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ABSTRACT 

Recently land-use change has been the main concern for worldwide environment change and is being used by city and 
regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban 
growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the po- 
tential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced 
Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban 
land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious 
surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher 
temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of 
weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical 
and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image 
classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and 
analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and 
PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results 
compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- 
SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 
2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive 
land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- 
uity, economic efficiency and environmental sustainability. 
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1. Introduction 

Quantitative urban studies are becoming increasingly im- 
portant for planners knowing that in the year 2015 more 
than half the global population will be residing in cities 
[1]. Suitable urban planning ought to be a top priority for 
future development but unfortunately sound planning has 
not taken place especially in many African cities as hea- 
vy rural-urban migration continues to cause cities to ex- 
pand at uncontrollable rates [2]. As a consequence, the 
urban population in Africa is increasing at a much faster 
rate than in the rest of the world, contributing to the aug- 
mentation of the existing problems such as unsuitable 
land-use [3]. The concentration of population in cities 
comprises as much as 60% of the total population in 
most countries. In these immense urban settlements the 
environmental and social consequences are sometimes 
disastrous [4]. 

Large cities in Africa such as Nakuru have experi- 
enced a fast growth rate of 13.3% between 1990 and 
2006 [5]. The magnification has been attributed to a 
number of factors, mainly the aperture of the new Na- 
ivasha-Nakuru road, which links the megacity of Nairobi. 
Post-election violence is verbally expressed to be one of 
the contributing factors, since many displaced people 
from neighboring towns migrated to Nakuru as a safe 
shelter. 

The main consequences in these African cities include; 
urban sprawl, unsuitable land-use, inadequate transporta- 
tion systems, air and water pollution, depletion of natural 
resources, collapse of public services, proliferation of 
epidemics, and other negative environmental and social 
effects. The changing of surrounding area due to uncon- 
trolled city development and city residents ever increase- 
ing demand for energy, food, goods and other options is 
behind the deterioration of local and localized environ- 
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ment which is harmful the basic environment solutions 
and biodiversity. Solutions of problems linked to unsus-
tainable urban development in African cities are mani-
fold and complex and requires an integrated spatially ex- 
plicit approach. Such an integrated urban planning ap- 
proach needs to recognize and anticipate urban dynamics 
and their consequences [6]. 

Remote sensing techniques have been valuable in map- 
ping urban land-use pattern as well as data sources which 
aid in the analysis and modeling of urban growth and 
land-use change [7]. Remote Sensing offers spatially co- 
herent data sets that cover large areas with both high spa- 
tial detail and high temporal frequency. These data cha- 
racteristics are necessary for land-use monitoring, which 
is an essential element of socio-ecological studies. As ur- 
banization occurs, changes in land-use accelerate and land 
making up the natural resource base such as forests and 
agricultural land, leading to modification and conversion 
of existing land-uses [8]. This is referred to as land take 
[9]. 

In order to assess the land-use in Nakuru town, it is 
best to evaluate spatial dimension of the imageries. The 
spatial dimension of remote sensing images as assessed 
by image texture contains information on local spatial 
structure and variability of land-cover categories, and can 
raise land-use classification accuracies in heterogeneous 
urban landscapes [10]. Texture information has improved 
classification accuracy for optical sensors such as the 
Satellite Pour l’Observation de la Terre (SPOT) High Re- 
solution Visible (HRV) sensor, Landsat TM, Multispec- 
tral Electro optical Imaging Scanner (MEIS-II), and air- 
borne multispectral sensors. The optimal window size for 
texture measurements is highly dependent on the image 
pixel size and the land cover characteristics [11]. Nor- 
mally, window size should be large enough to include the 
entire texture pattern, and at the same time small enough 
to include only one land-cover type [12,13]. 

Very high resolution SAR sensors are playing an in-
creasingly important role in urban remote sensing due to 
their ability to operate day and night through cloud cover, 
recent improvement in data availability and spatial reso-
lution [14]. Many studies have focused on the frequency 
and polarimetry of SAR data in land cover classification 
[15], whereas SAR image texture is found helpful in im- 
proving map accuracy, particularly for urban and forest 
categories [16]. 

