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ABSTRACT 

An analysis of oscillatory flow of a viscoelastic fluid and mass transfer along a porous oscillating channel with radiative 
heat transfer in presence of first-order chemical reaction is considered. The problem is concerned with the flow through 
a channel in which the viscoelastic fluid is injected on one boundary of the channel with a constant velocity, while it is 
sucked off at the other boundary with the same velocity. The two boundaries are considered to be in close contact with 
the two plates placed parallel to each other. The effect of temperature oscillations at the plate (upper wall) where the 
suction takes place is taken into consideration. The plates are supposed to be oscillating with a given velocity in their 
own planes. Analytical expressions for velocity profile, the temperature, concentration profile, wall shear stress on the 
upper wall are obtained. The profiles of the velocity and skin friction have been presented graphically for different val- 
ues of the viscoelastic parameters with the combination of the other flow parameters encountered in the problem under 
investigation. It is observed that velocity decrease with the increasing values of the viscoelastic parameter in compari- 
son with Newtonian fluid. Also, the wall shear stress increase with the increasing values of the viscoelastic parameter. 
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1. Introduction 

During past several years considerable interest has been 
evinced in the study of the problem of hydrodynamic 
flow in a porous channel with radiative heat transfer be- 
cause of its various applications in physiology and in 
engineering devices such as blood flow in arteries, trans- 
piration cooling of re-entry vehicles and rocket busters, 
cross-hatching on ablative surfaces. Pulsatile flow of a 
fluid in a porous channel has been investigated by Wang 
[1], as well as Bhuyan and Hazarika [2] by considering 
the periodic pressure gradient. Raptis [3] studied the un- 
steady free convective flow through a porous medium 
bounded by an infinite vertical limiting surface with con- 
stant suction and time dependent temperature. The effect 
of Hall current and wall temperature oscillation on con- 
vective flow in a rotating fluid through porous medium 
was studied by Ram [4]. On the other hand several other 
researchers (e.g. Makinde and Mhone [5], Prakash and 
Ogulu [6] as well as Mehmood and Ali [7]) investigated 
the effects of heat transfer in the flow of fluids. Adhikary 
and Misra [8] investigated the effects of porosity of the 
channel wall, magnetic field and radiative heat transfer 
on unsteady flow of an electrically conducting fluid  

through a channel. Ghosh [9] investigated the hydrody- 
namic fluctuating flow of a viscoelastic fluid in a porous 
channel, where the channels oscillate with a given veloc- 
ity in their own planes. The effect of mass transfer on the 
flow past an infinite vertical oscillating plate in the pre- 
sence of constant heat flux has been studied by Soundal- 
gekar et al. [10]. Kim and Lee [11] reported an analytical 
study on the MHD oscillatory flow of a micropolar fluid 
over a vertical porous plate. Chamkha [12] studied un-
steady two dimensional convective heat and mass trans-
fer boundary layer flow of a viscous incompressible 
electrically conducting temperature-dependent heat ab- 
sorbing fluid along a semi infinite vertical permeable 
moving plate with thermal and concentration buoyancy 
effects. 

The purpose of the present work is to investigate the 
effects of viscoelastic parameter on unsteady two dimen- 
sional hydrodynamic flow and heat transfer of a viscoe- 
lastic fluid in a porous channel. The problem is con- 
cerned with the flow through a channel in which the fluid 
is injected in one plate with a constant velocity and it is 
sucked off by the other with the same velocity. The 
plates are considered to be oscillating with a given veloc-  
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ity in their own planes. In the upper wall the oscillation 
of the temperature is considered. It is assumed that the 
chemical reaction is of first-order. One of the most po- 
pular models for non-Newtonian fluids is the model that 
is called the second-order fluid or fluid of second grade. 
It is reasonable to use the second-order fluid model to do 
numerical calculations. The effects of viscoelastic para- 
meter with the combinations of the other flow parameters 
have been studied thoroughly and presented graphically. 

