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ABSTRACT

In recent times the fixed point resulting in partially ordered metric spaces has greatly developed. In this paper we prove
common fixed point results for multivalued and singlevalued mappings in partially ordered metric space. Our theorems
generalized the theorem in [1] and extended much more recent results in such spaces.
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1. Introduction and Preliminaries

Throughout this paper, let (X,d) be a metric space
unless mentioned otherwise and B(.X) is the set of all
non-empty bounded subsets of X . Let &§(4,B) and
D(4,B) be the functions defined by

5(A4,B)=sup{d(a,b):ae 4,beB|
D(4,B)=inf{d(a,b):ae 4,beB}

for all 4, Biin B(X). If 4 is a singleton i.e. A={a},
we write

5(4,B)=6(a,B)
and
D(4,B)=D(a,B)
If Bis also asingleton i.e. B ={b}, we write
5(A4,B)=5(4,b)
and
D(A4,B)=D(A4,b)

It is obvious that D(A4,B)=35(a,B). Forall 4,B,C e
B(X). The definition of d(4,B) yields the following:

5(4,B)=5(B,4)<0
5(4,B)<5(4,C)+5(C,B)
5(A4,B)=0iff A=B={a}

and
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5(4,4)=diam{a} .

Several authors used these concepts of weakly con-
traction, compatibility, weak compatibility to prove some
common fixed point theorems for set valued mappings
(see [2-8]).

Definition 1.1. [9] 4 sequence {4, } of subsets of .X is
said to be convergent to a subset 4 of X if

1) Given ae 4, there is a sequence{a,} in X such
that a, € 4, for n=12,---, and {a,} convergestoa.

2) Given ¢ >0, there exists a positive integer N such
that 4, < A, for n> N where 4, is the union of all
open spheres with centers in 4 and radius ¢ .

Lemma 1.1. [9,10] If {4,} and {B,} are sequences
in B(X) converging to 4 and B in B(X), respectively,
then the sequence {5(4,,B,)} convergesto &(4,B).

n’!

Lemma 1.2. [9] Let {4,} be a sequence in B(X)
and y a point in X such that §(4,,y)—0. Then the
sequence {4,} convergestotheset {y} in B(X).

In [11], Jungck and Rhoades extended definition of
compatibility to set valued mappings setting as follows:

Definition 1.2. The mapping /: X —» X and
f:X —> B(X) ares-compatible if
lim,_,. 5(/Ix,, Ifx,) =0, whenever {x,} is a sequence
in X such the Ifx, € B(X), fx, > {t} and Ix, — ¢, for
some te X.

Recently, the following definition is given by Jungck
and Rhoades [12].

Definition 1.3. The mapping 7/: X - X and
f:X —> B(X) are weakly compatible if for each point
winXsuchthat fu={lu}, wehave flu=Ifu.

It can be seen that any J-compatible mappings are
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weakly compatible but the converse is not true as shown
by an example in [13]. We will use the following relation
between two nonempty subsets of a partially ordered set.

Definition 1.4. [3] Let 4 and B be two nonempty sub-
sets of a partially ordered set (X;<). The relation be-

tween A4 and B is denoted and defined as follows: 4 < B,

if forevery ae A thereexists be B suchthat a<b.

We will utilize the following control function which is
also referred to as altering distance function.

Definition 1.5. [14] A function y :[0,00) —[0,0) is
called an Altering distance function if the following
properties are satisfied:

1) w is monotone increasing and continuous,

2) w(¢t)=0 ifandonlyif ¢=0.

For the use of control function in metric fixed point
theory see some recent references ([15,16]).

3) !//(d(Tx,Ty)) < al//{max{d(x,y),D(x,Tx),D(y,Ty),

for all comparable x,ye X, where O<a <1 and y is
an Altering distance function. Then T has a fixed point.
We prove the following theorem for four single-valued
and multivalued mappings:
Theorem 2.2. Let (X,<) be a partially ordered set
and suppose that there exists a metric d on X such that
(X,d) is a complete metric space. Let /,J: X —» X

4) !//(d(Fx, Gy)) < az//[max {d([x,]y),D([x,Fx),D(Jy, Gy),

for all comparable x,ye X, diamFx =diamGy, where
O<a <1 and w is an Altering distance function and
suppose that one of I1(X) or J(X) iscomplete. Then
there exists a unique point p € X such that

