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Abstract—I.et G be a graph, in which each vertex (job) v
has a positive integer weight (processing time) p(v) and each
edge (u,v) represented that the pair of jobs v and v cannot
be processed in the same slot. In this paper we assume that
every job is non-preemptive. Let C = {1,2,---} be a color set.
A multicoloring (scheduling) F' of G is to assign each job v a
set of p(v) consecutive positive integers (processing consecutive
time slots) in C' so that any pair of adjacent vertices receive
disjoint sets. Such a multicoloring is called a non-preemptive
scheduling. The cost non-preemptive scheduling problem is to
find an optimal multicoloring of G, that is, a multicoloring F
such that ) . w(F(v)) is minimum among all multicolorings
of GG, where w is a cost function of processing time slots which
assigns a real number to a set of consecutive positive integers.
In this paper we give a polynomial-time algorithm to find an
optimal multicoloring F' of a given partial k-tree. The algorithm
takes time O(n|C|**?) if n is the number of vertices and C is
the color set.
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1. INTRODUCTION

Let G = (V, E) be a graph with vertex set V and edge set
E. A vertex-coloring of a graph (G is to color all vertices so
that any pair of adjacent vertices are colored with different
colors. Let each vertex v of GG have a positive integer weight
p(v). Let C = {1,2,---} be a set of consecutive positive
integers as a color set, and let 2¢ be the power set of C'. Then
a multicoloring F' of G is a mapping from V to 2¢ which
assigns each vertex u € V' a set F'(u) of p(u) consecutive
integers in C so that F'(v) N F(w) = ¢ for any pair of
adjacent vertices v,w € V. Thus the ordinary vertex-coloring
is merely a multicoloring for the special case where p(v) = 1
for every vertex v. The multichromatic number x,(G) of G
is the minimum number of colors required for a multicoloring
of GG, that is,

Xp(G) = min{\C\ : G has a multicoloring F' : V — 2¢ } .

The multicoloring problem is to compute the multichromatic
number x,(G) of a given graph G. Since the vertex-coloring
problem is NP-hard, the multicoloring problem is of course
NP-hard and hence it is very unlikely that the multicoloring
problem can be efficiently solved for general graphs. However,
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there may exist an efficient algorithm to solve the multicol-
oring problem for a restricted class of graphs. Indeed, the
problem can be solved for trees in time O(n) [3], [4], for
triangulated graphs in time O(n?) [3], [4], for perfect graphs
in time O(mn) [4], for series-parallel graphs in time O(nW)
[13], and for partial k-trees in time ()(nW22k+3 log, W) [51,
where m is the number of edges, n is the number of vertices
of a given graph GG, and W is the maximum vertex weight,
that is, W = max,cv p(v).

In this paper we consider a “cost multicoloring problem.”
Let w be a cost function which assigns a real positive number
w(S) to each set S of consecutive integers in C', the cost multi-
coloring problem is to find an optimal multicoloring of GG, that
is, a multicoloring F' such that )\, w(F(v)) is minimum
among all multicolorings of G. An optimal multicoloring does
not always use the minimum number x,(G) of colors. For
example (see Fig. 1), suppose that p(v) = 1 for every vertex
v € V and that w({1}) = 1 and w({i}) = 5 for each index
i > 2, then the graph G with y,(G) = 3 in Fig. 1(a) can be
uniquely colored by the three cheapest colors 1,2 and 3 as in
Fig. 1(a), but this coloring is not optimal; an optimal coloring
of G uses of four cheapest colors 1, 2,3 and 4, as illustrated
in Fig. 1(b).
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Fig. 1.
multicoloring using x,(G) + 1 =
w({2}) = w({3}) = w({4}) = 5.

(a) Multicoloring using x,(G) = 3 colors, and (b) optimal
4 colors, where w({1}) = 1 and

The cost multicoloring problem has natural application
in scheduling theory [6], including job scheduling, resource
allocation in cloud computing (see, e.g., [9], [11]), and VLSI
layout problem (see, e.g., [10]). Consider a set V' of non-
preemptive jobs such that each job v € V needs a total of
p(v) unites of time to be finished and there are several pairs
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of jobs which cannot be executed simultaneously. Suppose
that if a task v executed from the cth time slot takes p(u)
units of time, then it takes the cost w([e,c + p(u) — 1]),
where [c,c+ p(v) — 1] is the set of p(u) consecutive integers
¢, ¢+ 1, ---, ¢+ p(u) — 1. Then we wish to find a non-
preemptive schedule that minimizes the total cost, and hence
this corresponds to the cost multicoloring problem as follows.
A multicoloring F' of G corresponds to a schedule, where the
vertex v receives a set F'(v) of p(v) consecutive colors in
which each color ¢ € C represents the collection of tasks,
each of which starts at the cth time slot and ends at the
(¢ + p(v) — 1)th time slot with the cost w(F'(v)). Our goal
is to find a non-preemptive schedule of the minimum cost of
executing all jobs.

