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ABSTRACT 

Experimental X-ray crystallography, NMR (Nu- 
clear Magnetic Resonance) spectroscopy, dual 
polarization interferometry, etc. are indeed very 
powerful tools to determine the 3-Dimensional 
structure of a protein (including the membrane 
protein); theoretical mathematical and physical 
computational approaches can also allow us to 
obtain a description of the protein 3D structure 
at a submicroscopic level for some unstable, 
noncrystalline and insoluble proteins. X-ray 
crystallography finds the X-ray final structure of 
a protein, which usually need refinements using 
theoretical protocols in order to produce a better 
structure. This means theoretical methods are 
also important in determinations of protein 
structures. Optimization is always needed in the 
computer-aided drug design, structure-based 
drug design, molecular dynamics, and quantum 
and molecular mechanics. This paper introduc- 
es some optimization algorithms used in these 
research fields and presents a new theoretical 
computational method—An improved LBFGS 
Quasi-Newtonian mathematical optimization me- 
thod—to produce 3D structures of prion AGAA- 
AAGA amyloid fibrils (which are unstable, non-
crystalline and insoluble), from the potential 
energy minimization point of view. Because the 
NMR or X-ray structure of the hydrophobic re-
gion AGAAAAGA of prion proteins has not yet 
been determined, the model constructed by this 
paper can be used as a reference for experi-
mental studies on this region, and may be useful 
in furthering the goals of medicinal chemistry in 
this field. 
 
Keywords: Protein 3D Structure; Computational 

Approaches; Optimization Method; Molecular  
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1. INTRODUCTION 

Neurodegenerative diseases including Parkinson’s, Al- 
zheimer’s, Huntington’s, and Prion’s were found they 
all featured amyloid fibrils [1-6]. Amyloid is character- 
ized by a cross-β sheet quaternary structure and recent 
X-ray diffraction studies of microcrystals revealed atom- 
istic details of core region of amyloid [7,8]. All the qua- 
ternary structures of amyloid cross-β spines can be re- 
duced to one of the 8 classes of steric zippers of [8], with 
strong van der Waals (vdW) interactions between β- 
sheets and hydrogen bonds (HBs) to maintain the β- 
strands. A new era in the structural analysis of amyloids 
started from the “steric zipper”-β-sheets [7]. As the two 
β-sheets zip up, Hydrophobic Packings (HPs & vdWs) 
have been formed. The extension of the “steric zipper” 
above and below (i.e. the β-strands) is maintained by 
Hydrogen Bonds (HBs) (but usually there is no HB be- 
tween the two β-sheets). This is the common structure 
associated with some 20 neurodegenerative amyloid dis- 
eases. 

We first do some mathematical analysis for the com- 
mon structure. The vdW contacts of the two atoms can be 
described by the Lennard-Jones (LJ) potential energy, 
where the parameters on the depth of the potential well 
and the atom diameter can be fitted to reproduce experi- 
mental data or deduced from results of accurate quantum 
chemistry calculations. There are two parts describing LJ 
potential energy: the repulsion and the attraction (Figure 
1). The minimization of LJ potential energy is an opti- 
mization problem, which is a well-known and challeng- 
ing test problem for global optimization [10-14]. It is 
very hard for global optimization to directly solve this 
problem even with a small number of atoms. Similarly, 
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Figure 1. The LJ potential energy (see Figure 1 of [9]). 
 
the potential energy for the HBs between β-strands has a 
similar mathematical formula, and usually most of the 
HBs are still kept during the phase of molecular model- 
ling of amyloid fibrils. Thus, the amyloid fibril molecular 
modelling problem can be reduced to solve the optimiza- 
tion problem of minimizing LJ potential energy though it 
is not easy to accurately solve for a large molecule. 