Multi-temporal SAR images have proven to be useful 
in urban, forest, and agriculture land-cover classification 
[17]. Recent studies report that the fusion of optical and 
SAR data is useful due to their capability to distinct dif- 
ferent features. Optical images contain information on 
surface reflectance and emissivity characteristics, while 
SAR images capture the structure and dielectric proper- 
ties of the Earth surface materials [18]. Land-cover types 

that are impossible to separate in optical images might be 
distinguishable with SAR images and vice versa because 
of the complementary information contained in the two 
spectral domains [19]. 

Many approaches employing both optical and SAR 
images have been explored for land-cover classification 
[20,21]. The results from integrating optical and SAR 
sensors are often significantly higher than those obtained 
from using an individual sensor, particularly for certain 
land-use types, such as urban, agriculture and wetlands. 

The study of land-use and land-cover changes is es- 
sential not only for land-use management but also in de- 
tecting environmental change and in formulating sus- 
tainable development strategies [22]. Accurate informa- 
tion on land-use changes is needed for documenting ur- 
ban growth, making policy decisions and improving 
land-use planning. Information concerning land-use 
changes is also required for predictive modeling [23].  

The aim of this research was to perform different 
land-use classification using multi-sensor data and to mo- 
nitor land-use change. To achieve this optical and SAR 
datasets were obtained. Optical datasets included: Land- 
sat of 1986, 2000 and 2010; Worldview-2 of 2010; and 
ALOS PALSAR imagery of the year 2010. Image classi-
fication was performed on resampled datasets at 12.5 me- 
ters and 28.5 meters. Several image classification algo- 
rithms were explored and their performance evaluated 
using accuracies measured such as overall accuracies and 
kappa coefficient values. Support vector machine (SVM) 
performed better compared to maximum likelihood clas- 
sifier (ML). Thus combining images from optical and 
SAR yielded better results in image classification. Land- 
use change monitoring was achieved by comparing the 
change between two corresponding years and the result 
given as a percentage. 

2. The Study Area 

Nakuru municipality lies in Central Rift Valley in 
Kenya between latitudes 0˚15'S and 0˚31'S, and longi- 
tude 36˚00'E and 36˚12'E, with an average altitude of 
1859 meters above sea level, covering an area of 290 km² 
(Figure 1). Within Nakuru municipality is Nakuru town, 
and Lake Nakuru National Park. The Lake Nakuru Na- 
tional Park is a tourist attraction of great economic value 
for the country with Lake Nakuru being one of the larg- 
est bird sanctuaries in the world with the flamingo and 
pelican bird species. The town of Nakuru is located 160 
km North West of Nairobi along the twin east-west rail- 
road transport route from Mombasa to Kampala and is 
the fourth largest city in Kenya following Nairobi, 
Mombasa and Kisumu. The administratively defined city 
has land-uses divided into urban use, agriculture, range 
land and remnants of evergreen tropical forests. Such  
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Figure 1. Location of Nakuru in the central rift valley of kenya (source: World Resource Institute). 
 
land-uses are similar to other cities in Kenya and sub 
Saharan Africa [2]. 

Urban Growth Rates 

The urban pattern of Nakuru town and its environs are 
characterized by intense urban pressures, first along the 
main highways and through the development of sub ur- 
ban areas. Nakuru population has been growing at the 
rate of 5.6% per annum. From a population of 38,181 in 
1962, the population reached 47,151 in 1969 [24], 92,851 
in 1979 [25], 163,927 in 1989 [26], and 289,385 in 1999 
[27]. By the year 2015, the population is projected to rise 
to 760,000, which is approximately 50% above the pre- 
sent levels [28].  

As a consequence of this population development, ur- 
ban sprawl has led a negative impact on infrastructure 
and the sustainability of cities [29].This has led to; spon- 
taneous slum developments, large increase in the number 
of street children, unemployment and high rates of crime, 
strain on existing urban infrastructure and services, and 
many urban areas are faced with severe environmental 
problems for example air pollution. 

With respect to institutional arrangements, the local 
governments, entrusted with the provision of urban basic 
infrastructure, have been unable to perform as a result of 
administrative problems and lack of capability [29]. 