The minimum sum coloring problem was introduced in [7],
[8], is merely the cost multicoloring problem for the special
case w({c}) = ¢ for each integer ¢ > C'. Since the minimum
sum coloring problem is NP-hard [7], the cost multicoloring
problem is also NP-hard. However, one may expect that the
problem can be solved efficiently for some restricted class
of graphs, say partial k-trees, that is, the class of graphs of
treewidth bounded by a fixed constant k. Indeed in this paper
we give a polynomial-time algorithm to solve the multcoloring
problem for partial k-trees.

II. PRELIMINARIES

In this section, we give some definitions. Let G = (V, E)
be a simple graph without selfloops and multiple edges. Let
V(@) and E(G) be the sets of vertices and edges, respectively.
An edge joining vertices u and v is denoted by (u,v). We
denote by n and m the number of vertices and edges in G,
respectively. Let C' = {1,2,---} be a color set. Every vertex
v is assigned to a positive integer p(v) that is the number
of consecutive colors assigned to v. Let w be a cost function
from consecutive integers (colors) to a positive real number.
A p-multicoloring F : V — 2¢, simply called p-coloring, of
G must satisfy the following (a) and (b):

(a) for every vertex v € V, the set F'(v) consists of p(v)
consecutive positive integers in C, and hence |F(v)| =
p(v); and

(b) for every edge (u,v) € E, all integers in F'(u) differ
from those in F'(v).

Vi ) Y
V& vy "2< 5 vy
Va
V1
V3

ﬁ

Vs Vs

V3 ‘
V5 V4 vV 6

Fig. 2. A process of generating a 2-tree.
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We define
w(G, F,p) =Y w(F(v))

veV

called the cost of the p-coloring F of G. Let w(G,p) be the
minimum cost among all p-colorings of GG. A p-coloring F
is called optimal if w(G,F,p) = w(G,p). The p-coloring
problem is to compute w(G,p) for a given graph G with
weight p(v) for each vertex v € V and a cost function w.

Xo={V1i,",Vv3}

X]:XO XZZ{VZ 7V37v4}

X5=X,
X4={V3,%,V}

X=X, Xe={v2,%,Vs}

Fig. 3. Tree-decomposition of the partial 2-tree in Fig. 1.

Assume that k is a bounded positive integer. A k-tree is
defined recursively as follows [1]:

(1) A complete graphs with k + 1 vertices is a k-tree.

(2) If G is a k-tree and k vertices induce a complete subgraph
of GG, then a graph obtained from G by adding a new
vertex and joining it with each of the k vertices is a k-
tree.

Any subgraph of a k-tree is called a partial k-tree. Thus a
partial k-tree G = (V, E) is a simple graph, and |E| < kn.
Figure 2 illustrates a process of generating 2-trees. The graph
in Fig. | is a partial 2-tree since it is a subgraph of the last
2-tree in Fig. 2. A binary tree T' = (Vp, E) is called a tree-
decomposition of a partial k-tree G = (V, E) if T satisfies the
following conditions (a)—(e):

(a) every node X € Vp of T is a subset of V, and |X| =
k+1;

(b) Umth X =V

(c) foreach edge e = (u,v) of G, T has a leaf X € Vi such
that u,v € X;

(d) if node X, lies on the path in T" from node X, to node
X,, then X, N X, C X,; and

(e) each internal node X; of T" has exactly two children, say
X, and X,, and |X; N X,| = k and either X; = X, or
X; = X,.

We will use notions as: leaf, node, child and root in their
usual meaning. Figure 3 illustrates a tree-decomposition 7' of
the partial 2-tree in Fig. 1. We denote by X, the root of a
tree-decomposition. Since a tree-decomposition 7' of a partial
k-tree GG can be found in linear time [1], we may assume that
a partial k-tree G and its tree-decomposition 7" are given. The
number of nodes of T constructed by the algorithm in [1] is

O(n).
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ITT. POLLYNOMIAL-TIME ALGORITHM

Our algorithm for solving the cost non-preemptive schedul-
ing problem on partial k-trees is based on the idea of “dynamic
programming method.” A dynamic programming (DP) method
is a standard one to solve a combinatorial problem on partial k-
trees [1], [12]. We also use it, and compute the minimum cost
w(G, p) of a given partial k-tree with its tree-decomposition
T by the “bottom-up tree computation.” We assume from now
on that k is a bounded integer. Although we give an algorithm
to compute w(@G, p) it can be easily modified so that it actually
finds an optimal p-coloring F' with the cost w(G, p).