Alternatively, we have found another way to solve the 
problem of minimizing LJ potential energy [15]. Seeing 
Figure 1, we may know that this optimization problem 
reaches its optimal value at the bottom of the LJ potential 
well, where the distance between two atoms equals to the 
sum of vdW radii of the two atoms. Hence, the amyloid 
fibril molecular modelling problem can be looked as a 
molecular distance geometry problem (MDGP) [16-18]. 
As an example to explain MDGP, the problem of locat-
ing sensors in telecommunication networks is a DGP. In 
such a case, the positions of some sensors are known 
(which are called anchors) and some of the distances 
between sensors (which can or cannot be anchors) are 
known. The DGP is to locate the positions of all the sen-
sors. The MDGP looks sensors as atoms and their tele-
communication network as a molecule. In this paper, we 
aim to solve the alternative MDGP problem (i.e. Eq.11 
of [15]) for modelling amyloid fibril molecular 3D 
structures. 

Neurodegeneration is the progressive loss of structure 
or function of neurons, including death of neurons. A 
prion is a misshapen protein that acts like an infectious 
agent (but not requiring either DNA, RNA, or both) to 
cause a number of fatal diseases. Prion diseases are rich 
in β-sheets (compared with the normal prion protein 
PrPC in rich of α-helices) and are so-called “protein 
structural conformational” diseases. The normal hydro- 
phobic region 113-120 AGAAAAGA peptide of prion 
proteins is an inhibitor/blocker of prion diseases. PrP 
lacking this palindrome could not convert to prion dis- 
eases. Brown et al. pointed out that the AGAAAAGA 

peptide was found to be necessary (though not sufficient) 
for blocking the toxicity and amyloidogenicity of PrP 
106-126, and the peptide AGAA does not form fibrils 
[19]. The minimum sequence necessary for fibril for-
mation should be AGAAA, AGAAAA, AGAAAAG, 
AGAAAAGA and GAAAAGA, but the molecular struc-
tures of these fibrils have not known yet. This paper ad-
dresses an important problem on modelling the 3D mo-
lecular structures of prion AGAAAAGA amyloid fibrils 
of neurodegenerative diseases. The rest of this paper is 
arranged as follows. In the next section, i.e. Section 2, an 
improved LBFGS Quasi-Newtonian method is presented 
for solving Eq.11 of [5]. Section 3 implements this 
Quasi-Newtonian method by constructing a 3D mo- 
lecular structure of prion AGAAAAGA amyloid fibrils 
of neurodegenerative prion diseases. Numerical results of 
computations show that the method designed in Section 
2 is very effective and successful. This concluding re- 
mark will be made in the last section, i.e. Section 4. 

2. METHODS 

In a (macro) molecular system, if it is very far from 
equilibrium, then the forces may be excessively large, a 
robust energy minimization (EM) is required; another 
reason to perform an EM is the removal of all kinetic 
energy from the system: EM reduces the thermal noise in 
the structures and potential energies [20]. EM, with the 
images at the endpoints fixed in space, of the total sys- 
tem energy provides a minimum energy path. EM can be 
done using steepest descent (SD), conjugate gradient 
(CG), and Limited-memory Broyden Fletcher Goldfarb 
Shanno (LBFGS) methods. 

Three kinds of possible EM methods are: 1) Deriva- 
tive-free methods—that require only function evaluations, 
e.g. the simplex method and its variants; 2) derivative 
information methods—the partial derivatives of the po- 
tential energy with respect to all coordinates are known 
and the forces are minimized, e.g. SD, CG methods; and 
3) second derivative information methods, e.g. LBFGS 
method. “SD is based on the observation that if the 
real-valued function  f x  is defined and differentiable 
in a neighbourhood of a point x0 then  f x  decreases 
fastest if one goes from x0 in the direction of the negative 
gradient of  f x  at x0 and SD local search method 
converges fast [21]. SD is robust and easy to implement 
but it is not most efficient especially when closer to 
minimum; at this moment, we may use the efficient CG. 
CG is slower than SD in the early stages but more effi- 
cient when closer to minimum. CG algorithm adds an 
orthogonal vector to the current direction of the search, 
and then moves them in another direction nearly perpen- 
dicular to this vector. The hybrid of SD-CG will make 
SD or CG more efficient than SD or CG alone. However, 
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CG cannot be used to find the EM path, for example, 
when “forces are truncated according to the tangent di- 
rection, making it impossible to define a Lagrangian” 
[22,23]. In this case, the powerful and faster quasi- 
Newtonian method (e.g. the LBFGS quasi-Newtonian 
minimiser) can be used [22,24-28]. We briefly introduce 
the LBFGS quasi-Newtonian method as follows. 