In order to address urban growth in Nakuru, this re- 

search utilized a multi-sensor approach. Landsat, World- 
view-2 and ALOS-PALSAR data were used to better 
delineate urban land-use and its change within Nakuru 
municipality. 

3. Utility of Multi-Sensor Satellite Data 

Urban landscapes remain one of the most challenging 
environments to be analyzed from remotely sensed data. 
They are complex, featuring spatial and spectral hetero- 
geneity and are composed of multi-fold artificial and 
natural surface types [30]. In a comparative analysis of 
urban reflectance, [31] concluded that sensors with simi- 
lar spectral and radiometric properties to Landsat The- 
matic Mapper (TM) principally comprise a three- dimen- 
sional spectral feature space. In such a feature space, 
linear combinations of spectral end members (high al- 
bedo, vegetation and low albedo) cover approximately 
98% of the variance contained in an urban scene [32]. 

Challenges of urban mapping can be solved using 
more temporal information and data from different sen- 
sors. Integrating multi-temporal information helps dis- 
tinguish urban from non-urban surfaces as urban spectral 
responses are largely persistent over time compared to 
non-urban surface phenology [32].  

Combining multi-spectral imagery with data from the 
microwave spectral domain has also proven to be a pow- 
erful strategy, especially for monitoring urban areas and 
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for overcoming spectral ambiguities [33,34]. The com- 
bined use of synthetic aperture radar (SAR) and multis- 
pectral optical imagery has been successfully used to 
delineate built-up areas [35].  

Urban mapping requires the selection of an appropriate 
scale of observation. This involves a certain trade-off 
between the richness of detail of very high resolution 
(VHR) remote sensing imagery and the generalizing na- 
ture of moderate to high resolution sensors such as the 30 
m of Landsat data [32]. The long-term and future data 
record is an advantage of Landsat data [36,37] compared 
to very high resolution sensors. Optical and SAR systems 
operate in different wavelengths, ranging from visible to 
microwave. 

Landsat sensors include MSS (Multi-Spectral Scanner), 
TM (Thematic Mapper) and ETM+ (Enhanced Thematic 
Mapper Plus). Figure 2 illustrates a false color compos- 
ite Landsat RGB (red, green and blue bands) and pan- 
chromatic band of Nakuru municipality. World view-2 
was launched on 8th October 2009. It is the first comer- 
cial eight multispectral bands high resolution satellite 
(sensor). Figure 3 illustrates Worldview-2 True color 
bands of the central business district (CBD) of Nakuru. 

Radar wavelength has an ultimate influence on the in- 
teraction between the electromagnetic wave and the natu- 
ral medium [38]. As wavelength increases, surface rough- 
ness criteria will also change. In general, more surface 
features will appear smoother at longer wavelengths than 
at shorter wavelengths.  

The capability to penetrate through precipitation clouds 
or into a surface layer is increased with longer wavelen- 
gths. Typically the penetration is half the wavelength and 
as wavelength increases and frequency decreases, re- 
spectively, the penetration becomes higher [39]. 

Radar is able to receive and process all four combina- 
tions of polarizations: HH, HV, VH, and VV. HH stands 
for horizontal transmit and horizontal receive, VV stands 
for vertical transmit and vertical receive, HV stands for 
horizontal transmit and vertical receive, and VH stands 
for vertical transmit and horizontal receive. HH and VV 
are referred to as like-polarized because the transmit 
and receive polarizations are the same, while HV and VH 
are referred to as cross-polarized because the transmit 
and receive polarizations are orthogonal to one another. 
The channels have varying sensitivities to differentiate 
surface characteristics and properties. For instance, the 
dynamic range of the like-polarized module is larger 
than that of the cross-polarized module for urban areas; 
this is in contrast to the measurement for forested areas, 
where the dynamic range of the cross-polarized compo- 
nent is larger than that of the like-polarized component 
[40]. 

Multiple polarizations help to distinguish the physical 
structure of the scattering surfaces e.g. HH vs. VV is 

 
(a)                          (b) 

Figure 2. (a) False color composite Landsat tm (path 169, 
row 60) RGB of 1986 for Nakuru municipality (b) pan-
chromatic band of 1986 for Nakuru municipality. 