Fp=Gp={lp}={Jp}={p}

Proof: Let x, be an arbitrary point of X. By 1) we
choose a point x, € X such that y, = Fx, <, Jx,. For
this point x;, there exists a point x, € X such that
¥, =Gx; <, Ix,, and so on. Continuing in this manner

'//(d(J’sz 1 Vomss )) = l//(d (Fx2rn+l' Gxy0 ))

< O.’l//(max {d ([x2m+l' Jx2m+2 ) ’ D(1x2m+1 ' Fx2m+l)’ D (Jx2m+2 1 Gx2m+2 ) '

< aW{max {d(y2nz+1’y2m+2)’d(y2m+l’y2m+2)’d(y2m+2’y2m+3)’

Since
d (y2m+1 + y2m+3 )
2
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2. Main Result

Recently fixed point theory in partially ordered metric
spaces has greatly developed. Choudhury and Metiya [17]
proved certain fixed point theorems for multi valued and
single valued mappings in partially ordered metric spaces.
They proved the following:

Theorem 2.1. Let (X,<) be a partially ordered set
and suppose that there exists a metric d on X such that
(X,d) is a complete metric space. Let 7: X — B(X)
be a multi valued mappings such that the following con-
ditions are satisfied:

There exists x, € X suchthat {x,} =<, Tx,,

1) For x,ye X,x=, y implies Tx =<, Ty,

2) If x, —> x is anon decreasing sequence in X, then
x, < x, forall n,

D(x, Ty)+D(y,Tx)

)

be single valued and F,G:X — CB(X) be multival-
ued mappings such that the following conditions are sat-
isfied:

1) UF(X)=,J(X)andUG(X)=, I(X),

2) {F,I} and {G,J} areweakly compatible,

3) If x, > x is a strictly decreasing sequence in X,
then x, < x, forall n,

D(Ix, Gy)+D(Iy,Fx)H
5 ,

we can define a sequence {y,} as follows

Vania = FXpp =<4 Sxp, 0, .1
Yoz = FXopi0 <4 Shoyins

We claim that {y,} isa Cauchy sequence. For which
two cases arise, either y =y, forsomen,or y #y, .,
for each n.

Case I. If y =y, , for some n then, y =y, for
each k>1. For instance SUppose ,,.; = Vj..o - Then
Vomia = Yam.a - Otherwise using 3), we get

D(Iszl, GX,,0.4 ) +D (1x2m+2 ' szml)}j
2

d(y2m+1'y2m+3) +d (y2m+2 v Yome2 )}J
2

< max{d (y2m+l’ YVomsa ) d (J’2m+2 1 Vomss )}
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It follows that

W(d(y2m+21y2m+3)) < al//(max{d(y2n1+1’y2m+2)’d(y2m+2'y2m+3 )}) (2.2)

Suppose that if d(y2m+l7y2m+2) < d(y2m+2’y2m+3) , for
some positive integer », then from (2.2), we have

l//(d(y2m+2 1 Vo3 )) = O‘W(d(J’sz 1 Vo3 ))

WhICh Imp“es that d(y2m+2’y2m+3) = 0' or y2m+2 = y2m+3'

'//(d(yzn+1!J’2n+2 )) = V/(d(szn ) Gx2n+1))

Say {max {d (Ix2n X ) ' D(Ix2n Fx,, )vD(JXan Gxy,q ),

< aV/(maX{d(yZn’y2n+l)’d(y2n’y2n+l)’d(y2n+l’y2n+2)’

Since

d(y2n+l' J’2n+2)
2
It follows that

Hence y,,.2 = Vauus- Similarly  y,, .5 = y,,., implie
Vomsa = Vomss- Proceeding in this manner, it follows that

Vomia = Yomus TOr each k>1, so that y =y, for
each k>1, for somen, and {y,} isa Cauchy sequence.

