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ABSTRACT 

We present a soliton resonance method for moving target detection which is based on the use of inhomogeneous 
Korteweg-de Vries equation. Zero initial and absorbing boundary conditions are used to obtain the solution of the equa-
tion. The solution will be soliton-like if its right part contains the information about the moving target. The induced 
soliton will grow in time and the soliton propagation will reflect the kinematic properties of the target. Such soliton-like 
solution is immune to different types of noise present in the data set, and the method allows to significantly amplify the 
simulated target signal. Both, general formalism and computer simulations justifying the soliton resonance method ca-
pabilities are presented. Simulations are performed for 1D and 2D target movement. 
 
Keywords: Korteweg-de Vries (KdV) Equation Soliton Resonance; Moving Target Detection 

1. Introduction 

Target tracking process can be defined as a set of algo- 
rithms which allows to fulfill the processes of: 1) esti- 
mation of motion parameters (position, velocity and ac- 
celeration); 2) extrapolation of the track parameters; 3) 
differentiating targets; 4) distinguishing false alarms from 
the true targets [1]. Choosing a tracking algorithm is a 
complex process which always depends on the specifics 
of sensor data and the type of noise which this data 
contains. The complexity of the target tracking problem 
leads to the invention of different types of tracking algo- 
rithms-deterministic and nondeterministic, but so far 
there is no single ideal algorithm that can solve all target 
tracking problems [2]. In this paper we present a new 
algorithm for target detection and tracking. The algorithm 
is based on soliton resonance effect [3]: clever exploitation 
of a new mathematical insight into nonlinear differential 
equations, namely the use of the inhomogeneous Korte- 
weg-de Vries equation as a moving target detector. Under 
the resonance conditions the sensor data generates the 
induced soliton whose amplitude grows in the cource of 
the target detection process. The induced soliton can be 
easily differentiated from the noise (in the form of clutter 
or false alarms), its kinematic properties analysed and the 
target parameters found. The advantage of the algorithm 
compared to the existing ones are: 1) the algorithm al- 
lows to extract and amplify the target signal from noisy 
data without amplification of the noise itself; 2) the tar- 
get’s signal can significantly vary in observation time. 

The algorithm can be implemented to different types of 
data obtained by radar systems, infrared and electro-op- 
tical sensors. The data could be one, two or three dimen- 
sional arrays. 

Mathematical foundation of the algorithm is soliton for- 
mation and propagation under certain initial and boundary 
conditions in the presence of the “external forces”. Soliton 
is a solitary wave propagating in a medium and preserving 
its shape and velocity. The description of a soliton was 
obtained by Korteweg-de Vries in 1895 and presented by 
their famous KdV equation [4]. This equation has many 
applications in different areas of physics [5]. In this paper 
we are interested only in the solutions of inhomogeneous 
KdV equation when the right part of the equation (forcing 
function) influences the soliton formation and propagation. 
While the homogeneous KdV equation leads to the soliton 
propagating with a constant velocity, which depends on 
the initial conditions, the inhomogeneous KdV equation 
describes propagation of the induced soliton generated by 
the forcing function. Unlike the homogeneous KdV equa- 
tion, the inhomogeneous one does not require non-zero 
initial conditions and boundary conditions. The behavior 
of the induced soliton depends solely on the forcing func- 
tion. If the forcing function contains the information about 
the moving target, the speed of the induced soliton chan- 
ges in respect to the speed of the target, and its amplitude 
grows in time allowing us to detect the target by observing 
the growth of soliton amplitude. The method is techni- 
cally attractive since it is immune to the scene attenua- 
tion and obscurations. In Sections 2 and 3 we provide a 
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brief introduction to the theory of solitons, describe so- 
liton resonance effect and its applications to moving tar- 
get detection. Computer simulations justifying the effi- 
ciency of the soliton resonance method for the detection 
of moving targets are presented in Section 4. 

2. Homogeneous KdV Equation 

We will consider KdV equation of the following form  

       , , 0xxxbu x t 

0, 0.c  

 , 0xxxbu x t 

 xp i kx t 

0 1, ,t xu x t c c u x t u x t      (1) 

where the coefficients are taken 0 1  
One of the most fundamental properties of this Partial 
Differential Equation (PDE) is that it is conservative, i.e. 
its solution preserves the total mechanical energy. To 
qualitatively describe the problem of soliton formation, 
we consider linear and nonlinear versions of the Equation 
(1) separately. Putting the coefficient c1 = 0, we obtain 
the linear version of KdV equation  

0,b c

   0, ,t xu x t c u x t         (2) 

The solution of the equation (2) can be written as [6,7] 

 , eu x t A             (3) 

where the frequency   and the wave number k are con- 
nected by the dispersion relation 

3
0c k bk                (4) 

If the initial profile  ,0xu u  is represented as a 
sum of the Fourier harmonics, then each harmonic will 
propagate with the phase velocity  

C k

 1 0

               .(5) 

Comparing Equations (4) and (5), we find that Fourier 
harmonics will propagate with different phase velocities 
depending upon their wave number k. Therefore any ini-
tial profile eventually disperses, and the total initial me-
chanical energy accumulated at the initial profile is not 
changing during the dispersion process. Another impor-
tant property of the linear version of the KdV equation is 
the dependence of its solution on the initial conditions for 
all times.  