 

 

Figure 3. Worldview-2 true color image of year 2010 for 
Nakuru CBD (extend of CBD see Figure 2). 
 
used in the alignment with respect to the radar, HV is 
used in the randomness of scattering for vegetation cover, 
HH and VV phase angle is used for the corner structures 
and urban land-use mapping.  

Past studies showed that radar imagery collected using 
different polarization may provide different and com- 
plementary information about the targets on the surface 
and thus improve the interpretation of different urban 
features [40]. The use of polarimetric datasets for urban 
analysis has been accelerated in recent years with more 
and more fully-polarimetric SAR systems being in op- 
eration for example Terra SAR-X. Several studies dem- 
onstrated that polarimetric datasets have great potential 
for urban applications [38,41]. 

4. Analysis 

4.1. Data 

The approach adopted for the analysis of land-use invol- 
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ved: Landsat images for 1986, 2000 and 2010, World- 
view-2; and Advanced Land Observing Satellite (ALOS) 
Phased Array type L-band Synthetic Aperture Radar 
(PALSAR) image for 2010 were selected for the study 
area. The ALOS PALSAR was at level 1.5 and polar- 
imetric mode, multi-polarized images, HH Horizon-
tal-Horizontal + HV Horizontal-Vertical + Vertical- 
Horizontal + VV Vertical-Vertical. Nakuru municipality 
is entirely contained within Landsat TM path 169, rows 
60. The Landsat data sets include TM, and ETM + im- 
ages. Digital elevation model (DEM) at spatial resolution 
of 90 meters was obtained from the United States Geo- 
logical Survey (USGS) and used to pre-process the SAR 
data. Reference data included a topographic map (scale 
1:50,000) and ground truth information about land-use 
from 50 GPS points which were used for classifier train- 
ing and accuracy assessment. Stratified random sampling 
was adopted for selecting samples. 

4.2. Land-Use Classification 

Two approaches were implemented for the land-use clas- 
sification of Nakuru; Nakuru municipality with six land- 
use classes (namely urban, water, forest, agriculture, 
barren land and rangeland) and Nakuru Central Business 
District (CBD) with three land-use classes (namely urban, 
forest and agriculture). The three classes were selected 
for Nakuru CBD since it is the center of major activities 
and infrastructure. Several factors were considered dur- 
ing the design of categorization scheme such as the major 
land-use categories within the research area, disparities 
in spatial rules of the sensors, and the need to always 
discriminate land-use classes irrespective of seasonal 
disparities [42].  

Image pre-processing steps for the optical datasets 
were radiometric and geometric correction as illustrated 
in Figure 4. GPS points were used for image to map reg- 
istration. UTM 37 South was selected as reference sys- 
tem for the research area. The processing of the SAR 
data was done using European Space Agency (ESA) 
 

 

Figure 4. Image preprocessing workflow of the multi-sensor 
satellite data sets. 

NEST SAR Remote Sensing software. Multi-look corre- 
ction was applied. Radar speckle which appear as grainy 
“salt and pepper” texture in imagery, was reduced prior 
to interpretation and analysis using Gamma Map filter 
with 5 × 5 kernel. The DEM used was an SRTM (Shuttle 
Radar Topography Mission) and was used to remove 
relief displacement in SAR data 

In order to find the optimal spatial resolution scenarios 
of upscaling and downscaling of the data sets were ex- 
plored. Upscaling refers to the decrease in spatial resolu- 
tion while downscaling is the increase in spatial resolu- 
tion. 

Scale has several definitions according to [43] namely: 
cartographic or map scale; observational or geographic 
scale that refers to the size or spatial extent of the study; 
measurement scale or resolution that refers to the mini- 
mum size that can be distinguished; and finally opera- 
tional scale that refers to the scale at which certain proc- 
esses operate in the environment. 

In a nutshell, scale is the spatial and temporal dimen- 
sion of the research while at the same time; scale also 
refers to the spatial extent and frequency that a certain 
phenomenon or process occurs [44]. Additionally, scale 
shows the level on which the object is understood. Hence 
scale can either be temporal or spatial scale, and of which 
both were investigated in this research. Combinations of 
the reflective spectral bands from images (i.e., stacked 
vector) were used for classification of the 1986, 2000 and 
2010 images. The ratio of HH/HV was used for the case 
of the ALOS PALSAR imagery which yields best results 
for urban areas [18,45]. 