Let T' be a tree-decomposition of a partial k-tree G. We
define a vertex set V; C V(@) and an edge set E; C E(G)
for each node X; of T as follows: if X; is a leaf, then let
Vi = X; and E; = {(u,v) € E(G) : u,v € X;}; if X; is an
internal node with children X; and X,, then let V; = V; UV,
and F; = E; U E,.. Note that V; N V. C X;. We denote by
G; the graph with vertex set V; and edge set F;. Then graphs
G, = (W, E;) and G, = (V,, E,.) share common vertices only
in X; because of the property (e) of a tree-decomposition.

Tet X; = {vy,va, - ,vp41} be anode of T. Tet S = (S,
So, -+, Spy1) € (29)F*! be a color set. A p-coloring F' of
G satisfying F(v;) = S; for each j, 1 < j < k+1, is called
an S-coloring. We define

where the minimum is taken over all S-colorings F' of Gj.
Let w(G;,p;S) = oo if there is no such S-coloring. Since
S;, 1<j<k+1,is aset of p(vj) consecutive integers, the
number of S; is at most |C| and hence w(G;, p; S) # oo is at
most |C|¥+1. If X is the root of T, then clearly

W(G‘p) = w(X07p) = mslnw(GO,pa 'S),

and hence w(G, p) can be computed in time O(|C[**+1) from
all w(Go,p;S) # oo. Therefore we need to compute all the
values w(Gy,p;S) for all S € (29)%*! from leaves to root
Xp. Thus the DP table for each node X; of T' consists of
at most |CF*! values w(G;,p;S) # oo, S € (2¢)*+!, and
has size |C|*+!. Furthermore, one can recursively compute
w(G;, p; S) as follows.

Consider the case where X; = {v1,v9,--+ ,vp11} is a leaf
of T', then clearly

w(Xi,p; S) =

> w(s))
1<j<k+1
if S; consists of p(v;) consecutive integers for each 1 < i <
k + 1 and, for each pair of vertices v;,v;; € X satisfying
(vj,vj) € E, S;NSj = 0; otherwise w(G;,p;S) = oc.
Then we have the following lemma.

Lemma 3.1: T.et X; be a leaf of a tree-decomposition T’
of a partial k-tree G = (V, E). Then all w(G;,p;S) # oo,
S € (29)#+1, can be computed in time O(|C|**+1).

Consider the other case where X; = {vy,v9, - ,vk41}
is an internal node of 7. In this case, let X; =
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{vi, vz, v} and X = {vp, 000,00 Up (g1 b be
the children of X;, and assume without loss of generality
that X; = X and v; = v;; = v,; for each 5, 1 < 7 < &,
because of the property (e) of the tree-decomposition. Then,
for each pair of & = (Si, S, ,Sr+1)) and S, =
(Srla Spa, - :Sr(k+l)) in (QC)k_H, let

W(Gi,p: 81, S,) = w(Gip; ) +w(Grpi S) = Y w(S)))

1<j<k
(1

it S; = S,; for each 5, 1 < j < k; otherwise,
w(Gy,p; S, Sr) = oc. Then we have the following lemma.

Lemma 3.2: Let X; be an internal node of 7' with two
children X; and X,. Assume that X; = X;. Then

i Gi,p; S, S 2
s, WGP, S) 2)
for each S € (2¢)**!. Furthermore, all w(G;,p;S) # oc,
S € (29)%*1, can be computed in time O(|C|**+2).