Newton’s method in optimization explicitly calculates 
the Hessian matrix of the second-order derivatives of the 
objective function and the reverse of the Hessian matrix 
[29]. The convergence of this method is quadratic, so it is 
faster than SD or CG. In high dimensions, finding the 
inverse of the Hessian is very expensive. In some cases, 
the Hessian is a non-invertible matrix, and furthermore in 
some cases, the Hessian is symmetric indefinite. Quasi- 
Newton methods thus appear to overcome all these short- 
comings.  

Quasi-Newton methods (a special case of variable 
metric methods) are to approximate the Hessian. Cur- 
rently, the most common quasi-Newton algorithms are 
the SR1 formula, the BHHH method, the widespread 
BFGS method and its limited/low-memory extension 
LBFGS, DFP, MS, and Broyden’s methods [30-33]. In 
Amber [23] and Gromacs [20], LBFGS is used, and the 
hybrid of LBFGS with CG—a Truncated Newton linear 
CG method with optional LBFGS Preconditioning [25]— 
is used in Amber [23]. 

For BFGS method, whether it converges at all on non- 
convex problems is still an open problem. In fact, Powell 
(1984) gave a counter-example that shows that BFGS 
with an inexact line-search search may fail to converge 
[34-36]. Li and Fukushima (2001) proposed a modified 
BFGS method for non-convex objective function [37]. 
Basing on [24,25,37-39], in this paper we present an im- 
proved LBFGS method described as follows [40]— 
which presents the non-monotone line search technique 
[41,42] for the Wolfe-type search. The improved LBFGS 
method presented in this paper is much better than the 
standard BFGS method in view of the CPU time (see 
Figure 2) tested through more than 30 nonlinear pro-
gramming problems (where each selected problem is 
regular, that is, its first and second derivatives exist and 
are continuous everywhere, and each problem is with 
different dimensions, i.e., 100, 500, 1000 and 10,000 
dimensions) and its mathematical theory to support this 
algorithm can be seen from [40]. This paper implements 
the Wolfe-type search by the approximation technique of 
piecewise linear or quadratic function [43]. 

Algorithm 1: An Improved LBFGS Optimization Me- 
thod for minimizing a non-convex function [40]. 

Step 0: Choose an initial point 0
nx R , an initial posi- 

tive definite matrix H0, and choose constants σ1, σ2 such that 
0 < σ1 < σ2 < 1, and choose an positive integer m1. Let k = 0. 

Step 1: If 0kg  , then output xk and stop; otherwise, 

 

Figure 2. Performance based on CPU time, where 1R   is a 
factor of the best possible ratio for CPU performance ratio of 
solvers L-BFGS and BFGS, and P is the probability distribution 
of the CPU performance ratio. Detailed mathematical formula 
for P can be seen in [44]. 
 
go to Step 2. 

Step 2: Solve the following linear equation to get dk:  

k kd H kg  , 

Step 3: Find a step-size λk > 0 satisfying the Wolfe- 
type line search conditions: 

    1
T

k k k k k k kf x d f x g    d

k

, 

  2

T T
k k k k kg x d d g   d

k

. 

Step 4: Let 1k k kx x d    be the next iteration. 
Calculate gk+1 and ||gk+1||. 

Step 5: Let 1k k k k ks x x d   , ,  1k ky g g  k

k kg  , then k k k ky y s   . 
Step 6: Let ḿ = min{k + 1, m1}. Update Hk following 

the formula  

 

where  1 ,T
k k kS y    (when k = 0,  T

k k kV I y S    k

 2

0 0 0 0
TH y S y ,  0 0 0 0

T TV I y S S y0
    ,  

     
 

1 0 0 0 0 0 0 0 0

0 01 .

T
T T T T

T T
k k

0H I y S S y H I y S S y

S y S S

   



  


 

Step 7: Let k = k + 1 and go to Step 1. 
In Algorithm 1, gk denotes the gradient of  f x  at xk, 

and the convergence and the R-linear convergent rate of 
Algorithm 1 are guaranteed by the following assump- 
tions: (A1) f is twice continuously differentiable, (A2) f has 
Lipschitz continuous gradients and Hessians, (A3) the 
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Hessian at the stationary point is always positively defi-
nite, and (A4) the level set of f is bounded. The detailed 
proof of the convergence and R-linear convergent rate of 
Algorithm 1 can be found in [40].  