Image processing techniques were applied to the data 
sets both at spatial resolution of 12.5 meters and 28.5 
meters using nearest neighbor interpolation. Therefore 
the Worldview-2 data was resampled from 0.5 meters (ori- 
ginal) to 12.5 meters and 28.5 meters. Landsat was re- 
sampled from 28.5 meters (original) to 12.5 meters while 
ALOS PALSAR was resampled from 12.5 meters (ori- 
ginal) to 28.5 meters. The objective was to assess how 
classification accuracy changes with spatial resolution. 
Image processing workflow is illustrated in Figure 5. 

Training sites representing the land-use classes of in- 
terest were collected using the region growing tool in 
ENVI 4.8. Such sites were homogeneous and extensive 
to provide excellent statistics. ML was applied to the mul- 
ti-sensor datasets, and performance assessed using the 
corresponding confusion matrices. 

SVM classification in ENVI 4.8 was applied to all the 
data sets and its performance assessed using confusion 
matrices. The SVM classifier has four kernels namely 
linear, polynomial, Radial Basis Function (RBF) and sig- 
moid. Radial basis function kernel is the default and 
works well in most situations [46]. 
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SVM is well recognized in the field of machine learn- 
ing and pattern recognition [47] and has recently been 
introduced in context of remote sensing image analysis 
[48]. SVM has been applied successfully for classifying 
multispectral imagery for example in [49] and outper- 
formed other methods in the very most recent cases. In 
some studies SVM has been seen to produce higher ac- 
curacies than other classifiers, as a maximum likelihood 
classifier, an ANN and a simple decision tree [48]. Dif- 
ferent voting schemes for multi class SVMs have been 
explored [48].  

Post-classification refinements were enforced to di- 
minish categorization errors as a result of the similarities 
in spectral responses of certain training classes such as 
bare fields and urban areas and some crop fields and 
wetlands. Independent samples of about 100 pixels for 
each class were randomly selected from each classifica 
tion category to assess classification accuracies. Confu- 
sion matrices as cross-tabulations of the mapped class- 
versus the reference class were used to assess classifica- 
tion accuracies [50]. Overall accuracy, user’s and pro- 
ducer’s accuracies, and the Kappa statistic were then 
derived from the error matrices. The Kappa statistic in- 
corporates the off diagonal elements of the confusion 
matrices (i.e., classification errors) and represents agree- 
ment obtained after removing the proportion of agree- 
ment that could be expected to occur by chance. Follow- 
ing the classification of imagery from the individual 
years, a GIS based multi-date post classification coe- 
parison (PCC) change detection strategy was employed 
to determine changes in land-use in Nakuru. Change de- 
tection analysis entailed finding the type, amount and 
location of land use changes that had taken place. 
 

 

Figure 5. Image workflow for classification and change 
detection of multi-sensor data sets. 

5. Results and Discussion 

Image classification of Landsat for 1986, 2000 and 2010 
with 28.5 meters (original) spatial resolution was suc- 
cessfully performed and the results tabulated in Table 1. 
SVM produced better results compared to ML for exam- 
ple SVM in 2010 yielded an overall accuracy of 86.96% 
compared to ML of the same year with 83.80%. Land-use 
maps for Nakuru municipality for the three years are illus- 
trated on Figure 6. 

Furthermore the Radial Basis Function (RBF) kernel 
of support vector machine at various percentages was 
explored. RBF performed best at 0.33 compared to 0.5 
and 0.7. The RBF value of 0.33 is the default value in 
ENVI software. For example the overall accuracy value 
of 93.42% was obtained for the year 1986 at RBF value 
of 0.33 compared to 93.14% at 0.5 and 93.14% at 0.7. 
Similarly an overall accuracy value of 83.77% was ob- 
tained for the year 2000 at RBF value of 0.33 compared 
to 82.75% at 0.5 and 82.75% at 0.7. 

Land-use summary for Nakuru municipality (using 
Landsat at spatial resolution of 28.5 meters) was per- 
formed in ENVI and results tabulated in Table 2. SVM 
gave better results compared to ML. For example, look- 
ing at the urban class, using SVM growth was from 4.78 
km2 in 1986, 12.73 km2 in 2000 and 27.84 km2 in 2010 
compared to ML.  