Case Il. When y, =y, ,, for each n. In this case, using
3), we obtain

D(I'xZn 1 GerH—l) + D (1x2n+l’ FxZn )}j
2

d(y2n+l’y2n+2)+d(y2n+l’y2n+l)}J
2 L

< max{d(J’2n1)’2,1+1)1d(J’2n+11)’2n+2 )},

W(d(y2n+ 1 YVon 42 )) < aW(maX{d(Yvayzn+1)vd()’zn+1vJ’2n+2 )}) (2.3)

Now if d(1,,,¥5,1) < d(Vap1s Vansz ), for each posi-
tive integer n, then from (2.3), we have

l//(d(yZ»H— 11 y2n +2 )) < al/ld(erHl’ y2n+2)

which implies that d (1,1 Y2,.2) =0, 01 ¥, = Y,
contradicting our assumption that y, = y,,,, for each n.
Therefore d (1,4, Y2,12) Sd( V301 V201), Torall n>0
and {d(y,,¥,.1)] is strictly decreasing sequence of
positive numbers and therefore tends to a limit »>0. If
possible suppose » > 0. Then for given 7 >0, there ex-
ists a positive integer N such that for each ne N, we
have

rSd(yn'yn+1)<r+77' (24)

Taking the limit » — o, in (2.3) and using the conti-
nuity of  , we have or

w(r)<ay(r+n)<ay(r),
which is a contradiction unless » =0 . Hence
Iimnﬁwd(yn'ym—l):o' (25)

Next we show that {y,} isa Cauchy sequence. Sup-
pose it is not, then there exists an ¢ >0 and since
lim,,, d(,.7,.,)=0, there exists two sequences of
positive numbers {ym i and {yn 1 such that for all
positive integers &, n((k >m(k)>k "and
d(ym(k),yn(k))z . Assuming that n(k) is the smallest
positive integer, we get n(k)>m(k)>k,

Copyright © 2013 SciRes.

d(ym(k),yn(k)) > ¢ and d(ym(k),yn(k)fl) <e.
Now,
&= d(ym(k)’yn(k)) < d(ym(k)’yn(k)—l)+d(yn(k)—lvyn(k))
ie.
&= d(ymm’yn(k)) se+d (yn(kylvyn(k)) (2.6)

Taking the limit as £ — oo in (2.6) and using (2.5),
we have

lim, d( Tt utt ) = 2.7)
Again
d (ymm ’ ynm) <d (ymk ’ ym(k)+1) +d (ym<k>+1'yn<k)+1)
+d (2,020 Vo))
and
(i Yara) < (Vg Vo) £ (i Y
(2,0 Iuy2)

Taking the limitas k& — o0 and using (2.6) and (2.7),
we have

lim, .. d(ym(k)+l’yn(k)+l) =é. (2.8)

Again we have
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(Vo V) <4 Yty Yugir )+ (20 220))
and
d (ym(k) ' yn(k)+l) <d (ym(k) ) ) +d (yn(k) ’ yn(k)+1)'

Letting £ — oo and using (2.6) and (2.7), we have

‘//(d (ym(k)+1’ yn(k)+1)) = V/(d(Fym(k) ' Gyn(k) ))

< ay| max {d (Iym(k) +TVaia ) ’ D(fym<k> R ) b (

lim, d(ym(k)’yn(k)+l) =¢ (2.9)

Similarly, we have lim d(yn(k)vym(k)ﬂ) =¢.

For each positive integer £, y,,, and y, are
comparable. Now using the monotone property of  in
4), we have

{19,001y )+ D100y )}
n(k))’ >

(g Puar) 4 (2 ym(k)+l)}

say max{ d (ym(k) » Va(k) ) d (ym(k) : ym(k)+l)’d (y,,(k) , yn(k)+l) >

Letting & — oo and using (2.6)-(2.9), and the continu-
ity of v, we have y(r)<aw(r), which is a contra-
diction by virtue of property of y . Therefore {y,} and
hence any subsequence thereof, is a Cauchy sequence.

Suppose J(X) is complete. Since {y,,..} = {Jx,,..}
is a subsequence of {y,}, by the above {Jx,,.} is

Cauchy and Jx,,,, > p=Jv, forsome ve X .
We now show Ix,,,, — p . For suppose Ix,,., —g.