2. Mathematical Formulation 

Consider the channel flow between two oscillating po- 
rous plates  and  the fluid is being in- 
jected by one plate with constant velocity V and sucked 
off by the other plate with the same velocity. Then the  

0y  ,y h

continuity equation reduces to 0
u

x









 so that u  is  

the function of y  and  only. t

The constitutive equation for the incompressible second- 
order fluid is 

 2

1 1 2 2 3 1S pI A A A               (1) 

where S is the stress tensor, is the hydrostatic pressure, 
 are the kinematic Rivlin-Ericksen tensors, 

1 2 3

p
, 1,nA n 
, ,

2
    are the material co-efficients describing the 
viscosity, visco-elasticity and cross-viscosity respectively, 
where 1  and 3  are positive and 2  is negative 
(Coleman and Markovitz [13]). The Equation (1) was 
derived by Coleman and Noll [14] from that of the sim-
ple fluids by assuming that the stress is more sensitive to 
the recent deformation than to the deformation that oc-
curred in the distant past. 

The momentum equations are given by 
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The heat transfer equation may be put in the form 
2
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The concentration equation may be put in the form 
2
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where p  is the pressure,   the density of the fluid, 
 permeability factor, q  the radiative heat flux, Tk   

the coefficient of volume expansion due to temperature, 

C  the coefficient of volume expansion due to concen-
tration, g the gravitational  acceleration, k   the coef-
ficient of thermal conductivity, pC  the specific heat at 
constant pressure, the concentration of species,  
chemical molecular diffusivity. 

C D

The corresponding boundary conditions of the oscilla-
tory motion are: 
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In these equations, we have taken into account the 
temperature oscillation on the upper plate y h  , while 
the lower plate 0y   is maintained at the fixed tem- 
perature  0

The heat flux may be expressed (Cogley et al. [15]) as 
.T

2
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where 1 1   is the mean radiation absorption coeffi- 
cient. 

In order to write the governing equations and the 
boundary conditions in dimensionless form, the follow- 
ing non-dimensional quantities are introduced. 
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where  the Reynolds number, Gr the Grashof num-
ber for heat transfer,  the Prandtl number, N the ra-
diation Parameter, 

Re
Pr

  the angular frequency,  the 
Grashof number for mass transfer, Sc the Schmidt num-
ber. 

Gm

q

y       (4) 
In view of Equations (7) and (8), Equations (2)-(4) and 
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(5) reduce to the following dimensionless form: 
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The corresponding dimensionless boundary conditions 
are: 

i i
0e , 1 e , 1 et tu U i t         at  1y 

i
0e , 0, 0tu U       at            (13) 0y 

where 2
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  is the viscoelastic parameter. 

3. Method of Solution 

From (9) and (10), it follows that 
p

x




 is a function of   t

alone. For the present study, we consider 

ie tp
A B
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,              (14) 

A and B being undetermined constants. To solve Equa- 
tions (9), (11) and (12) subject to boundary conditions 
(13), we write the velocity, temperature, and concentra- 
tion in the form 
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where            , , , , , , , ,u y u y t y y t y y t   s p s p s p  
respectively represent the steady and unsteady parts of 
the velocity, temperature and concentration. 

Substituting the above expressions in (9), (11) and (12) 
and comparing the like terms, we have derived the equa- 
tions that govern the corresponding steady and unsteady 

flow and heat transfer of the problem under consideration. 
They are given below: 
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with the boundary conditions: 
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0 , 0,f f fu U 0     at      (25) 0y 

On solving the Equations (19), (20), (23) and (24) 
along with the boundary conditions (20) and (24), are 
found as 
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We note that 1   for small shear rate and so we 
can assume the following: 