Next we analyzed the upscaling of World view-2 and 
ALOS for Nakuru CBD which yielded low classification 
accuracy as shown in Table 3. World view-2 was up 
scaled from 0.5 to 28.5 meters and ALOS PALSAR from 
12.5 to 28.5 meters. 

Land-use summary for Nakuru CBD, using all data 
sets at spatial resolution of 28.5 meters, was performed in 
ENVI and results tabulated in Table 4. From Table 4 the 
respective SVM values of Landsat 2010, Worldview-2 
and ALOS PALSAR for the three land-uses were differ- 
ent because of the different sizes of the training polygons 
and heterogeneity of the individual land-use classes. 

Land-use summary for Nakuru CBD, using all data 
sets at spatial resolution of 12.5 meters, was performed in 
ENVI and results tabulated in Table 5. Relatively good 
 
Table 1. Confusion matrix for land-cover classification for 
nakuru municipality (landsat data from 1986, 2000 & 2010). 

Method Landsat 

 1986 2000 2010 

Overall  
Accuracy 

93.42% 83.77% 86.96% SVM 

Kappa  
Coefficient 

0.9087 0.7988 0.8393 

Overall  
Accuracy 

89.00% 82.50% 83.80% 
ML 

Kappa  
Coefficient 

0.8527 0.7862 0.8025 
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Figure 6. Land-use map for Nakuru municipality from Landsat for 1986, 2000 and 2010. 
 
values of urban class were achieved using SVM ALOS 
data as compared to Landsat data and World view-2 at 
12.5 meters spatial resolution. Land-use maps for Nakuru 
CBD are illustrated in Figures 7-10. 

From the Table 6, downscaling of Landsat data sets 
did not affect classification accuracy. Landsat was down- 
scaled from 28.5 meters to 12.5 meters. For example, the 
kappa coefficient value of 96.18% in Table 3 for Landsat 
1986 classification is close to that one of 96.23% in Ta- 
ble 6 of the same data set classification using SVM. 

The ratio of HH/HV ALOS PALSAR was combined 
with (bands 2, 3, 4) Landsat 2010 as a layer stack and 
SVM carried out. The combined ALOS PALSAR (2010) 
and Landsat (2010) gave better results in terms of classi- 
fication accuracies. For example an overall accuracy va- 
lue of 93.64 % and kappa statistic 0.8795 was obtained 
using the combined Landsat and ALOS PALSAR com- 
pared to that of ALOS PALSAR alone 84.09% and 
0.6878 respectively as illustrated on Table 6 using SVM. 

Based on the results from the different image classifi- 
cation, land-use change was calculated using post classi- 
fication technique and results tabled in Table 7 and maps 
illustrated on Figures 11 and 12. From Table 7, 6.25 
km2 of land changed to urban land-use from non-urban 
between the years 1986 to 2000 compared to the value of 
19.70 km2 between the years 2000 to 2010. Non-urban 
land-use included forest and agriculture land-uses. Thus 
rapid urban growth has taken place between the years 
2000 to 2010 due to urbanization. This has been wit- 
nessed by the high population growth [27,28], and rapid 
infrastructure developments such as more houses to cater 
for the growing demand for housing 

6. Conclusion 

Monitoring urban land-use and spatial-temporal changes 

is essential for guiding decision making in resource ma- 
nagement. We analyzed land-use changes between 1986 
and 2010 using multi-sensor satellite datasets. The per- 
formances of various classifiers were assessed. SVM 
algorithm gave better results compared to ML classifier. 
Image upscaling and downscaling were explored in this 
 
Table 2. Land-use estimates for Nakuru municipality using 
Landsat (28.5 spatial resolution). 

 1986 2000 2010 

Land cover classes 
(km2) 

MLC SVM MLC SVM MLC SVM

Water 33.29 36.95 38.77 40.09 27.25 30.78

Urban 16.65 4.78 26.4 12.73 26.83 27.84

Forest 16.95 20.55 25.77 27.1 21.91 26.93

Barren land 24.69 13.46 9.5 5.98 18.82 19.84

Rangeland 93.63 150.07 70.44 134 111.15 122.57

Agriculture 104.78 64.2 119.12 70.1 84.03 62.03

Total 290 290 290 290 290 290 
 

 
Figure 7. Land-use map for Nakuru CBD using Landsat 
TM 1986. 