In [40], the non-monotone line search technique for 
step-size λk is used. This is a difference between the al- 
gorithm of [40] and this paper. All in all, it is well known 
that quasi-Newton method is an efficient solution method 
for unconstrained and continuously differentiable mini- 
mization problem [45-47]. However, it needs computing 
and storage of the updated matrix which is an approxi- 
mation to the Hessian matrix in each iteration of the 
method. Hence, its efficiency may decrease when it is 
applied to large scale optimization problem. To over-
come the drawback, limited memory quasi-Newton me- 
thod is proposed [48]. The main ideal of this method is 
nearly identical to that of the standard BFGS method, 
and the only difference is that the inverse Hessian ap- 
proximation is not formed explicitly, but defined by a 
small number, say ḿ, of BFGS updates. This technique 
received much attention in recent years and numerical 
experiments show that it is very competitive [24,49], and 
its global convergence and R-linear convergence rate 
with Wolfe line search are established for the uniformly 
convex case [24,26]. Since the limited memory BFGS 
method may suffer from ill-conditions for small value of 
ḿ, Al-Baali (1999) [50] made some modifications to the 
method and establish its global convergence based on the 
same assumptions, and Byrd et al. (1994) [51] derives 
new representation of limited memory quasi-Newton 
matrices for the benefit of computing the updated matrix. 
Recently, a non-monotone line search is introduced, see 
e.g., [41,42]. Then it is showed to be more competitive 
and practical for solving nonlinear optimization prob- 
lems, and [52] established the global convergence of this 
line search applied to limited memory BFGS method 
based on the uniformly convex assumption. Motivated 
by the above observation, it turns out that in two respects 
the limited memory BFGS method is much less effective. 
First, we note that the convergence analysis of the 
method is focused on the uniformly convex assumption 
and little is known for non-convex case. Second, nu- 
merical experiments have suggested the main weakness 
of limited memory method is that it may converge very 
slowly in terms of number of iterations for ill-condi- 
tioned problems. The purpose of the above Algorithm 1 
is to reduce these defects and Figure 2 shows the effec- 
tiveness of the proposed algorithm. We will apply it into 
the molecular modelling of prion AGAAAAGA amyloid 
fibrils in the next section.  

3. RESULTS AND DISCUSSION 

From their research of prion, scientists found that the 

cross-β structure of peptides is with the nature of self- 
aggregation, the self-aggregating to form fibers. This 
provides us a new research idea for nanomaterials. HBs 
can be formed between peptide β-strands, and one pep- 
tide monomer connects together with another in accor- 
dance with the specific structure to form fibers. Many 
laboratories in the world are synthesizing peptides that 
can self-aggregate to form fibers, and want to be able to 
control the growth of the fiber to find out new functional 
materials [53,54]. The studies of this paper not only 
benefit nanometerials research, but also benefit the re- 
search on neurodegenerative amyloid fibril diseases. 
Prion AGAAAAGA peptide has been reported to own an 
amyloid fibril forming property (initially described in 
1992 by Gasset et al. of Prusiner’s Group) [19,55-78], 
but there has not been experimental structural bioinfor- 
matics for this segment yet due to the unstable, noncrys- 
talline and insoluble nature of this region. Furthermore, 
Zhang (2011) did accurate calculations to confirm the 
amyloid fibril property at this region (Figure 3) [79] in 
the use of the fibril prediction program of [80]. 