Proof: Let S = (51,85, -+, Sk11) € (2€)F+1. We first

prove that

w(G,p;S) >  min  w(Gi,p; S, S). 3)

T STe(20 )k

If w(Gi,p;S) = oo, then trivially Eq. (3) holds true. One
thus assume that w(G;, p; S) # oo, and hence there is an S-
coloring F' of G; such that w(F') = w(G,,p;S) and S; =
F(v;) for each j, 1 < j < k+ 1, Let Fj(v) = F(v) for
each vertex v € V(G)). Since F' is a p-coloring of G;, F,
is p-colorings of Gj. Let X; = X; = {vn, v, , Uy(hg1) }-
Let S;; = Fi(v;) foreach j, 1 < j<k+1, and let S; =
(11,812, , Si(k+1)). Then Fj is an Sj-coloring of Gy, and
hence we have

w(Gi,p; &) < w(F). “

Similarly, let F, (v) = F'(v) for each vertex v € V(G,.). Then
F. is a p-coloring of G,. Let X, = {vp1,vp9,+ , Up(pg1) }>
let S,; = Fy(vy) foreach j, 1 < j<k+1, andlet S, =
(Sr1,Sr2, -+, Sp(k+1))- Then F} is an S,-coloring of (7., and
hence we have

w(Gmp;Sr) < W(Fr)~ (@)

Since X; = X, we have S = §;. Since |X; N X,| = k, one
may assume that v;; = v,; for each j, 1 < j < k. Therefore
we have

= w(f)+w(F) - w(F(vi;))
1<j<k
2 w(Gl7p',Sl)+w(GT7p7$T) - Z w(S7)
1<j<k
= W(thaSvST)
. . ’
> S%igg%+1ud(%Jp,S,8),
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completing to verify Eq. (3).
We then prove that

Gi, ;S < i
w( i» P ) - SIGI(I;},‘I;IC-{—]

If ming ¢ a0y w(Gi,p; S, S") = oo, then trivially Eq. (6)
holds true. One thus assume that

min = w(Gi,p; S, S") # oo,

S'e(20)k+1
and hence there are S-coloring F; of G and 8’-coloring F,

of G, such that w(Gy,p,S) = w(F), w(G.,p,S") = w(F;)
and

min
Sle(2C)k+1

W(Gip; §.8) = w(F) +w(F) = 3 w(Sy).
1<<k o

Let F'(v) = Fi(v) if v € V(G)); otherwise, let F'(v) = F,.(v).
Then trivially F' is an S-coloring of GG;. Therefore we have

w(Gi7p;S) < W(F)
= wE) +wF)— > w(Sy)
1<j<k
— w(Gi,p; S, S,

min
Sle(2C)k+1

completing to verify Eq. (6).

We finally show that all w(G;,p;S) # oo, § €
(29)*+1, can be computed in time O(|C|F*2). Consider
S = (81,82, -, Ska1) such that w(G;,p; S) # oo. Then
clearly |S;| = p(v;) for each j, 1 < j < k + 1. So the
number of all S; C C consisting of p(v;) consecutive integers
is at most |C|. We thus have all w(G;,p;S) # oc at most
O(|C|¥+1). For each § = (S1, S, -+, Sk+1), the number of
all 8" = (81,83, ,S},) satisfying Sj = Si, 1 < j <k,
is at most |C/|. Therefore by Egs. (1) and (2) we can compute
all w(Gy,p;S) # 0o, S € (2)F*1, in time O(|Ck+2).

|

By LLemmas 3.1 and 3.2 we obtain the following straight-
forward algorithm. Let T" be a tree-decomposition of a partial
k-tree (G, and let X; be a node in 7. Then the following pro-
cedure Color(G;) computes w(Gy,p;S) for all S € (2€)k+1.
We first call procedure Color(Gg) for the root Xy of T', and
then compute w(G,p) = minge(z0yr+1 W(Go,p; S), where
G = G[).

Lemmas 3.1 and 3.2 imply that Lines 2 and 7 in the
algorithm above can be done in time O(|C[¥*2). Since T has
at most n leaves and hence O(n) nodes in total. Consequently
the recursive calls occur at most O(n) times during the
execution of Color(Gy). Thus the total running time of the
algorithm is O(n|C|*+?). We thus have the following theorem.

Theorem 3.3: The cost multicoloring problem can be
solved in time O(n|C|F*2) for partial k-trees G, where n is
the number of vertices in G and C' is the color set.
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Algorithm 1 Color(G;)

1: if X; is a leaf then

2:  compute w(G;,p,S) for

lLLemma 3.1

3: else
4:  let X; and X, be the two children of X; of T’
5. Color(Gy)
6
7

all & € (20)k+! by

Color(G,.)
compute w(G;,p,S) for all S € (29)F*+!1 from all
w(Gy,p,S) and w(G,, p,S,) by Lemma 3.2

8: end if

TV. CONCLUSION

In this paper we introduced the cost non-preemptive
scheduling problem and showed that the problem can be solved
in polynomial time for partial k-trees. The cost preemptive
scheduling problem can be similarly defined for the case where
every job may be preemptive. However, it is still open for
partial k-trees.
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