Considering that 0  and c  we obtain 
a nonlinear KdV of hyperbolic type 

0, 0b c

     , 0xt u x t 1, ,tu x t c u x       (6) 

This equation appears in the models of free particles 
flow, traffic jam, etc. [8]. The Equation (6) is the sim- 
plest equation that describes the formation of shock wa- 
ves. As follows from the Equation (6), the higher values 
of u propagate faster than lower ones. As a result, the 
moving front becomes steeper and steeper, and finally a 
strong discontinuity representing a shock emerges. The 
shock wave formation tends to make the solution more 

compact, and therefore, less dispersed. When both phe- 
nomena dispersion and shock waves act together, they 
agree on a compromise represented by a soliton.  

To find the travelling wave solution of KdV Equation 
(1) we will assume that [5]: 

     ,u x t f x Ut u            (7)   

Substituting (7) into (1) we obtain the ordinary differ- 
ential equation 

 0 1 0Uu c c u u bu                  (8) 

or, after the integration over variable   and setting the 
integration constant to zero, we obtain the following 
equation 

  21
0 0

2

c
bu c U u u                 (9) 

The solution of this equation is a soliton  

 2
1Sech 12u a c a b x Ut            (10)  

having amplitude a, and moving with the velocity U  

0 1 3U c c a              (11)  

along x-axis. The soliton should be considered as an at-
tractor in a sense that its final configuration does not de-
pend upon initial conditions. In other words, the soliton 
asymptotically tends to its final shape regardless of initial 
conditions. 

3. Inhomogeneous KdV Equation  

3.1. Target Detection in 1D Case 

For implementation of soliton resonance approach to tar- 
get detection, we have to deal with inhomogeneous KdV 
equation. We will provide a qualitative theoretical de- 
scription that will guide our numerical algorithms. We 
shall start with the problem formulation. Consider inho- 
mogeneous 1D KdV equation of the form 

         0 1, , , , ,t x xxxu x t c c u x t u x t bu x t h x t     

0t  t 

 (12) 

where h (x, t) is a forcing function. We will search for the 
solution with zero initial and absorbing boundary condi-
tions and consider two extreme cases: (a) small times 

 and (b) large times . 
For the small times the Equation (12) can be simplified 

by dropping the nonlinear term: 

       0, , , ,t x xxxu x t c u x t bu x t h x t  

   , ,h x t S x t

      (13) 

Let the forcing function be , where 
 ,S x t  is the solution of the equation 

     0, , , 0t x xxxS x t c S x t bS x t            (14) 

Then the particular solution of the Equation (13) can 
be written as 
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   , ,t t S x t

 , ,

u x            (15) 

The result could be verified by substitution of the so- 
lution (15) into the Equation (13). From the physical 
viewpoint, the Equation (15) represents a typical linear 
resonance when the solution of the homogeneous equa- 
tion is fortified by the external input that has a similar 
profile. 

Now we consider inhomogeneous version of the KdV 
equation for large time intervals assuming that the exter- 
nal force could depend not only on the solution of the 
homogeneous equation, but also on its space derivatives 
as  , x xxx . The reason for such gener- 
alization is the following. Since we do not know in ad- 
vance the microstructure of the target as a “thick” point, 
we have to be sure that regardless of a different “inter- 
nal” configuration, the target effect on the global prop- 
erty of the KdV solutions will be qualitatively the same 
as long as the target is localized in space. The general- 
ized form of the external force in the Equation (12) al- 
lows us to consider fundamentally different intrinsic 
shapes. Let the external force be 

h x t  f u u u

   ,, ,x xxx xf u u u u x t . 
Then the solution of the Equation (12) will have the fol- 
lowing form 

 12b x Ut  
2

1Sechu a c a          (16) 

where the soliton velocity is 

0 1 3c aU c   

 
              (17) 

If the external force is    , ,, ,x xxx xf u u u u x t u x t , 
the solution of the Equation (12) gives us the soliton  

   12b x Ut  

 

2
1Sechu a c a           (18) 

where the soliton velocity is defined as 

0 1 3c a

 ,xxx

U c            .(19) 

Finally taking the external force in the form  
 , ,x xxxf u u u u x t

 

 we obtain the soliton  

 1Sech 12u a c a b x Ut    
2           (20) 

propagating with the velocity.  