3.1. Material for the Molecular Modeling 

This paper uses a suitable pdb file template 2OMP.pdb 
(the LYQLEN peptide derived from human insulin resi- 
dues 13-18 [8]) from the Protein Data Bank to build an 
8-chain AGAAAAGA prion amyloid fibril molecular 
model to illuminate Algorithm 1 works very well. To 
choose 2OMP.pdb (Figure 4) as the modeling template is 
due to it can pass all the long procedures of SDCG-SA 
(equilibrations & productions)-SDCG of [79] in the use 
of the fibril prediction program of [80]. By observations 
of Figure 4 and the 2nd column of coordinates of 
2OMP.pdb, we know that E(F) chains can be calculated 
on the XZ-plane from A(B) chains by Eq.3.1 and other 
chains can be got by a parallel up (or down) along the 
X-axis by Eqs.3.2-3.3: 

     E F A B 1.885,0,17.243   ,      (3.1) 

     C D A B 9.666,0,0          (3.2) 

     G H E F 9.666,0,0          (3.3) 

3.2. New Molecular Modeling Homology 
Model 

Basing on the template 2OMP.pdb from the Protein 
Data Bank (Figure 4), the AGAAAAGA palindrome 
amyloid fibril model of prions (denoted as Model 1) will 
be constructed. Chains AB of Model 1 will be got from 
AB Chains of 2OMP.pdb using themutatemodule of the 
free package Swiss-PdbViewer (SPDBV Version 4.01). It 
is pleasant to see that some HBs are still kept after the 
mutations; thus we just need to consider the vdWs only. 
Making mutations for EF Chains of 2OMP.pdb, we can 
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get the EF Chains of Model 1. Then we add GLY and 
ALA residues by XLEaP module of Amber 11. However, 
the vdWs between Chain A and Chain E, between B Chain 
and F Chain are too far at this moment (Figure 5, where 
the twice of the vdWradius of CB atom is 3.4 angstroms). 

In [79] the commercial package InsightII (accelrys. com) 

is used to build models. Instead of InsightII, because this 
package is not available by the authors, this paper uses 
Algorithm 1 to build and optimize Model 1. In “Zipper 1”, 
fixing the coordinates of A.ALA3.CB, A.ALA1.CB and 
letting the coordinates of E.ALA6.CB, E.ALA4.CB be 
variables, we may get an optimization problem: 

 

      
      

      
      

 

622 2

11 12 13

322 2

11 12 13

622 2

21 22 23

322 2

21 22 23

2

21 22

minimize

4 1 1.071 2.986 1.888

1 1.071 2.986 1.888  

4 1 1.071 2.986 1.888

1 1.071 2.986 1.888

4 1 1.135 0.76

x x x

x x x

x x x

x x x

x x

        
         

         
         

       
      

622

23

322 2

21 22 23

3 7.209

1 1.135 0.763 7.209

x

x x x

     
         

                    (3.4) 

or 

      
      
      
 

222 2 2
11 12 13

222 2 2
21 22 23

222 2 2
21 22 23

11 12 13 21 22 23

minimize

1
1.071 2.986 1.888 3.42

2
1

1.071 2.986 1.888 3.42
2
1

1.135 0.763 7.209 3.42
2
0.05

x x x

x x x

x x x

x x x x x x

     

      

      

     

                   (3.5) 

 

 

Figure 3. Prion AGAAAAGA (113 - 120) segment is clearly and surely identified as 
the amyloid fibril formation region, because its energy is less than the amyloid fibril 
formation threshold energy −26 kcal/mol. 
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Figure 4. Protein fibril structure of human insulin LYQLEN (13 - 18) (PDB id: 2OMP). 
Dashed lines denote the HBs between the pairs of β-strands. A, B, C, D, E, F, G, H denote the 
chains of the fibril. The pair of β-sheets 1 & 2 forms a completely dry interface by vdWs, and 
between many pairs of β-sheets wet interfaces are formed with water molecules. 

 

 

 

 
(a)                                                          (b) 

  
(c)                                                          (d) 

Figure 5. (a) shows the distances of “Zipper 1”-E.ALA6.CB-A.ALA3.CBE.ALA4.CB-A.ALA1.CB are 6.5, 12.0 and 7.05 angstroms 
respectively, and the distances of “Zipper 2”-F.ALA1.CB-B.ALA4.CB-F.ALA3.CB-B.ALA6.CB are 6.6, 11.79, 6.96 angstroms re-
spectively. In (a), A, B, E, F denote A, B, E, F Chains, the red colored spheres are oxygen atoms, the blue colored spheres are nitro-
gen atoms, and the gray colored spheres are carbon atoms; (b) shows the far vdW surface; (c) shows the violet colored A, B, E, F 
Chains of Figure 4; (d) shows HBs (in turns from left to right): A/E.ALA5.O-B/F.GLY2.N, A/E.ALA5.N-B/F.GLY2.O, A/E. 
ALA3.O-B/F.ALA4.N, A/E.ALA3.N-B/F.ALA4.O, A/E.ALA1.O-B/F.ALA6.N. 
 