Slnce y2n+1="]x2n+l _)p and Yani2 =Ix2n+2 - q there-

fore, d(y2n+1’y2n+2)_)d(p1q)' But {d(y2n+l'y2n+2)}

is a subsequence of the strictly decreasing sequence
{d(,19,.1)} which tends to the lim » = 0. Therefore

{d (V2111 V2012)} tends to limit = 0 and hence

d(q,p)=0 implying ¢=p. Thus Ix,, , > p. Now
using (d), we have

‘//(d(szn ) P)) = W(d(Fx2n1]x2n+2 )) = ‘/’(d(FxZn ) Gx2n+1))

= al//(max {d([xzn ' Jx2n+l)’D(Ix2n 1y, ),D(Jx2"+1, Gy,

D([x2n 1 Gx2n+l) + D (1x2n+l’ Fx2n )}J
2

d(p.q)+d(p Fx,,)

< m//[max{d(q,p),d(P,FXZn)vd(P'q)’

v (8(Fxy, ) <w (8(Fx,,0p)),

which is a contradiction. Consequently d(Fx,,,p)—> 0

7% (5(Fx2n , Gv)) < aw(max {d([xz,, , Jv) , D(Ixzh Fx,, ) , D(Jv, Gv),

< al//(max{d(Gv,p),d(p,p),d(p,Gv),

implies
w(d(p.Gv))<wd(Gv,p),
w(d(p.Gv))<wd(Gv,p),

Copyright © 2013 SciRes.

)

as n—o.

In the same manner, it follows that d(Gx,,.,, p) =0
as n— . We now show Gv={p}. For this, in view
of (d) ,we have

D(Ix,,, Gv)+D(Iv, Fx,, )H
2

d(p,Gv)+d(p,p)}]'

2

which is a contradiction. Consequently, d(Gv,p)—0
as n— . Hence Gv={p}={Jv}. Since G(X)c(X)
there exists some ueX such that Gv={/u}. Hence
Gv={Jv} ={Iu} . We now show Fu={lu}. For this,
first we prove [u € Fu . Suppose [u ¢ Fu then

D(Iu,Fu)>0. Then in accordance with (d) such that
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v (d (Fu, Iu)) =y (d(Fu,Gv)) < at//(max{d(lu,Jv),D(Iu,Fu),D(Jv, Gv), D(fu, Gv)+ DI F“)}J

2
:aw{max{o,p(zu,m),o,w}}

implies v (d (Fu,Iu)) < ayD(Iu, Fu), while patible,

D(Fu,Iu)<d(Fu,lu). Therefore a contradiction arises.

Hence u e Fu .Butthen M (u,v)=0, which, by (d) ,

implies diam(Fu)=diam(Gv) =diam{/u} =0. and
Therefore Fu is a singleton. Since fu € Fu and Fu is Gp = GJu ={JGu| = {Jp}.

asingleton, Fu ={lu}.Hence

Fp=Flu= {IFu} = {Ip}

From the above, it is clear that Fp and Gp are single-
Gv={N}=Fu={lu}={p} tonsand d(Fp,Gp)=d(Ip,Jp).
We now show that Ip=Jp. For instance, suppose
Since the pair {F,I} and {G,J} are weakly com- Ip#Jp thenfrom (d),we have

y/(d(lp,Jp))=l//(d(Fp,Gp))Sal//(max{d(lp,Jp),D(Ip,Fp),D(Jp,Gp),D(Ip'Gp)+D(1p'Fp)}]

2
d(Ip,Jp)+0
=ay| max d([p,Jp),0,0,f
Implies as above d(lp,Jp)—>0 as n—oo . Hence We now show Fp={p}. For, suppose Fp#{p}.
Ip=Jp and therefore Fp=Gp ={Ip}={Jp}. For thislet Fp#Gv in (d), we have

W(d(FP:GV))Sav/(max{d(lp,Jv),D(Ip,Fp),D(Jv, GV)D(Ip,Gv)+D(Iv,Fp)H

2
=“W[max{d(Fp,GV),D(Fp,Fp),D(Gv,Gv),d(F”’GV);d(FV’FP)}],
i} Fo=Gp = {10} = {0} = {p}.
v (d(Fp.Gv)) <ayd(Fp,Gv) < ayd (Fp.Gv), Let g X be any point satisfying

which is a contradiction. Consequently d(Fp,Gv)—0 Fq=Gq={lq=1Jq} = {4}
as n— . Therefore Fp=Gv={p} andhence Suppose g # p then from (d), we have

v(d(p.q))=v(d(Fp.Gq))< “V/[max{d(lp,Jq),D(lp,Fp),D(Jq, Gg), lC Gq)+D(lq'Fp)H ,

2
inviewof y, d(p,q)—>0asn—>o. Hence g=p. satisfying
Corollary 2.1. Let 7 be a self mapping of a metric 1) f(X)<=(X),
space (X,d) and f:X — B(X) aset valued mapping 2)' {f.1} are weakly compatible,
, D(Ix, fy)+ D(1y, fx)
3) w(d(f fy))<ay|maxid(Ix,1y),D(Ix, fx),D(Iy, ), 5 ,

for all comparable x,ye X, where O<a <1 and w subspace of X, there exists a unique point p e X such
is an altering distance function. If 7(X) is complete  that fp={Ip}={p}.