K. MUBEA, G. MENZ 81

 

Figure 8. Land-use map for Nakuru CBD using Landsat 
ETM 2000. 
 

 

Figure 9. Land-use map for Nakuru CBD using Landsat 
ETM+ 2000. 
 

 

Figure 10. Land-use map for Nakuru CBD using ALOS 
PALSAR 2010. 

Table 3. Comparison of classification accuracies for the 
three multi-sensor data sets at 28.5 spatial resolution for 
Nakuru CBD. 

Method  Landsat 
Worldview

-2 
Alos 
palsar

  1986 2000 2010 2010 2010

Overall 
Accuracy

96.18% 93.22% 99.51% 76.76% 59.37%

SVM
Kappa 

Coefficient
0.9343 0.7321 0.9914 0.6358 0.3555

Overall 
Accuracy

95.24% 93.22% 99.60% 76.76% 18.62%

ML
Kappa 

 Coefficient
0.9196 0.7321 0.9929 0.6358 0.0000

 
Table 4. Land-use estimates for Nakuru CBD (28.5 spatial 
resolution). 

Landsat 
Worldview 

-2 
ALOS  

PALSAR Land-cover 
classes (km2)

1986 2000 2010 2010 2010 

 SVM SVM SVM SVM SVM 

Forest 11.28 6.45 12.15 16.1 11.26 

Urban 34.35 30.96 30 22.25 17.38 

Agriculture 12.37 20.59 15.85 19.64 29.36 

Total 58 58 58 58 58 

 
Table 5. Land-use estimates for Nakuru CBD (12.5m spatial 
resolution). 

Landsat 
Worldview 

-2 
ALOS 

 PALSAR Land-cover 
classes (km2)

1986 2000 2010 2010 2010 

 SVM SVM SVM SVM SVM 

Urban 15.91 18.89 23.31 23.55 27.76 

Forest 8.94 9.23 9.67 14.1 7.07 

Agriculture 33.15 29.88 25.02 20.35 23.17 

Total 58 58 58 58 58 

 
research. Downscaling of Landsat data sets did not affect 
classification accuracy as compared to upscaling of 
Worldview-2 and ALOS PALSAR datasets. The integra- 
tion of Landsat and ALOS PALSAR yielded good results 
compared to when ALOS PALSAR was classified alone. 
Post classification comparison was performed to deter- 
mine the land-use changes and conversion.  

The information obtained however, is very useful for 
planning purposes and for the appropriate allocation of 
resources and demonstrate the potential of combining 
multi-sensor Landsat data, Worldview-2, and PALSAR 
data to provide precise means to analyze and map chan- 
ges in urban land-use. Moreover, such information can 
be used as inputs to decision support systems, policy de- 
cisions and land management. 
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Figure 11. Land-use change in Nakuru CBD using Landsat TM (1986) and Landsat ETM (2000). 
 

 

Figure 12. Land-use change in Nakuru CBD using Landsat ETM (2000) and ALOS PALSAR (2010). 
 
Table 6. Confusion matrix for land-use classification for 
Nakuru CBD (12.5 spatial resolution). 

Table 7. Land-use change estimates based on post classifi-
cation comparison. 

 
 

 Landsat 
Worldview

-2 
ALOS 

PALSAR

  1986 2000 2010 2010 2010 

Overall 
 Accuracy 

96.23% 96.91% 99.05% 77.47% 84.09%

SVM 
Kappa  

Coefficient 
0.943 0.9507 0.9836 0.6343 0.6878

Overall 
 Accuracy 

96.66% 97.09% 98.68% 77.47% 21.00%

ML 
Kappa  

Coefficient 
0.9495 0.9485 0.9774 0.6343 0.0000

 1986 to 2000 2000 to 2010 

Land-use change Change (Km2) Change (Km2)

No change 36.69 23.69 

From non-urban to urban 6.25 19.70 

from urban to non-urban 8.93 7.75 
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