with an initial solution (–0.067, 5.274, 7.860; –1.119, 
1.311, 13.564). Similarly, in “Zipper 2”, fixing the coor- 

dinates of B.ALA4.CB, B.ALA6.CB and letting the co- 
ordinates of F.ALA1.CB, F.ALA3.CB be variables, we get 
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another optimization problem: 
 

      
      

      
      

   

622 2

11 12 13

322 2

11 12 13

622 2

21 22 23

322 2

21 22 23

2

21 22

minimize

4 1 5.446 2.796 2.662

1 5.446 2.796 2.662

4 1 5.446 2.796 2.662

1 5.446 2.796 2.662

4 1 5.201 1.125

x x x

x x x

x x x

x x x

x x

        
         

         
         

      
      

622

23

322 2

21 22 23

7.873

1 5.201 1.125 7.873

x

x x x

     
         

                     (3.6) 

or 

      
      
      
 

222 2 2
11 12 13

222 2 2
21 22 23

222 2 2
21 22 23

11 12 13 21 22 23

minimize

1
5.446 2.796 2.662 3.42

2
1

5.446 2.796 2.662 3.42
2
1

5.201 1.125 7.873 3.42
2
0.05

x x x

x x x

x x x

x x x x x x

     

      

      

     

                   (3.7) 

 
with an initial solution (4.714, 4.878, 8.881; 4.170, 1.360, 
14.292). Next, we solve Eqs.3.5 and 3.7 by Algorithm 1. 

We first solve Eq.3.5 in the use of Algorithm 1. We set 
σ1 = 10−4, σ2 = 0.1 - 0.9, m1 = 3 - 7, take the initial solu- 
tion x0 = (−0.067, 5.274, 7.860; −1.119, 1.311, 13.564) 
and calculate its gradient g0 = (−69.7747, 140.135, 
365.852, −752.075, −285.005, 3576.69) and its Hessian 
matrix  

 
 
 
 
 
  

0 66.4497, 10.415, 27.1845,0,0,0 ,

10.415,82.2093,54.6557,0,0,0 ,

27.1845,54.6557, 203.929,0,0,0 ,

0,0,0,380.664, 4.02618, 159.578 ,

0,0,0, 4.02618,369.586, 25.5081 ,

0,0,0, 159.578, 25.5081,1048.02

T

T

T

T

T

T

H   





 

 

 

  (3.8) 

which is a positive definite matrix with eigenvalues 
(1085.02, 372.093, 341.157, 230.049, 61.2695, 61.2695). 
Then Algorithm 1 hybridized with simulated annealing 
global optimal search (in order to bring local optimal so- 
lutions to jump out of local traps, replacing the discrete 

gradient local optimal search method in Algorithm 1 of 
[14] by the Algorithm 1 of this paper) is executed and the 
optimal solution (3.027, 4.954, 3.856; 1.679, 1.777, 5.011) 
for Eq.3.5 is got. 

Similarly, for Eq.3.7, we take the initial solution x0 = 
(4.714, 4.878, 8.881; 4.170, 1.360, 14.292) and calculate 
its gradient g0 = (−46.8782, 133.142, 397.798, −401.192, 
−182.604, 3436.46) and its Hessian matrix  

 
 
 
 
 
  

0 66.1163, 6.0961, 18.2092,0,0,0 ,

6.0961,81.3119,51.7918,0,0,0 ,

18.2092,51.7918, 218.677,0,0,0 ,

0,0,0,  339.302, 2.9188, 85.8315 ,

0,0,0, 2.9188,361.487, 2.99786 ,

0,0,0, 85.8315, 2.99786,1034.38 ,

T

T

T

T

T

T

H   





 

 

 

  (3.9) 

which is a positive definite matrix with eigenvalues 
(1044.83, 361.8, 328.538, 238.159, 63.973, 63.973). The 
optimal solution got for Eq.3.7 is (7.412, 4.760, 4.624; 
5.887, 1.451, 5.757). 