For steady case 
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and for unsteady case 
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Substituting (30) in (18) and (22) together with bound- 
ary conditions (21) and (25) up to first order of   and 
equating the co-efficient of like powers of  , we obtain 
the following sets of ordinary differential equations and 
corresponding boundary conditions: 
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with 
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The Equations (31), (32) and (34), (35) are solved un- 
der the boundary conditions (33) and (36) respectively. 
Substituting these solutions in (30), we get the expres-
sions for su  and fu , and thus the expression for  
but due brevity the solutions are not presented here. 

u

Nusselt number: From the temperature field, the rate of 
heat transfer coefficient can be obtained, which in terms 
of Nusselt number Nu p  across the upper wall is given 
by 

1

Nu p

y
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Skin-friction: Knowing the velocity field, the expres- 
sion for the non-dimensional wall shear stress at the up- 
per plate is given by  
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Sherwood number: From the concentration field, the 
rate of mass transfer coefficient in terms of Sherwood 
number Sh p  across the upper wall is given by 

1

Sh p

y
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               (39) 

4. Results and Discussion 

The purpose of this study is to bring out the effects of 
viscoelastic parameter   on the governing flow. The 
effects of viscoelastic parameter on the fluctuation of 
axial velocity distribution, shear stress, heat transfer, 
concentration profiles are evaluated numerically. The 
predicted variation of fluctuation of the axial velocity 
with different values of   and for porous permeability 
parameter  k , mass Grashof number , radiation 
parameter 

Gm
 N  with fixed values of Re 1,Pr 3,    

π
, Sc 0.5

2
t    are shown in Figures 1-3. From the Fig- 

ures 1-3, it is observed that the fluctuation of axial ve-
locity is parabolic in nature and the values of pu  de- 
crease with the increasing values of the viscoelastic pa- 
rameter  , 0, 0.05, 0.1      in comparison with 
Newtonian fluid. It is observed that the axial velocity 

pu  increase with the increase of permeability parameter 
(Figure 1), mass Grashof number (Figure 2) and radia- 
tion parameter (Figure 3) for both Newtonian and non- 
Newtonian cases. 

The wall shear stress is calculated from the Equation 
(38). Figure 4 shows that the wall shear stress   in- 
creases as the values of the viscoelastic parameter  

 0, 0.05, 0.1      increase in comparison to New- 
tonian fluid. Also, the wall shear stress at the upper plate 
increase with the increase of mass Grashof number for 
both Newtonian and non-Newtonian cases. 

The temperature and concentration profiles are calcu- 
lated from the Equations (37) and (39) respectively. It is 
observed that the temperature and concentration profiles 
are not significantly affected by the viscoelasic parameter. 

Copyright © 2013 SciRes.                                                                                 ENG 



U. J. DAS 71

case

0.5 1 1 0 I

0.5 1 1 0.05 II

0.5 1 1 0.1 III

1 1 1 0 I

1 1 1 0.05 V

1 1 1 0.1

k Gm N

V

VI









 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8

u p

y

III
II I

VI

V

IV

 

Figure 1. Variation of u against y. 
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Figure 2. Variation of u against y. 
 
5. Conclusions 

The governing equations for unsteady heat and mass 
transfer flow of chemically reacting viscoelastic fluid 
through a channel with radiative heat transfer were for- 
mulated. The plates were supposed to be oscillating with 
a given velocity in their own planes. The effect of vis- 
coelastic parameter of the fluid on the governing flow 
were analysed for various values of parameters under 
consideration. The conclusions of the study are as fol- 
lows: 
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Figure 3. Variation of u against y. 
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Figure 4. Wall shear stress versus N when t = π. 
 

1) Velocity decrease with the increasing values of the 
viscoelastic parameter in comparison with Newtonian 
fluid; 

2) Velocity increases significantly with increasing 
permeability parameter and mass Grashof number as 
compared to radiation parameter for both Newtonian and 
non-Newtonian cases; 

3) Wall shear stress increase with the increasing values 
of the viscoelastic parameter; 

4) Temperature and concentration profiles are not sig- 
nificantly affected by the viscoelastic parameter. 
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