Copyright © 2013 SciRes. APM
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Proof: Taking/=Jand F=G=f inTheorem2.2.
Taking 7 = identity mapping in Corollary 2.1, we get
the new corollary as follows:

Corollary 2.2. Let (X,d) be a complete metric
space and f: X — B(X) a set valued mapping satis-

fying

D(x fy)+D(y,fx)H

ol ) < o500, 005, 2L

Then f'has a unique fixed point in X.

Proof. Obvious.

Corollary 2.3. Let (X,<) be a partially ordered set
and suppose that there exists a metric d on X such that
(X.d) is a complete metric space. Let /,J:X —> X
be single valued and F,G:X — CB(X) be multival-

4)" !//(d(Fx, Gy)) < al/l(maX {d([x, Jy),D(Ix,Fx),D(Jy,Gy),

for all comparable x,ye X, diamFx =diamGy, where
O<a<1 and w is an Altering distance function and
suppose that one of 7(X) or J(X) iscomplete. Then
there exists a unique point p € X such that

=Gp ={lp}={Jp} ={p)

Example 2.1. Let Xz{(0,0),(O,—%j,(—%,OJ} be

asubsetof R? with the order < defined as for

(xlv)ﬁ)v(xzvyz)eX-(x1-J’1)'*<(xzvy2)
if and only if x <y,x,<y,. Let d:XxX >R be

given as
d(xy)=

for x=(x,1), y=(x,»,)eX.
The (X, ) is a complete metric space with the re-
quired properties of Theorem 2.2.

max {x, =25, .31 — 22|}

max {d([x, Jy),D(Ix,Fx),D(Jy, Gy),
2) If x:(—%,Oj,y = (0,0), then 5(Fx, Gy) =0, and

max {d(lx,Jy),D(lx,Fx),D(Jy, Gy),

3) If x:(0,0),y=(0,0), then 5(Fx,Gy)=0,and

max {d(!x,]y),D([x,Fx),D(Jy, Gy),

4) If xz(—%,Oj,y:(—%,Oj, then §(Fx,Gy)=0,and

Copyright © 2013 SciRes.

ued mappings such that the following conditions are sat-

isfied:
)" JF(X)=<, J(X)and | JG(X) =<, I(X),
2)" {F.1}and {G,J} areweakly compatible,
3)" if x, »>xis a strictly decreasing sequence in X,

then x, < x, forall n,

D(Ix,Gy)+D(Ix, Fy)H |

2

Let I,J: X > Xand F,G: X - CBX , be defined as
follows:

Ix=x, Jx=x/2,

{(0,0 if x=(0,0),
{ o)l wesfo )

{(o, } ifx:(—%, j
Let :[0,0) —>[0,:0) defined as y(r)=¢*, and

a=1/2 . Then all the conditions in the Theorem 2.2
satisfied. Without loss of generality, we assume that
x <y, we discuss the following cases.

1) I x= (o,_%], y=(0,0), then &(Fx,Gy)=—~
and
D(Ix,Gy)+D(Iy, Fx)| 1
2 3
D(Ix,Gy)+D(ly, Fx)| 1
2 6
D(]x,Gy)+D(Iy,Fx) _0
; =
APM
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max{d(lx,Jy),D(Ix,Fx),D(Jy, Gy),

1
5) If xz(O,—gj,y:(O,—

max {d([x,]y),D([x,Fx),D(Jy, Gy),

Wl

In all above cases, it is clearly shown that

v (d (Fx,Gy)) Sa!//[max {d (Ix,Jv),D(Ix,Fx),D(Jy,Gy),

Hence the conditions of Theorem 2.2 are satisfied and
shown that {(0,0)} is a fixed point of , J, F, and G.
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