We set (3.027, 4.954, 3.856; 1.679, 1.777, 5.011) as the 
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coordinates of E.ALA6.CB and E.ALA4.CB, (7.412, 
4.760, 4.624; 5.887, 1.451, 5.757) as the coordinates of 
F.ALA1.CB and F.ALA3.CB, and taking the average 
value we get 

     E F A B 1.0335,1.0823,0.9723  .  (3.10) 

By Eq.3.10 we can get very close vdW contacts be- 
tween A(B) chains and E(F) chains (Figure 5(b)), and 
other chains of Model 1 can be got by Eqs.3.2, 3.3 and 
Eq.3.11: 

     I J A E 9.666,0,0  .       (3.11) 

The initial structure of Model 1 illuminated in Figures 
6(a) and (b) is not the optimal structure with the lowest total 
potential energy. The initial structure also has no hydrogen 
atoms (so no hydrogen bonds existed) and water molecules 
added. For each Chain, the C-terminal and N-terminal at-
oms also have problems. Clearly there are a lot of 
close/bad contacts between β-strand atoms as illuminated 
in Figures 6(a) and (b). We used the ff03 force field of 
AMBER 11, in a neutral pH environment. The amyloid 
fibrils were surrounded with a 8 angstroms layer of  

TIP3PBOX water molecules using the XLEaP module of 
AMBER 11. 1944 waters and 408 hydrogen atoms were 
added for Model 1 byt he XLEaP module. solvated amy- 
loid fibril was inimized by the method. 

The LJ potential energy of atoms’ vdW interactions is 
just a part of the total potential energy of a protein, and 
by observations from Model 1 computed by Eqs.3.2, 3.3, 
3.10 and 3.11 we can see that the contacts between β-strand 
atoms and β-sheet atoms are too close/bad. Thus, we 
need to relax Model 1 computed. The relaxation is done 
in the use of local search LBFGS Quasi-Newton method 
(lbfgs_memory_depth = 3) within AMBER 11 [23]. The 
relaxed/optimized Model 1 is illuminated in Figure 6(c). 
Seeing Figure 6(d) compared with Figure 6(b), we may 
know the vdW interactions between the two β-sheets are 
very relaxed/optimized now. Figure 6(c) shows the Mo- 
del 1 of optimal molecular structure for prion AGAAAAGA 
amyloid fibrils. 

4. CONCLUSIONS 

In a (macro) molecular system, a robust energy mini-  
 

    
(a)                                           (c) 

                            

    
(b)                                            (d) 

Figure 6. Left: The close vdW surface contacts between Chains A(B) and E(F) of Model 1 
after solving Eqs.3.5 and 3.7; Right: The constructed Model 1 with 10 chains. The dashed 
lines denote HBs.  
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mization is very necessarily required. Mathematical opti- 
mization minimization methods find a place to apply in 
these systems. Because in physics the (macro) molecular 
system usually is not a simple two-body problem of sys- 
tem, local search optimization methods are very useful in 
the applications to the (macro) molecular system. On an- 
ther sense, when a protein is unstable, noncrystalline or 
insoluble and very difficult to detect its 3D structure by 
the expensive and costly NMR and X-ray, theoretical 
mathematical or physical computational method can be 
used to produce the 3D structure of the protein. Moreover, 
even though the X-ray crystallography finds the X-ray 
final structure of a protein, we still need refinements us- 
ing theoretical protocols in order to produce a better 
structure. The theoretical computational method—an im- 
proved LBFGS Quasi-Newtonian mathematical optimiza- 
tion method-presented in this paper and other mathemati- 
cal optimization methods mentioned in this paper should be 
very useful in the protein molecular modeling research field. 

This paper also shows the effectiveness of the im- 
proved LBFGS mathematical optimization method pre- 
sented. Prion AGAAAAGA amyloid fibrils have not 
much structural information. This paper presents some 
bioinformatics on the molecular structures of prion 
AGAAAAGA amyloid fibrils in the sense of theoretical 
emphasis. The structures may be helpful in the advance in 
the biochemical knowledge of prion protein misfolding or 
instability and in the future applications for therapeutic 
agent design.  
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