0 1 3U c c a 

c

            (21) 

In all three cases, the shapes of the forcing function are 
topologically the same although the “details” of these 
shapes are different. This demonstrates that all the targets 
that are localized within a small interval (compare to the 
length of the whole trajectory) will cause a similar global 
effect in terms of the KdV solution.  

As follows from the Equations (16), (18) and (20), the 
width of the soliton increases with the decrease of the 
value of 1  and with the increase of the value b. The mo- 
tion of the target sets up the amplitude of the soliton. One 

can see that two variables characterizing the shape of the 
soliton as the solution of KdV equation, namely, U and a, 
i.e. speed and amplitude, are connected only by one 
equation, and therefore one of variables, for instance U, 
can be set up arbitrarily. That opens up an opportunity to 
consider targets having variable speeds: indeed, when 
the speed of the target is changing, the KdV equation 
“accommodates” it by changing the amplitude of the run- 
ning soliton.  

One of significant advantages of the proposed ap- 
proach is that the corresponding KdV equation is sup- 
posed to be solved only subject to initial conditions, 
while there are no boundary conditions imposed upon the 
solution. This property simplifies both theoretical and 
practical aspect of the methodology of solution. The the- 
ory of PDE without boundary conditions is equipped 
with the theorem of existence of a unique solution; while 
for PDE with boundary conditions similar theorems do 
not exist. In addition to that, more closed form analytical 
solutions are available for PDE without boundary condi- 
tions. However when numerical approaches are applied, 
the following obstacle occurs: we should introduce artifi- 
cial boundary conditions. These conditions are supposed 
to be formulated so that they do not affect the solution 
within the area of interest, i.e. they must provide no re- 
flection. In literature such a boundary condition is called 
an absorbing one. These conditions are used in our ap- 
proach.  

3.2. Target Detection in 2D Case 

Although 1D KdV equation is of fundamental theoretical 
importance, its practical importance is limited and 2D 
case could be effectively exploited for moving target 
detection. However if we turn from 1D KdV equation to 
2D KdV equations, we can conclude that the response to 
a thick-point-external-force is a solitary wave that is rep- 
resented by a thick line rather than a thick point, and the 
whole idea of target detection fails. The only way the 
target moving on 2D plane can be detected using 1D 
KdV equation is by decomposing the target motion on 
two projections and detecting each projection by the cor- 
responding 1D KdV equation. 

Suppose that the motion under consideration takes 
place on a plane, and 2D image of this motion is pre- 
sented by a 2D forcing function h(x, y, t). Then two 1D 
KdV equations can be introduced as 

         1 1, , , , ,t x xxxu x t a u x t u x t b u x t h x t    (22) 

and 

         2 2, , , , ,t y yyyu y t a u y t u y t b u y t h y t     (23)  

where the forcing functions in the Equations (22) and 
(23) are found as integrals. 

Copyright © 2012 SciRes.                                                                                  ARS 



I. KULIKOV, M. ZAK 61

    , , , d ,h x t h x y t y h y   
0 0

, , , d
h l

t h x y t x    (24) 

Letters h and l define the sides of the 2D area. 

4. Applications of KdV Equation for Moving  
Target Detection 

Below we provide computer simulations justifying the 
efficiency of the proposed method for the detection of 
moving targets in one and two dimensions. 

4.1. Target Detection in 1D 

We will start from 1D case when the target movement is 
described by the equation 2 20x x Vt wt   . Here x0 is 
the initial position of the target, V and w are the target 
speed and acceleration. The forcing function for this type 
of target movement can be modeled as 

   22 2wt d   

10

0, exph x t x x Vt          (25) 

where the parameter d allows us to adjust the width of 
the target image. As 1D example we consider a simple 
case of target movement. Let the target move according 
to the equation x t . The solution u (x, t) of KdV 
equation for this case is shown in Figure 1. The soliton 
propagates along x-axis during 20 seconds interval with 
constant velocity. As follows from this plot, the soliton 
propagates along x-axis during 10 seconds interval with 
contrast velocity. 

To estimate the target velocity we define the soliton 
movement by locating its maxima during target detection 
time and use the fitting line to compute the trajectory 
characteristics. The soliton position as a function of time 
and the fitting line are shown by the red and blue colors 
in Figure 2. The fitting line is defined by the equation x 
= −3 + 10.2t. Therefore, the soliton velocity is about 10.2 
m/sec. 

The accelerating targets are also well detected by this 
method. Now we will describe the applications of soliton 
 

 

Figure 1. Growth of the soliton amplitude in time for a 
target moving with constant velocity. 

