple to use and did not burden too much the drivers
access.

The implementation of an effective callback system
brought the benefits of using the hardware interrupts
without its inherent complexity.

When concerning memory usage, the proposed system
proved itself a good candidate to be used on low resource
embedded system as proposed in this paper.

The future work of this research is to modify the
scheduler of the microkernel for a preemptive system to
ensure hard real-time for at least one process. This would
allow the use of this microkernel in stricter control ap-
plications.

REFERENCES
[1] W. Stallings, “Computer Organization and Architecture,”

8th Edition, Prentice-Hall, Upper Saddle River, 2009.

[2] C. Hallinan, “Embedded Linux Primer,” 2nd Edition,
Prentice-Hall, Upper Saddle River, 2010.

Copyright © 2013 SciRes. JSEA

Microkernel Development for Embedded Systems

Copyright © 2013 SciRes. JSEA

28

[3] P. Marwedel, “Embedded System Design,” 2nd Edition,
Springer, Berlin, 2011. doi:10.1007/978-94-007-0257-8

[4] C. L. Liu and J. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,”
Journal of the ACM, Vol. 20, No. 1, 1973, pp. 46-61.
doi:10.1145/321738.321743

[5] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C.
Pierson and F. Pollack, “HYDRA: The Kernel of a Mul-
tiprocessor Operating System,” Communications of the
ACM, Vol. 17, No. 6, 1974, pp. 337-345.
doi:10.1145/355616.364017

[6] A. Silberschatz, G. Gagne and P. B. Galvin, “Operating
System Concepts,” 8th Edition, Willey, New York, 2009.

[7] M. Barr, “Programming Embedded Systems: With C and
GNU Development Tools,” 2nd Edition, O’Reilly, 2006.

[8] A. S. Tanenbaum, J. N. Herder and H. Bos, “Can We
Make Operating Systems Reliable and Secure?” Com-
puter, Vol. 39, No. 5, 2006. pp. 44-51.

[9] J. Liedtk, “Improving IPC by Kernel Design,” SOSP’93
Proceedings of the 14th ACM Symposium on Operating
Systems Principles, Asheville, 5-8 December 1993, pp.
175-188.

[10] N. G. Leveson, “Software Safety in Embedded Computer
Systems,” Communications of the ACM, Vol. 34, No. 2,
1991, pp. 34-46. doi:10.1145/102792.102799

[11] R. M. A. Almeida, “Questões Temporais para Implemen-
tação de Um Microkernel,” 2011.
https://sites.google.com/site/rmaalmeida/extra/pic18fkern
el-04

[12] D. Abbott, “Linux for Embedded and Real-Time Applica-
tions,” 2nd Edition, Newnes, Wolgan Valley, 2006.

[13] R. S. de Oliveira, A. da S. Carissimi and S. S. e Toscani,
“Sistemas Operacionais,” 2nd Edition, Sagra-Luzzatto,
2001.

[14] D. P. Bovet and M. Cesati, “Understanding the Linux
Kernel,” 2nd Edition, O’Reilly, 2006.

[15] K. W. Batcher and R. A. Walker, “Interrupt Triggered
Software Prefetching for Embedded CPU Instruction
Cache,” Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium,
Washington DC, 4-7 April 2006, pp. 91-102.

[16] R. V. Aroca, “Análise de Sistemas Operacionais de
Tempo Real para Aplicações de Robótica e Automação,”
Masters Dissertation, Universidade de São Paulo, São
Paulo, 2008.

[17] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières and R.
Morris, “Event-Driven Programming for Robust Soft-
ware,” Proceedings of the 10th Workshop on ACM SI-
GOPS European Workshop, ACM, New York, 2002, pp.
186-189. doi:10.1145/1133373.1133410

http://dx.doi.org/10.1007/978-94-007-0257-8
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/355616.364017
http://dx.doi.org/10.1145/102792.102799
http://dx.doi.org/10.1145/1133373.1133410