 

Figure 2. Soliton position as a function of time (the red line) 
and fitting (the blue dashed) line. 

 
resonance method to the detection of a moving target in 
2D. In the next section we consider targets moving in a 
straight line and along a curved trajectory. 

4.2. Target Detection in 2D 

Let the target trajectory be given by the equations  
2 20 x xx x V t w t    and 2 2y y V t w t  

 

0 y y . The 
forcing function implementing this target movement is 

 

 

22
0

22
0

, , exp 2

2

x x

y y

h x y t x x V t w t

y y V t w t d

      
   

    (26) 

 

We consider examples of target detection with soliton 
resonance technique for a target moving in a straight line 
with constant acceleration and a target moving along a 
curved trajectory. We compute the forcing functions h(x, 
t) and h (y, t) using the Equations (26) and (24), solve 
inhomogeneous KdV Equations (22)-(23), find soliton 
trajectories along x and y directions and, finally, obtain 
the target trajectory in 2D.  

For the first example we will assume that the target 
trajectory is 2 22 ,x t y t 

 

. Writing the forcing func- 
tion as 

   2 22 2, , exp 2h x y t x t y t d         
   (27)  

 
and solving the system of two KdV equations we obtain 
two solitons propagating in x and y directions. The soli- 
tons’ trajectories are shown in Figure 3 by the red curves. 
The equations for fitting curves, shown by dashed blue 
lines in Figure 3, are x = −2 + 0.49t2 and y = −5.6 + 
0.95t2, Therefore the solitons propagate along x any 
y-axes with the accelerations wx = 0.99 m/sec2 and 
wy=1.9 m/sec2, that is the accelerations of the solitons are 
the same as the input accelerations wx and wy. 

Combining red curves from Figure 3 we obtain the 
simulated target trajectory in (x − y) plane. This trajec- 
tory is shown by the dashed red line in Figure 4. The 
blue line is the real trajectory of the target.  
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Figure 3. Solitons’ trajectories in x and in y-directions. 
 

 

Figure 4. 2D target (the blue dashed line) and the simulated 
target (the red line) trajectories. 

 
In the second example we will assume that the trajec-

tory of the target is given by the equations x = t2/2 and y 
= 6 t. Writing the forcing function as 

     
22, , exp 2h x y t x t    

2
6y t d    

   (28) 

and numerically solving KdV equations we find solitons’ 
trajectories. They are shown in Figure 5 by the red lines. 

The fitting curves (the dashed blue lines in Figure 5) 
are defined by the equations x = −0.6 + 0.49 t2 and y = −4 
+ 6t.  

 

 
Figure 5. Solitons’ trajectories fitting in x and in y-direc- 
tions. 
 

Therefore the characteristics of the moving target are 
wx = 0.98 m/sec2 and Vy = 6 m/sec. The target trajectory 
is constructed with the use of red curves in Figure 5. The 
target trajectory simulated by the soliton resonance 
method is given in Figure 6 by the red color. The real 
target trajectory is shown by the dashed blue curve. 

The change of 1D solitons’ amplitudes in time allows 
us to model a change of the 2D amplitude of the target 
image. The result is shown in Figure 7. The dashed green 
line shows the growth of the simulated target amplitude 
for 12 seconds interval for the unchanged amplitude of the 
input target signal. 

5. Conclusion 

In this work we provided a short introduction to theory of 
solitons: formulated KdV equation, mechanism of solita- 
ry wave formation and propagation, described the math- 
ematical aspects of soliton resonance method for the de-
tection of moving targets in one and two dimensions. We 
obtained the solutions of inhomogeneous KdV equations 
with the right part containing information about moving 
targets. Target movements were analytically simulated 
and the solutions of KdV equation were obtained for zero 
initial and absorbing boundary conditions using Mathem 
atica software. Computer simulations proved that the 
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Figure 6. 2D target (the blue dashed line) and the simulated 
target (the red line) trajectories. 
 

 

Figure 7. Simulated target amplitude as a function of time. 
 
soliton resonance method allows the detection of singe 
point-like targets moving in 1D and targets moving in 
straight lines or along curved trajectories in 2D. The me- 
thod is effective in the estimation of target’s kinematic 
characteristics and significantly amplifies the simulated 
target amplitude. The soliton resonance method allows 
the detection of moving targets in the presence of slowly 

moving distracting signals (clutter) or suddenly appear-
ing amplitude fluctuations (false alarms) on the scene 
due to soliton stability against the collisions and growth 
of the induced soliton in time. The method has also 
proved to be useful for the detection of attenuated targets, 
when the target’s amplitude changes in the course of ob-
servation 
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